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Global stability analysis of a delayed
susceptible–infected–susceptible epidemic model
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We study a susceptible–infected–susceptible model with distributed delays. By constructing suitable
Lyapunov functionals, we demonstrate that the global dynamics of this model is fully determined by
the basic reproductive ratio R0. To be specific, we prove that if R0 ≤ 1, then the disease-free equilibrium
is globally asymptotically stable. On the other hand, if R0 > 1, then the endemic equilibrium is glob-
ally asymptotically stable. It is remarkable that the model dynamics is independent of the probability of
immunity lost.
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1. Introduction

Let S(t) and I(t) be the density of susceptible and infected population at time t, respectively. We
consider the following delayed SIS (susceptible–infected–susceptible) model:

S′(t) = b − βS(t)I(t) − μSS(t) + qγ I(t), (1)

I ′(t) =
∫ ∞

0
p(τ ) e−μτβS(t − τ)I(t − τ) dτ − μI I(t) − γ I(t), (2)

where b > 0 denotes a constant birth rate, β > 0 is the disease transmission rate, μS > 0 and
μI > 0 stand for the death rates of susceptible and infected individuals, respectively. p(τ ) ≥ 0
with τ ∈ [0, ∞) is the probability density function of transmission delay, μ ≥ 0 corresponds to
the death rate during latent period, γ ≥ 0 is the recovery rate of infected individuals, and q ∈ [0, 1]
denotes the probability of immunity lost.

We remark that the delayed nonlinear incidence rates adopted in our model are different from
those in [3,4,6,9]. In those models, the incidence rates take the same form βS(t)I(t − τ) in both
equations of S′(t) and I ′(t). In our model, the incidence rates take the form βS(t)I(t) in the equation
of S′(t), and a delayed form βS(t − τ)I(t − τ) in the equation of I ′(t). It seems reasonable to
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assume that the susceptible individuals at time t can only contact the infected individuals at the
same time t, not the past time t − τ . On the other hand, the infected individuals at the past time
t − τ can only contact susceptible individuals at t − τ , instead of t. In our model, we assume
that the susceptible individuals are immediately removed from the susceptible group if they are
infected, and they will enter the infected group after a certain latent period. Therefore, the delayed
form of nonlinear incidence rate βS(t − τ)I(t − τ) only appears in the equation of I ′(t).

The SIS model (1)–(2) always admits a disease-free equilibrium (S0, 0) with S0 := b/μS . Define
the basic reproductive ratio

R0 := bβ1

μS(μI + γ )
, (3)

where

β1 := β

∫ ∞

0
p(τ ) e−μτ dτ ≤ β. (4)

If R0 > 1, the model possesses a unique endemic equilibrium (S∗, I∗), where

S∗ := μI + γ

β1
, (5)

I∗ := b − μSS∗

βS∗ − qγ
= bβ1 − μS(μI + γ )

β(μI + γ ) − qβ1γ
= μS(μI + γ )(R0 − 1)

β(μI + γ ) − qβ1γ
. (6)

Since β(μI + γ ) − qβ1γ > βγ − qβ1γ ≥ 0, it is readily seen that I∗ > 0 if and only if R0 > 1.
Our objective is to prove that R0 is the threshold parameter for the global dynamics of the SIS

model (1)–(2). We shall construct two suitable Lyapunov functionals which are modified from
those in [3,4,6,7,9]. Our result is more decent in the sense that no additional condition is required
to obtain global stability of endemic equilibrium; while in the literature (cf. [3,4]), a technical
assumption that the probability of immunity lost should be small is needed. Our main results are
given in Section 2. We will conclude this paper with a discussion in Section 3.

2. Results

Throughout this paper, we assume that the probability density function p(τ ) satisfies

∫ ∞

0
p(τ ) eλτ dτ < ∞

for some λ > 0. The suitable state space for our system (1)–(2) is the Banach space X (see [1] for
example) which consists of all continuous functions (x1, x2) ∈ C((−∞, 0], R2) such that x1(θ) eλθ

and x2(θ) eλθ are uniformly continuous for θ ∈ (−∞, 0], and that

‖(x1, x2)‖X := sup
θ≤0

(|x1(θ)| + |x2(θ)|) eλθ < ∞.

Here, ‖ · ‖X denotes the weighted norm of X . For a function φ ∈ C((−∞, t], R), we denote
φt ∈ C((−∞, 0], R) such that φt(θ) := φ(t + θ) for θ ∈ (−∞, 0]. It follows from the standard
theory of well-posedness for functional differential equations [5] that given any initial conditions
x0 = (x1

0, x2
0) ∈ X, the system (1)–(2) has a unique solution xt = (x1

t , x2
t ) ∈ X for any t > 0.

We now show that the solutions of (1)–(2) are non-negative if the initial values are non-negative.
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Proposition 2.1 Given the initial values such that S(t) ≥ 0 and I(t) ≥ 0 for all t ≤ 0, we have
S(t) > 0 and I(t) ≥ 0 for all t > 0. If, in addition, S(t)I(t) > 0 for all t ≤ 0, then I(t) > 0 for all
t ≥ 0.

Proof First, we claim that S(t) and I(t) are non-negative for all t > 0. If, in contrary, there exists
a t0 ≥ 0 such that (S(t), I(t)) leaves the first quadrant at the first time, we have either (i) S(t0) = 0
and S′(t0) < 0; or (ii) I(t0) = 0 and I ′(t0) < 0. Moreover, S(t) ≥ 0 and I(t) ≥ 0 for all t ≤ t0.
However, case (i) contradicts Equation (1); while case (ii) contradicts Equation (2).

Next, we show that S(t) is strictly positive for all t > 0. Assume S(t1) = 0 for some t1 > 0.
Since S(t) ≥ 0 for all t, it follows that t = t1 is a critical point of S(t) and thus S′(t1) = 0. On the
other hand, we obtain from (1) that S′(t1) = b + qγ I(t1) ≥ b > 0, a contradiction.

Finally, if, in addition, S(t)I(t) > 0 for all t ≤ 0, we prove by contradiction that I(t) > 0 for
all t > 0. Assume t2 is the first time when I(t) losses its positiveness, we have I(t2) = I ′(t2) = 0
and I(t) > 0 for all t < t2, which again contradict Equation (2). �

Our main theorem is given as below.

Theorem 2.2 If R0 ≤ 1, then the disease-free equilibrium (S0, 0) of (1)–(2) is globally asymptot-
ically stable; if R0 > 1, then the endemic equilibrium (S∗, I∗) of (1)–(2) is globally asymptotically
stable.

Proof If R0 ≤ 1, we construct the Lyapunov functional U : X → R as

U(x1, x2) := β1S0

βS0 − qγ
[x1(0) − S0 ln x1(0)] + x2(0) +

∫ ∞

0

∫ 0

−τ

p(τ ) e−μτβx1(θ)x2(θ) dθ dτ .

Restricting U along a solution (S, I) of the system (1)–(2), we have

U(t) = β1S0

βS0 − qγ
[S(t) − S0 ln S(t)] + I(t) +

∫ ∞

0

∫ t

t−τ

p(τ ) e−μτβS(θ)I(θ) dθ dτ .

Here, we have used the equalities x1(θ) = S(t + θ) and x2(θ) = I(t + θ) for θ ≤ 0, and a linear
shift t + θ → θ in the integral representation. Taking derivative with respect to t, we have from
Equation (1)

d

dt
[S(t) − S0 ln S(t)] = [S(t) − S0]

[
b

S(t)
− βI(t) − μS + qγ I(t)

S(t)

]
.

Making use of the identity b = μSS0 yields

b

S(t)
− βI(t) − μS + qγ I(t)

S(t)
= b

S(t)
− βI(t) − b

S0
+ qγ I(t)

S(t)
− qγ I(t)

S0
+ qγ I(t)

S0

= [b + qγ I(t)]
[

1

S(t)
− 1

S0

]
−

(
β − qγ

S0

)
I(t).

Thus,
d

dt
[S(t) − S0 ln S(t)] ≤ −

(
β − qγ

S0

)
[S(t) − S0]I(t).

In view of Equation (2) and the definition of β1, we obtain

U ′(t) ≤ −β1[S(t) − S0]I(t) + β1S(t)I(t) − (μI + γ )I(t) = [β1S0 − (μI + γ )]I(t).
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Since R0 ≤ 1, we have β1S0 ≤ μI + γ and consequently, U ′(t) ≤ 0. The largest invariant set
of U ′(t) = 0 is a singleton such that S(t) ≡ S0 and I(t) ≡ 0. It follows from the Lyapunov–
LaSalle invariance principle [8, p. 30] that the trivial equilibrium (S0, 0) is globally asymptotically
stable if R0 ≤ 1.

For the case R0 > 1, we construct the Lyapunov functional V : X → R as

V(x1, x2) := β1S∗

βS∗ − qγ
VS(x

1, x2) + VI(x
1, x2) + V−(x1, x2),

where

VS(x
1, x2) := x1(0) − S∗ ln x1(0),

VI(x
1, x2) := x2(0) − I∗ ln x2(0),

V−(x1, x2) :=
∫ ∞

0

∫ 0

−τ

p(τ ) e−μτβ[x1(θ)x2(θ) − S∗I∗ ln x1(θ)x2(θ)] dθ dτ .

Restricting along a solution (S, I) of the system (1)–(2), we can rewrite V as

V(t) = β1S∗

βS∗ − qγ
VS(t) + VI(t) + V−(t),

where

VS(t) = S(t) − S∗ ln S(t),

VI(t) = I(t) − I∗ ln I(t),

V−(t) =
∫ ∞

0

∫ t

t−τ

p(τ ) e−μτβ[S(θ)I(θ) − S∗I∗ ln S(θ)I(θ)] dθ dτ .

Taking derivative with respect to t, we obtain from Equations (1) and (2)

V ′
S(t) = [S(t) − S∗]

[
b

S(t)
− βI(t) − μS + qγ I(t)

S(t)

]
,

V ′
I (t) = [I(t) − I∗]

[∫ ∞

0
p(τ ) e−μτ βS(t − τ)I(t − τ)

I(t)
dτ − (μI + γ )

]
,

V ′
−(t) =

∫ ∞

0
p(τ ) e−μτβ

[
S(t)I(t) − S(t − τ)I(t − τ) + S∗I∗ ln

S(t − τ)I(t − τ)

S(t)I(t)

]
dτ .

In view of b − βS∗I∗ − μSS∗ + qγ I∗ = 0, we have

b

S(t)
− βI(t) − μS + qγ I(t)

S(t)
= βS∗I∗

S(t)
+ μSS∗

S(t)
− qγ I∗

S(t)
− βI(t) − μS

+ qγ I(t)

S(t)
− qγ I(t)

S∗ + qγ I(t)

S∗

= [μSS∗ + qγ I(t)]
[

1

S(t)
− 1

S∗

]
+ (βS∗ − qγ )

[
I∗

S(t)
− I(t)

S∗

]
.

Therefore,
β1S∗

βS∗ − qγ
V ′

S(t) ≤ β1S∗[S(t) − S∗]
[

I∗

S(t)
− I(t)

S∗

]
.
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On the other hand, since μI + γ = β1S∗, we obtain from the definition of β1 that

V ′
I (t) =

∫ ∞

0
p(τ ) e−μτβ[I(t) − I∗]

[
S(t − τ)I(t − τ)

I(t)
− S∗

]
dτ .

Combining the above formulas and using the definition of β1, we have

V ′(t) ≤
∫ ∞

0
p(τ ) e−μτβW(t, τ) dτ ,

where

W(t, τ) := S∗[S(t) − S∗]
[

I∗

S(t)
− I(t)

S∗

]
+ [I(t) − I∗]

[
S(t − τ)I(t − τ)

I(t)
− S∗

]

+
[
S(t)I(t) − S(t − τ)I(t − τ) + S∗I∗ ln

S(t − τ)I(t − τ)

S(t)I(t)

]
.

Simplifying the above equation gives

W(t, τ) = S∗I∗
[

2 − S∗

S(t)
− S(t − τ)I(t − τ)

S∗I(t)
+ ln

S(t − τ)I(t − τ)

S(t)I(t)

]
.

Note that 2 − a − b + ln(ab) ≤ 0 for any a > 0 and b > 0; and the equality is satisfied if and
only if a = b = 1. We obtain W(t, τ) ≤ 0 and consequently, V ′(t) ≤ 0. Moreover, the largest
invariant set of V ′(t) = 0 is a singleton where S(t) ≡ S∗ and I(t) ≡ I∗. By the Lyapunov–LaSalle
invariance principle [8, p. 30], we obtain global asymptotic stability of the endemic equilibrium
(S∗, I∗) under the condition R0 > 1. �

3. Discussion

We investigate a delayed SIS model and show that the global dynamics of this model depends on
whether the basic reproductive ratio is greater than one. Our model is based on the assumption
that the disease transmission occurs only when susceptible and infected individuals contact each
other at the same time, namely, any susceptible individuals at present time cannot contact the
infected individuals at the past time. This key assumption makes our model different from those
considered in previous literature [3,4,6,9] in the sense that the incidence rate in our equation of
susceptible individuals does not contain any delay. Thanks to this new assumption, we are able
to establish a threshold theorem of global stability without any technical condition, while in the
literature (see [3,4] for example), an additional assumption of sufficiently small probability of
immunity lost is required to obtain global stability of endemic equilibrium. It is also noted that
by choosing special distribution function p(τ ) and using a standard linear chain trick [8, p. 96],
our model reduces to the SEIS model with multiple latent classes considered in [2], and our result
coincides with that obtained in [2].
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