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Abstract

This paper aims to develop a simple and unified technique in finding asymptotic expansion of orthogonal
polynomials from their difference equations. By preserving the symmetry in the difference equation, we are
able to express the higher-order terms in the asymptotic expansion as an integral whose integrand can be
explicitly obtained by a recurrence relation, while the integration constant is to be determined by a matching
condition that relates to the initial conditions and coefficients in the difference equation.
c⃝ 2018 Elsevier Inc. All rights reserved.
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1. Introduction

The objective of this paper is to study asymptotic solution to the following difference equation

Pn+1(x) + Pn−1(x) = (An x − Bn)Pn(x), n ≥ 1, (1.1)
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together with the initial conditions P0(x) = 1 and P1(x) = A0x − B0. If we define P−1(x) = 0,
then the above difference equation is still true for n = 0. We assume that An > 0, Bn are real,
and as n → ∞, they have the asymptotic expansions:

An ∼ n−θ

∞∑
k=0

αk

nk
, Bn ∼

∞∑
k=0

βk

nk
, (1.2)

where θ > 0 and α0 > 0. It is obvious that the exact solutions to the difference equation are
polynomials. Furthermore, these polynomials are orthogonal with respect to a positive-definite
moment functional [8, Theorem 4.4], and consequently, their zeros are all real, simple, and
located in the interior of the supporting interval of the corresponding moment functional [8,
Theorem 5.2].

Even though it takes a simple form with only two coefficients, the difference Eq. (1.1)
is general in the sense that many orthogonal polynomials within Askey scheme [16], such
as Hermite, Laguerre, Krawtchouk, Meixner, Hahn, Racah and Wilson polynomials satisfy
this equation with different choices of An and Bn . Moreover, the difference equation is the
most explicit and possibly the only way to define orthogonal polynomials related to birth and
death process [15], and orthogonal polynomials with indeterminate moment problems; see for
example, Letessier–Valent polynomials [17], Concrad–Flajolet polynomials [21], Chen–Ismail
polynomials [7], and so on.

Asymptotic analysis of orthogonal polynomials is a classical problem and plenty of methods
have been developed in the literature. For example, the Laplace’s method and steepest-descent
method [26] can be applied to deal with the integral representation of the orthogonal polynomials;
the WKB method [18] is very powerful and easy to implement if the orthogonal polynomials
satisfy a second-order linear differential equation; in the past two decades, Riemann–Hilbert
approach and Deift–Zhou nonlinear steepest-descent method [2,11,12] have been playing an im-
portant role in studying asymptotic behavior of orthogonal polynomials from their orthogonality
relation and the corresponding weight function. However, not much has been done in asymptotic
analysis of orthogonal polynomials via difference equations.

There are some early works on asymptotic analysis of difference equations [1,3–5]. However,
their papers were so complicated that even an expert in asymptotics may not be able to understand
them [27]. It was only by the end of 20th century that other researchers start to pick up this long-
time challenging task. Geronimo and his collaborators [13,14,20] obtained asymptotic formulas
for the orthogonal polynomials in the outer region, while Wong and Li [29] studied asymptotic
solutions to the difference equations in the oscillatory region. At the beginning of this century,
there was a big breakthrough by Wang and Wong [22–24], who developed a general theory of
uniform asymptotic expansions for difference equations near the turning-point. This work was
further extended and completed by Cao and Li [6]. Recently, there have been various applications
of difference technique in the study of coherent state polynomials [9] and birth-death type
orthogonal polynomials [10]. We refer to [28] for an overview of asymptotic theory on linear
difference equations.

As a complement of the pioneer works in [22–24] and in [6], this paper is dedicated to
providing an asymptotic expansion for the solution to (1.1) away from the turning points. We
will use a different approach as those given in [13,14,20] and develop a general and relatively
simple technique in finding general asymptotic solutions to the difference Eq. (1.1). The key idea
is to take advantage of the symmetry in the difference equation, and propose a logarithmic-type
asymptotic technique. We will also generalize the method of asymptotic matching introduced
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in [25] to derive asymptotic expansion of orthogonal polynomials in the outer region and
oscillatory region, respectively.

We shall introduce a scale x = nθ y so as to balance the order of the coefficient An . By [6,22–
24], the linear difference Eq. (1.1) has two linearly independent solutions with asymptotic
expansion given in terms of a special function (Airy or Bessel functions). On account of
asymptotic expansion of the special function, we can rearrange the asymptotic expansion in the
following form:

Φn(nθ y) ∼ exp

{
∞∑

k=−1

φk(y)
nk

}
, n → ∞. (1.3)

It is remarked that the asymptotic expansion lies inside the exponent, which helps us to preserve
the symmetry of the difference equation in n ± 1. As we shall see, φk(y) satisfies a simple
first-order differential equation: −kφk(y) − θyφ′

k(y) = ψk+1(y), where the inhomogeneous term
ψk+1(y) can be explicitly given and it is very close to a rational function; see details later in
Section 2. Solving the above equation gives an integration constant, which will be determined by
the initial conditions and the principle of asymptotic matching; see details later in Section 3.

The paper is organized as follows. In Section 2, we will derive an explicit asymptotic
expansion up to any order for the two linearly independent solutions to the difference Eq. (1.1)
without initial conditions. In Section 3, we will connect the asymptotic expansion with the initial
condition by asymptotic matching, and then derive asymptotic expansions for the orthogonal
polynomials in the outer and oscillatory regions, respectively. In Section 4, we will use
the Hermite polynomials and continuous dual Hahn polynomials as illustrative examples to
demonstrate the feasibility of finding higher-order approximations by our general formula.
Numerical simulation will also be conducted to confirm the order of accuracy in the asymptotic
expansion. Finally, we will give a brief discussion in Section 5.

2. Asymptotic expansion

Let Φn(nθ y) be a solution to (1.1) with asymptotic expansion given as in (1.3). We have

Φn±1(nθ y) = Φn±1((n ± 1)θ y±) ∼ exp

{
∞∑

k=−1

φk(y±)
(n ± 1)k

}
, n → ∞, (2.1)

where y± = (1 ± 1/n)−θ y. Substituting (1.2), (1.3) and the above expansion into (1.1) gives

exp

{
∞∑

k=−1

[
φk(y+)

(n + 1)k
−
φk(y)

nk

]}
+ exp

{
∞∑

k=−1

[
φk(y−)

(n − 1)k
−
φk(y)

nk

]}

∼

∞∑
s=0

αs y − βs

ns
. (2.2)

To make comparison with the asymptotic expansion on the right-hand side, we have to find the
coefficient of n−s in the asymptotic expansion of the left-hand side. Actually, the coefficient can
be explicitly given in terms of φk(y) with k = −1, . . . , s − 1, and their derivatives. To see this,
we will need the following lemmas.

Lemma 2.1. Let Fk,y(s) = s−kφk(s−θ y). The mth derivative of Fk,y(s) is given by

F (m)
k,y (s) =

m∑
j=0

cm, j (k)s−m−k− jθ (−θy) jφ
( j)
k (s−θ y), (2.3)
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where the coefficients satisfy the recurrence relation:

cm+1, j (k) = cm, j−1(k) − (m + k + jθ )cm, j (k), (2.4)

together with initial conditions c0,0(k) = 1. Here, for convenience, we set cm, j (k) = 0 if j < 0
or j > m.

Proof. We will prove the result by induction. Let cm, j (k) be defined as in (2.4). It is obvious that
(2.3) is true for m = 0. If (2.3) is true for mth derivative of Fk,y(s), we take derivative on both
sides of (2.3) and obtain

F (m+1)
k,y (s) =

m∑
j=0

cm, j (k)(−m − k − jθ )s−m−1−k− jθ (−θy) jφ
( j)
k (s−θ y)

+

m∑
j=0

cm, j (k)s−m−1−k−( j+1)θ (−θy) j+1φ
( j+1)
k (s−θ y)

= −(m + k + jθ )cm,0(k)s−m−1−kφk(s−θ y)

+ cm,m(k)s−m−1−k−(m+1)θ (−θy)m+1φ
(m+1)
k (s−θ y)

+

m∑
j=1

[cm, j−1(k) − (m + k + jθ )cm, j (k)]s−m−1−k− jθ (−θy) jφ
( j)
k (s−θ y)

=

m+1∑
j=0

cm+1, j (k)s−m−1−k− jθ (−θy) jφ
( j)
k (s−θ y),

where we have made use of (2.4) in the last equality. Thus, (2.3) is also true for (m + 1)th
derivative. This completes the proof. □

It can be easily calculated from the recurrence relation (2.4) that

c0,0(k) = 1, c1,0(k) = −k, c1,1(k) = 1,
c2,0(k) = k(k + 1), c2,1(k) = −(2k + θ + 1), c2,2(k) = 1,

c3,0(k) = −k(k + 1)(k + 2), c3,1(0) = 3k2
+ (3θ + 6)k + θ2

+ 3θ + 2,
c3,2(k) = −(3k + 3θ + 3), c3,3(k) = 1.

Moreover, cm,0(k) = (−1)m(k)m and cm,m(k) = 1.

Lemma 2.2. Let Fk,y(s) = s−kφk(s−θ y) and ψk+1(y) = F ′

k,y(1). Then we have

− kφk(y) − θyφ′

k(y) = ψk+1(y), (2.5)

and

F (m)
k,y (1) =

m−1∑
j=0

dm−1, j (k)(−θy) jψ
( j)
k+1(y), (2.6)

where

dm, j (k) =

m− j∑
l=0

(−m)lcm−l, j (k). (2.7)

For convenience, we define dm, j (k) = 0 when j < 0 or j > m.
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Proof. It follows from (2.3) that

ψk+1(y) = F ′

k,y(1) = c1,0(k)φk(y) + c1,1(k)(−θy)φ′

k(y) = −kφk(y) − θyφ′

k(y).

Moreover, we have

ψ
( j)
k+1(y) = −(k + jθ )φ( j)

k (y) − θyφ( j+1)
k (y).

For m ≥ 1, we obtain from (2.4) that

dm−1, j−1(k) − (k + jθ )dm−1, j (k)

=

m− j−1∑
l=0

(−m + 1)l[cm−l−1, j−1(k) − (k + jθ )cm−l−1, j (k)] + (−m + 1)m− j

=

m− j−1∑
l=0

(−m + 1)l[cm−l, j (k) − (l − m + 1)cm−l−1, j (k)] + (−m + 1)m− j

=

m− j−1∑
l=0

(−m + 1)lcm−l, j (k) −

m− j−1∑
l=0

(−m + 1)l+1cm−l−1, j (k) + (−m + 1)m− j

=cm, j (k).

Substituting the above two equations into (2.3) gives

F (m)
k,y (1) =

m∑
j=0

[dm−1, j−1(k) − (k + jθ )dm−1, j (k)](−θy) jφ
( j)
k (y)

=

m−1∑
j=0

dm−1, j (k)(−θy) j+1φ
( j+1)
k (y) −

m−1∑
j=0

(k + jθ )dm−1, j (k)(−θy) jφ
( j)
k (y)

=

m−1∑
j=0

dm−1, j (k)(−θy) jψ
( j)
k+1(y),

which completes the proof. □

It can be easily calculated from (2.7) and (2.4) that

d0,0(k) = 1, d1,0(k) = −(k + 1), d1,1(k) = 1,

d2,0(k) = k2
+ 3k + 2, d2,1(k) = −(2k + θ + 3), d2,2(k) = 1,

d3,0(k) = −(k + 1)(k + 2)(k + 3), d3,1(k) = 3k2
+ (3θ + 12)k + θ2

+ 6θ + 11,

d3,2(k) = −(3k + 3θ + 6), d3,3(k) = 1.

Moreover, dm,0(k) = (−1)m(k + 1)m and dm,m(k) = 1.

Lemma 2.3. Let y± = (1 ± 1/n)−θ y. We have
∞∑

k=−1

[
φk(y±)

(n ± 1)k
−
φk(y)

nk

]
∼

∞∑
s=0

gs,±(y)
ns

, (2.8)
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where

gs,±(y) =

s∑
l=0

(±1)l+1

(l + 1)!

l∑
j=0

dl, j (s − l − 1)(−θy) jψ
( j)
s−l(y) (2.9)

with ψk+1(y) = −kφk(y) − θyφ′

k(y).

Proof. Let Fk,y(s) = s−kφk(s−θ y). In view of (2.6), the Taylor expansion of Fk,y(1 + h) about
h = 0 is given by

Fk,y(1 + h) = (1 + h)−kφk((1 + h)−θ y) =

∞∑
m=0

hm

m!

m−1∑
j=0

dm−1, j (k)(−θy) jψ
( j)
k+1(y).

By choosing h = ±1/n, subtracting Fk,y(1) on both sides, multiplying by n−k , and then adding
along k = −1, 0, . . ., we obtain

∞∑
k=−1

[
φk(y±)

(n ± 1)k
−
φk(y)

nk

]
∼

∞∑
m=1

∞∑
k=−1

(±1)m

m!nm+k

m−1∑
j=0

dm−1, j (k)(−θy) jψ
( j)
k+1(y)

∼

∞∑
s=0

s−1∑
k=−1

(±1)s−k

(s − k)!ns

s−k−1∑
j=0

ds−k−1, j (k)(−θy) jψ
( j)
k+1(y)

∼

∞∑
s=0

1
ns

s∑
l=0

(±1)l+1

(l + 1)!

l∑
j=0

dl, j (s − l − 1)(−θy) jψ
( j)
s−l(y),

where we set s = m + k and then l = s − k − 1. This completes the proof. □

Substituting (2.8) into (2.2) gives
∞∑

s=0

αs y − βs

ns
∼ exp{

∞∑
l=0

gl,+(y)
nl

} + exp{

∞∑
l=0

gl,−(y)
nl

},

which implies that

αs y − βs =

s∑
m=0

∑
i1+···+is=m

1i1+···+sis=s

{
eg0,+(y)

s∏
l=1

[gl,+(y)]il

il !
+ eg0,−(y)

s∏
l=1

[gl,−(y)]il

il !

}
(2.10)

for s ≥ 0.

Theorem 2.4. Let ψk+1(y) = −kφk(y) − θyφ′

k(y) and gs,±(y) be defined as in (2.9). Define two
functions

L(y) = cosh[ψ0(y)], (2.11)

R(y) = sinh[ψ0(y)]. (2.12)

We then have

L(y) = (α0 y − β0)/2, R(y)2
= L(y)2

− 1, e±ψ0(y)
= L(y) ± R(y), (2.13)
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and for s ≥ 1,

ψs(y) =
αs y − βs

2R(y)
−

∑
1≤k≤s/2

1
(2k + 1)!

2k∑
j=0

d2k, j (s − 2k − 1)(−θy) jψ
( j)
s−2k(y)

−
L(y)
R(y)

∑
1≤k≤(s+1)/2

1
(2k)!

2k−1∑
j=0

d2k−1, j (s − 2k)(−θy) jψ
( j)
s−2k+1(y)

−

s∑
m=2

∑
i1+···+is−1=m

1i1+···+(s−1)is−1=s

{
L(y) + R(y)

2R(y)

s−1∏
l=1

[gl,+(y)]il

il !

+
L(y) − R(y)

2R(y)

s−1∏
l=1

[gl,−(y)]il

il !

}
. (2.14)

Proof. When s = 0, it follows from (2.9) that g0,±(y) = ±ψ0(y). Substituting this into (2.10)
yields

α0 y − β0 = eψ0(y)
+ e−ψ0(y).

Coupling this with (2.11) implies L(y) = (α0 y − β0)/2. Furthermore, it is readily seen from
(2.11) and (2.12) that R(y)2

= L(y)2
− 1 and e±ψ0(y)

= L(y) ± R(y). This proves (2.13). When
s ≥ 1, it follows from (2.9) and d0,0(s − 1) = 1 that

gs,±(y) =

s∑
k=1

(±1)k+1

(k + 1)!

k∑
j=0

dk, j (s − k − 1)(−θy) jψ
( j)
s−k(y) ± ψs(y).

Thus,

[L(y) + R(y)]gs,+(y) + [L(y) − R(y)]gs,−(y)

=2L(y)
∑

1≤k≤(s+1)/2

1
(2k)!

2k−1∑
j=0

d2k−1, j (s − 2k)(−θy) jψ
( j)
s−2k+1(y)

+2R(y)
∑

1≤k≤s/2

1
(2k + 1)!

2k∑
j=0

d2k, j (s − 2k − 1)(−θy) jψ
( j)
s−2k(y) + 2R(y)ψs(y).

Substituting this into (2.10) yields

αs y − βs =

s∑
m=2

∑
i1+···+is−1=m

1i1+···+(s−1)is−1=s

{
[L(y) + R(y)]

s−1∏
l=1

[gl,+(y)]il

il !

+[L(y) − R(y)]
s−1∏
l=1

[gl,−(y)]il

il !

}

+ 2L(y)
∑

1≤k≤(s+1)/2

1
(2k)!

2k−1∑
j=0

d2k−1, j (s − 2k)(−θy) jψ
( j)
s−2k+1(y)
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+ 2R(y)
∑

1≤k≤s/2

1
(2k + 1)!

2k∑
j=0

d2k, j (s − 2k − 1)(−θy) jψ
( j)
s−2k(y)

+ 2R(y)ψs(y),

where we have made use of g0,±(y) = ±ψ0(y) and (2.13). We then divide both sides by 2R(y)
and isolate ψs(y) to obtain (2.14). This completes the proof. □

Remark 2.5. From (2.11) and (2.13), we observe that L(y) is a linear function in y, while R(y)
is radical function composited with a quadratic function. There are two choices of R(y) by taking
square root of L(y)2

− 1 = (α0 y − β0)2/4 − 1, which correspond to two linearly independent
solutions for the difference Eq. (1.1) without initial conditions.

Remark 2.6. Note that when j = 0 and s = l > 0, we have

dl, j (s − l − 1) = dl,0(−1) = (−1)l(−1)l = 0,

and hence, the term ψ0(y) does not appear in the expression of gs,±(y) if s ≥ 1. Due to a similar
reason, the term ψ0(y) does not appear in the expression of ψs(y) if s ≥ 1.

In the following corollary, we shall provide explicit expressions for ψ1(y) and ψ2(y).

Corollary 2.7. Let R(y) be given as in (2.12). We have

ψ1(y) =
α1 y − β1

2R(y)
+
θα0 yL(y)

4R(y)2 , (2.15)

ψ2(y) =
ψ2,1(y)
[R(y)]4 +

ψ2,2(y)
[R(y)]5 , (2.16)

where

ψ2,1(y) =
2L(y)[(θ + 1)α1 y − β1][R(y)]2

− θα0 y(α1 y − β1){[R(y)]2
+ 2}

8
,

ψ2,2(y) =
[6(α2 y − β2) − θ (θ + 1)α0 y][R(y)]4

12
+

(θα0 y)2L(y)[R(y)]2

24

+
θα0 y[L(y)R(y)]2

8

−
2θ2α0 yβ0L(y)[R(y)]2

+ 5(θα0 y)2L(y) + 4(α1 y − β1)2L(y)[R(y)]2

32
.

Proof. First, we note from (2.11)–(2.13) that

ψ ′

0(y) =
α0

2R(y)
, ψ ′′

0 (y) = −
α2

0(α0 y − β0)
8[R(y)]3 . (2.17)

When s = 1, it follows from d1,0(−1) = 0, d1,1(−1) = 1 and (2.14) that,

ψ1(y) =
α1 y − β1

2R(y)
−

L(y)
2R(y)

[d1,0(−1)ψ0(y) + d1,1(−1)(−θy)ψ ′

0(y)]

=
α1 y − β1

2R(y)
+
θyL(y)
2R(y)

ψ ′

0(y).
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Substituting (2.17) into the above equation gives (2.15). Taking derivative of (2.15) yields

ψ ′

1(y) =
2α1[R(y)]2

− (α1 y − β1)α0L(y)
4R(y)3

+
(2θα2

0 y − θα0β0)[R(y)]2
− 2θα0 yL(y)α0L(y)

8R(y)4

=
2α1[R(y)]2

− (α1 y − β1)α0L(y)
4R(y)3 −

θα0β0[R(y)]2
+ 2θα2

0 y
8R(y)4 . (2.18)

Furthermore, we obtain from d1,0(−1) = 0, d1,1(−1) = 1 and (2.9) that

g1,±(y) = −
θy
2
ψ ′

0(y) ± ψ1(y).

Substituting (2.15) and (2.17) into the above formula gives

g1,±(y) =
−θα0 y ± 2(α1 y − β1)

4R(y)
±
θα0 yL(y)

4R(y)2 , (2.19)

and

[g1,±(y)]2

2
=

(θα0 y)2
+ 4(α1 y − β1)2

∓ 4θα0 y(α1 y − β1)
32[R(y)]2 +

(θα0 y)2[L(y)]2

32R(y)4

+
2θα0 yL(y)(α1 y − β1) ∓ (θα0 y)2L(y)

16[R(y)]3 . (2.20)

When s = 2, we have from (2.14)

ψ2(y) =
α2 y − β2

2R(y)
−

1
6

[d2,0(−1)ψ0(y) + d2,1(−1)(−θy)ψ ′

0(y)

+ d2,2(−1)(−θy)2ψ ′′

0 (y)]

−
L(y)

2R(y)
[d1,0(0)ψ1(y) + (−θy)ψ ′

1(y)]

−
L(y) + R(y)

2R(y)
·

[g1,+(y)]2

2
−

L(y) − R(y)
2R(y)

·
[g1,−(y)]2

2
.

Note that d2,0(−1) = 0, d2,1(−1) = −θ − 1, d2,2(−1) = 1, d1,0(0) = −1 and d1,1(0) = 1. We
substitute (2.15), (2.17), (2.18) and (2.20) into the above equation to obtain

ψ2(y) =
α2 y − β2

2R(y)
−

1
6

{
θ (θ + 1)α0 y

2R(y)
−

(θα0 y)2L(y)
4[R(y)]3

}
+

L(y)
2R(y)

{
α1 y − β1

2R(y)
+
θα0 yL(y)

4R(y)2

+
2θα1 y[R(y)]2

− (α1 y − β1)θα0 yL(y)
4R(y)3 −

θ2α0 yβ0[R(y)]2
+ 2θ2α2

0 y2

8R(y)4

}
−

L(y)
R(y)

{
(θα0 y)2

+ 4(α1 y − β1)2

32[R(y)]2 +
(θα0 y)2[L(y)]2

32R(y)4 +
θα0 yL(y)(α1 y − β1)

8[R(y)]3

}
+
θα0 y(α1 y − β1)

8[R(y)]2 +
(θα0 y)2L(y)

16[R(y)]3 .

Simplifying the above formula gives (2.16). This completes the proof. □
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From the calculation, we observe that ψ1(y) and ψ2(y) are simply sums of fractions with
polynomial functions divided by a nonnegative integer power of R(y). To better explain this
property, we introduce the definition of quasi-rational functions and the index for these functions.

Definition 2.8. Let [R(y)]2 be a quadratic function such that R(y) cannot be simplified as a linear
function. A quasi-rational function (associated with R(y)) is a function that can be expressed as
the finite sum:

m∑
k=0

fk(y)
[R(y)]k

,

where fk(y) are polynomial functions that do not contain [R(y)]2 as a factor, and fm(y) ̸= 0.
The highest power of R(y) in the denominator (i.e., m) is called the index, denoted by indR f . If
further, the polynomial degree of fk(y) is no more than k for all k = 0, . . . ,m, then we say the
quasi-rational function f is bounded, in the sense that, as y → ∞, the limit of f (y) exists.

We have the following properties for the quasi-rational function. The proof is trivial and we
omit it here.

Proposition 2.9. Let [R(y)]2 be a quadratic function such that R(y) cannot be simplified as a
linear function. Let f (y) and g(y) be quasi-rational functions associated with R(y).

1. indR f (y) = 0 if and only if f (y) is a polynomial function.
2. indR f (y) = m ≥ 1 if and only if there exist two polynomial functions f1(y) and f2(y) such

that f2(y) does not contain [R(y)]2 as a factor and

f (y) =
f1(y)

[R(y)]m−1 +
f2(y)

[R(y)]m
.

Moreover, the decomposition is unique.
3. indR f ( j)(y) = indR f (y) + 2 j if indR f (y) > 0.
4. indR[ f (y)g(y)] ≤ indR f (y) + indR g(y).
5. If f (y) is bounded, so is y j f ( j)(y).

We observe from (2.15) and (2.19) that indRψ1(y) = indR g1,±(y) = 2. Actually, we have the
following results.

Corollary 2.10. For s ≥ 1, we have indRψs(y) ≤ 3s − 1 and indR gs,±(y) ≤ 3s − 1. Especially,
there exist polynomial functions ψs,1(y) and ψs,2(y) such that

ψs(y) =
ψs,1(y)

[R(y)]3s−2 +
ψs,2(y)

[R(y)]3s−1 . (2.21)

Proof. We will prove the results by induction. On account of (2.15) and (2.19), we see
indRψ1(y) ≤ 2 and indR g1,±(y) ≤ 2. Assuming indRψl(y) ≤ 3l − 1 and indR gl,±(y) ≤ 3l − 1
for all l = 1, . . . , s − 1, we need to prove that indRψs(y) ≤ 3s − 1 and indR gs,±(y) ≤ 3s − 1.
First, we obtain from (2.17) and Proposition 2.9 that indRψ

( j)
1 ≤ 2 j − 1 for j ≥ 1. Second, we

recall from Remark 2.6 that ψ0(y) does not appear in the expression of ψs(y). By induction and
Proposition 2.9, we have

indRψ
( j)
s−2k(y) ≤ 3(s − 2k) − 1 + 2 j ≤ 3s − 2k − 1 ≤ 3s − 3
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for 0 ≤ j ≤ 2k and 1 ≤ k ≤ s/2, and

indRψ
( j)
s−2k+1(y) ≤ 3(s − 2k + 1) − 1 + 2 j ≤ 3s − 2k ≤ 3s − 2

for 0 ≤ j ≤ 2k − 1 and 1 ≤ k ≤ (s + 1)/2, and

indR

s−1∏
l=1

[gl,±(y)]il

il !
≤

s−1∑
l=1

[(3l − 1)il] = 3s − m ≤ 3s − 2

for i1 + · · · + is−1 = m, 1i1 + · · · + (s − 1)is−1 = s and 2 ≤ m ≤ s. It then follows from (2.14)
that

indRψs(y) ≤ max{1, 3s − 3, 1 + 3s − 2, 1 + 3s − 2} = 3s − 1.

Again, we recall from Remark 2.6 that ψ0(y) does not appear in the expression of gs,±(y).
Furthermore,

indRψ
( j)
s−l(y) ≤ 3(s − l) − 1 + 2 j ≤ 3s − l − 1 ≤ 3s − 1

for 0 ≤ j ≤ l and 0 ≤ l ≤ s such that s−l and j cannot be identically zero. Hence, it is observed
from (2.9) that

indR gs,±(y) ≤ 3s − 1.

This completes the proof. □

Remark 2.11. For s ≥ 1, we observe from Remark 2.6 that the term ψ0(y) does not appear in
the expression of gs,±(y). Thus, it is easily seen from (2.9), (2.14), (2.17), (2.15), Proposition 2.9,
and an argument of induction that both ψs(y) and gs,±(y) are bounded as y → ∞.

Finally, we are ready to solve the differential equation (2.5) and determine the kth order term
in the asymptotic expansion for Φn(nθ y). It is easily seen that

φk(y) =
−1
θyk/θ

∫ y

yk

tk/θ−1ψk+1(t)dt, (2.22)

where yk is an integration constant to be determined by asymptotic matching. Especially, we
have from (2.15) and (2.17)

φ−1(y) = c−1 y1/θ
+ ln[L(y) + R(y)] +

∫
∞

y

α0 y1/θ

2t1/θ R(t)
dt, (2.23)

φ0(y) = c0 −
α1

θα0
ln[L(y) + R(y)] +

β1

2θβ∗

0
ln
β0L(y) + β∗

0 R(y) + 2
β0L(y) − β∗

0 R(y) + 2
−

1
2

ln R(y),

(2.24)

where c−1 and c0 are some integration constants, and

β∗

0 =

⎧⎨⎩
√
β2

0 − 4, |β0| ≥ 2,

i
√

4 − β2
0 , |β0| < 2.

(2.25)
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The singularity in the expression of φ0(y) at β∗

0 = 0 (i.e., β0 = ±2) can be removed by taking
the limit β0 → ±2. Substituting the above formulas into (1.3) gives

Φn(nθ y) ∼
ec−1ny1/θ

+c0

√
R(y)

[L(y) + R(y)]n−α1/(θα0)
[
β0L(y) + β∗

0 R(y) + 2
β0L(y) − β∗

0 R(y) + 2

]β1/(2θβ∗
0 )

× exp

{∫
∞

y

α0ny1/θ

2t1/θ R(t)
dt −

∞∑
k=1

∫ y

yk

tk/θ−1ψk+1(t)
θnk yk/θ

dt

}
. (2.26)

3. Asymptotic matching

In this section, we will connect the initial conditions to the asymptotic solution by principle
of asymptotic matching. For convenience, we first introduce several notations. Note from (2.22)
that φk(y) may have singularities at the origin y = 0 or at the points when R(y) = 0. Solving
R(y) = 0 gives two solutions y± = (β0 ± 2)/α0, which are referred to as the turning points. The
oscillatory interval, denoted by I , is the union of two disconnected open intervals whose end
points are the origin or the turning points. To be more specific, there are three cases:

(i) if y− ≤ 0 ≤ y+; namely, −2 ≤ β0 ≤ 2, then I = (y−, 0) ∪ (0, y+);
(ii) if 0 < y− < y+; namely, β0 > 2, then I = (0, y−) ∪ (y−, y+);

(iii) if y− < y+ < 0; namely, β0 < −2, then I = (y−, y+) ∪ (y+, 0).

For some orthogonal polynomials, the support of the orthogonal measure may be a union
of multiple disjoint intervals and more than two turning points may occur [2]. However, under
the assumption (1.2), there are only two turning points which are the roots of the quadratic
equation L(y)2

= 1; see also [23,24]. The oscillatory region is a complex neighborhood of the
oscillatory interval which contains all complex numbers z such that Re z ∈ I and |Im z| < δ,
where δ > 0 is a fixed small number to be determined later in Lemma 3.3. We also define
the complex complement of the closure of the oscillatory interval (i.e., C \ Ī ) as the outer
region. In this region, the quadratic equation R(y)2

= L(y)2
− 1 has two different solutions

±Ro(y), where Ro(y) =
√

[L(y)]2 − 1 can be regarded as an analytic function in C \ Ī such that
Ro(y)/L(y) → 1 as y → ∞. When y lies in the outer region C\ Ī , we substitute R(y) = ±Ro(y)
into (2.26) to obtain two linearly independent solutions, denoted by Φo

n,1(nθ y) and Φo
n,2(nθ y), to

the difference Eq. (1.1). In general, neither Φo
n,1(nθ y) nor Φo

n,2(nθ y) should be a polynomial
solution. But they all satisfy the same linear difference equation (1.1) with different initial
conditions. Moreover, if we use these two solutions as a basis, then the orthogonal polynomials
have the following representation:

Pn(nθ y) = K o
1 (x)Φo

n,1(nθ y) + K o
2 (x)Φo

n,2(nθ y), (3.1)

for some coefficients K o
1 (x) and K o

2 (x) depending on the original variable x = nθ y. To
determine the coefficients in the above linear combination, we need to apply the principle of
asymptotic matching. Note from (1.1) with the initial conditions that the leading term of Pn(nθ y)
is A0 · · · An−1(nθ y)n . In view of the asymptotic expansion (1.2), we have

A0 · · · An−1 = A0

n−1∏
k=1

[k−θ (α0 + α1/k)] ×

n−1∏
k=1

Ak

k−θ (α0 + α1/k)
.
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As n → ∞, the second product on the right-hand side converges because An
n−θ (α0+α1/n) =

1 + O(1/n2). It then follows Stirling’s formula that, as n → ∞,

A0 · · · An−1 ∼ k0nα1/α0+θ/2αn
0 (e/n)nθ

for some constant k0. Now we let both n → ∞ and y → ∞. It follows that

Pn(nθ y) ∼ k0nα1/α0+θ/2(α0 y)nenθ .

On the other hand, we set R(y) = ±Ro(y) = ±
√

[L(y)]2 − 1 in (2.26) to obtain

Φo
n,1(nθ y) ∼ 21/2ec−1ny1/θ

+c0 (α0 y)n−α1/(θα0)−1/2
(
β0 + β∗

0

β0 − β∗

0

)β1/(2θβ∗
0 )

enθ ,

Φo
n,2(nθ y) ∼ −i21/2ec̃−1ny1/θ

+c̃0 (α0 y)−n+α1/(θα0)−1/2
(
β0 − β∗

0

β0 + β∗

0

)β1/(2θβ∗
0 )

e−nθ ,

as n → ∞ and y → ∞. Here ck and c̃k are some integration constants for the two linearly
independent solutions. By substituting the above three formulas into (3.1) and matching the
asymptotic leading term, we obtain c−1 = 0, c0 = ln(k0/

√
2), and

K o
1 (x) =

(
β0 − β∗

0

β0 + β∗

0

)β1/(2θβ∗
0 )

xα1/(θα0)+1/2.

Here, we cannot determine the coefficient K o
2 (x) and integration constants c̃k , but the term

K o
2 (x)Φo

n,2(nθ y) is exponentially small with respect to K o
1 (x)Φo

n,1(nθ y), and thus it can be ignored
in the asymptotic expansion:

Pn(nθ y) ∼ K o
1 (x)Φo

n,1(nθ y), n → ∞.

Summarizing the above arguments, we arrive at the following result.

Theorem 3.1. Let L(y) = (α0 y − β0)/2 and Ro(y) =
√

[L(y)]2 − 1. Set

k0 := lim
n→∞

A0 · · · An−1

nα1/α0+θ/2αn
0 (e/n)nθ

. (3.2)

As n → ∞, we have

Pn(nθ y) ∼
k0(nθ y)α1/(θα0)+1/2

√
2Ro(y)

[L(y) + Ro(y)]n−α1/(θα0)

×

[
β0L(y) + β∗

0 Ro(y) + 2
β0L(y) − β∗

0 R(y) + 2

]β1/(2θβ∗
0 )

×

(
β0 − β∗

0

β0 + β∗

0

)β1/(2θβ∗
0 )

exp
{∫

∞

y

α0ny1/θ

2t1/θ Ro(t)
dt

−

∞∑
k=1

∫ y

yk

tk/θ−1ψo
k+1(t)

θnk yk/θ
dt

}
, (3.3)

for y ∈ C \ Ī . Here, β∗

0 is defined as in (2.25), and ψo
k+1(y) is the same as ψk+1(y) in (2.14) with

R(y) = Ro(y).

Remark 3.2. The integration constants yk in the higher-order terms of the asymptotic expansion
(3.3) can be determined by asymptotic matching. We will illustrate this in the next section by
finding asymptotic expansion of Hermite polynomials.
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We denote the truncated expansion in (3.3) as

Ψm(n, y) :=
k0(nθ y)α1/(θα0)+1/2

√
2Ro(y)

[L(y) + Ro(y)]n−α1/(θα0)

×

[
β0L(y) + β∗

0 Ro(y) + 2
β0L(y) − β∗

0 R(y) + 2

]β1/(2θβ∗
0 )

×

(
β0 − β∗

0

β0 + β∗

0

)β1/(2θβ∗
0 )

exp
{∫

∞

y

α0ny1/θ

2t1/θ Ro(t)
dt

−

m∑
k=1

∫ y

yk

tk/θ−1ψo
k+1(t)

θnk yk/θ
dt

}
, m ≥ 0. (3.4)

It is obvious that Ψm(n, y) is analytic in C \ Ī . If y ∈ I , we define

Ψm,±(n, y) := lim
ε→0+

Ψm(n, y ± iε). (3.5)

It is readily seen that Ψm,±(n, y) can be analytically continued in a complex neighborhood of any
compact subset of I . Remark that the end points of I should be bounded away from the complex
neighborhood for the analytic continuation. Moreover, Ψm,+(n, y) = Ψm(n, y) if Im y > 0 and
Ψm,−(n, y) = Ψm(n, y) if Im y < 0. We then have the following lemma.

Lemma 3.3. There exists δ > 0 such that as n → ∞, the ratio Ψm,−(n, y)/Ψm,+(n, y) is
exponentially small for any y such that Re y ∈ I and 0 < Im y < δ, and exponentially large for
any y such that Re y ∈ I and −δ < Im y < 0.

Proof. Define

ϕ(y) := ln[L(y) + Ro(y)] +

∫
∞

y

α0 y1/θ

2t1/θ Ro(t)
dt

for y ∈ C \ I , and

ϕ±(y) := lim
ε→0+

ϕ(y ± iε), ϕ̄(y) := ϕ−(y) − ϕ+(y)

for y ∈ I . Remark that

ϕ′(y) =

∫
∞

y

α0 y1/θ−1

2θ t1/θ Ro(t)
dt

for y ∈ C \ I . By analytic continuation, ϕ±(y) and ϕ̄(y) are analytic in a complex neighborhood
of I . Furthermore,

1
n

ln
Ψm,−(n, y)
Ψm,+(n, y)

→ ϕ̄(y),

as n → ∞. Let y = yr + iε with yr ∈ I and ε ∈ R. It suffices to show that there exists δ > 0
such that εRe ϕ̄(yr + iε) < 0 for all 0 < |ε| < δ. Note that

ϕ̄(yr + iε) ∼ ϕ̄(yr ) + iεϕ̄′(yr ),

and

Re ϕ̄(yr + iε) ∼ Re ϕ̄(yr ) − εIm ϕ̄′(yr ),
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as ε → 0. We claim Re ϕ̄(yr ) = 0 and Im ϕ̄′(yr ) > 0. If this is true, then Re ϕ̄(yr + iε) has a
different sign with ε. We have to consider three cases.

Case 1: −2 ≤ β0 ≤ 2. In this case, I = (y−, 0) ∪ (0, y+). If yr ∈ (0, y+), then

ϕ±(yr ) = ±i arccos[L(yr )] ∓ i
∫ y+

yr

α0 y1/θ
r

2t1/θ
√

1 − [L(t)]2
dt

+

∫
∞

y+

α0 y1/θ
r

2t1/θ
√

[L(t)]2 − 1
dt,

which implies that Re ϕ̄(yr ) = 0. On the other hand,

ϕ′

±
(yr ) = ∓i

∫ y+

yr

α0 y1/θ−1
r

2θ t1/θ
√

1 − [L(t)]2
dt +

∫
∞

y+

α0 y1/θ−1
r

2θ t1/θ
√

[L(t)]2 − 1
dt.

Thus,

Im ϕ̄′(yr ) =

∫ y+

yr

α0 y1/θ−1
r

θ t1/θ
√

1 − [L(t)]2
dt > 0.

If yr ∈ (y−, 0), then

ϕ±(yr ) = ±i arccos[L(yr )] ∓ i
∫ y−

yr

α0(−yr )1/θ

2(−t)1/θ
√

1 − [L(t)]2
dt

−

∫
−∞

y−

α0(−yr )1/θ

2(−t)1/θ
√

|[L(t)]2 − 1|
dt,

which again implies that Re ϕ̄(yr ) = 0. On the other hand,

ϕ′

±
(yr ) = ∓i

∫ yr

y−

α0(−yr )1/θ−1

2θ (−t)1/θ
√

1 − [L(t)]2
dt −

∫ y−

−∞

α0(−yr )1/θ−1

2θ (−t)1/θ
√

|[L(t)]2 − 1|
dt.

We then have

Im ϕ̄′(yr ) =

∫ yr

y−

α0(−yr )1/θ−1

θ (−t)1/θ
√

1 − [L(t)]2
dt > 0.

Case 2: β0 > 2. In this case, I = (0, y−) ∪ (y−, y+). If yr ∈ (y−, y+), then

ϕ±(yr ) = ±i arccos[L(yr )] ∓ i
∫ y+

yr

α0 y1/θ
r

2t1/θ
√

1 − [L(t)]2
dt

+

∫
∞

y+

α0 y1/θ
r

2t1/θ
√

[L(t)]2 − 1
dt,

which implies that Re ϕ̄(yr ) = 0. On the other hand,

ϕ′

±
(yr ) = ∓i

∫ y+

yr

α0 y1/θ−1
r

2θ t1/θ
√

1 − [L(t)]2
dt +

∫
∞

y+

α0 y1/θ−1
r

2θ t1/θ
√

[L(t)]2 − 1
dt.

Thus,

Im ϕ̄′(yr ) =

∫ y+

yr

α0 y1/θ−1
r

θ t1/θ
√

1 − [L(t)]2
dt > 0.
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If yr ∈ (0, y−), then

ϕ±(yr ) = log{|L(y)| +

√
|[L(y)]2 − 1|} ± iπ −

∫ y−

yr

α0 y1/θ
r

2t1/θ
√

|[L(t)]2 − 1|
dt

∓ i
∫ y+

y−

α0 y1/θ
r

2t1/θ
√

1 − [L(t)]2
dt +

∫
∞

y+

α0 y1/θ
r

2t1/θ
√

[L(t)]2 − 1
dt,

which again implies that Re ϕ̄(yr ) = 0. On the other hand,

ϕ′

±
(yr ) = −

∫ y−

yr

α0 y1/θ−1
r

2θ t1/θ
√

|[L(t)]2 − 1|
dt

∓ i
∫ y+

y−

α0 y1/θ−1
r

2θ t1/θ
√

1 − [L(t)]2
dt +

∫
∞

y+

α0 y1/θ−1
r

2θ t1/θ
√

[L(t)]2 − 1
dt.

We then have

Im ϕ̄′(yr ) =

∫ y+

y−

α0 y1/θ−1
r

θ t1/θ
√

1 − [L(t)]2
dt > 0.

Case 3: β0 < −2. In this case, I = (y−, y+) ∪ (y+, 0). If yr ∈ (y−, y+), then

ϕ±(yr ) = ±i arccos[L(yr )] ∓ i
∫ y−

yr

α0(−yr )1/θ

2(−t)1/θ
√

1 − [L(t)]2
dt

−

∫
∞

y−

α0(−yr )1/θ

2(−t)1/θ
√

|[L(t)]2 − 1|
dt,

which implies that Re ϕ̄(yr ) = 0. On the other hand,

ϕ′

±
(yr ) = ∓i

∫ yr

y−

α0(−yr )1/θ−1

2θ (−t)1/θ
√

1 − [L(t)]2
dt −

∫ y−

−∞

α0 y1/θ−1
r

2θ t1/θ
√

[L(t)]2 − 1
dt.

Thus,

Im ϕ̄′(yr ) =

∫ yr

y−

α0(−yr )1/θ−1

θ (−t)1/θ
√

1 − [L(t)]2
dt > 0.

If yr ∈ (y+, 0), then

ϕ±(yr ) = log{L(y)| +

√
[L(y)]2 − 1} +

∫ y+

yr

α0(−yr )1/θ

2(−t)1/θ
√

[L(t)]2 − 1
dt

∓ i
∫ y−

y+

α0(−yr )1/θ

2(−t)1/θ
√

1 − [L(t)]2
dt −

∫
−∞

y−

α0(−yr )1/θ

2(−t)1/θ
√

|[L(t)]2 − 1|
dt,

which again implies that Re ϕ̄(yr ) = 0. On the other hand,

ϕ′

±
(yr ) = −

∫ yr

y+

α0(−yr )1/θ−1

2θ (−t)1/θ
√

[L(t)]2 − 1
dt

∓ i
∫ y+

y−

α0(−yr )1/θ−1

2θ (−t)1/θ
√

1 − [L(t)]2
dt −

∫ y−

−∞

α0(−yr )1/θ−1

2θ (−t)1/θ
√

|[L(t)]2 − 1|
dt.

We then have

Im ϕ̄′(yr ) =

∫ y+

y−

α0(−yr )1/θ−1

θ (−t)1/θ
√

1 − [L(t)]2
dt > 0.
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This completes the proof. □

From the above lemma, we find a solution to the difference Eq. (1.1) with asymptotic
expansion Φi

n,1(nθ y) ∼ Ψm,−(n, y)+Ψm,+(n, y) for any m ≥ 0 and y in a complex neighborhood
of oscillatory interval I . Let Φi

n,2(nθ y) be any other linearly independent solution, then

Pn(nθ y) = K i
1(x)Φi

n,1(nθ y) + K i
2(x)Φi

n,2(nθ y),

where K i
1(x) and K i

2(x) are two coefficients depending only on x . Since Pn(nθ y) ∼ Ψm(n, y) ∼

Φi
n,1(nθ y) for Re y ∈ I and 0 < |Im y| < δ. We obtain K i

1(x) = 1 and K i
2(x)Φi

n,2(nθ y) can be
ignored in the asymptotic expansion.

According to Szegö [19, pages 395-396], the asymptotic formula of Pn(nθ y) for y in the
oscillatory interval I should be twice of the real part of Ψm,+(n, y); see also [30]. Note that
Ψm,+(n, y) and Ψm,−(n, y) are complex conjugates when y ∈ I . The argument in the previous
paragraph suggests that, for any m ≥ 0 and y in a complex neighborhood of oscillatory interval I ,

Pn(nθ y) ∼ Ψm,−(n, y) + Ψm,+(n, y), (3.6)

as n → ∞, where Ψm,±(n, y) is defined in (3.5).

4. Examples

As an illustrative example, we consider the Hermite polynomials Hn(x) which can be defined
from the difference equation:

Hn+1(x) − 2x Hn(x) + 2nHn−1(x) = 0, n ≥ 1,

together with the initial conditions: H0(x) = 1 and H1(x) = 2x . Let

Pn(x) =

√
πHn(x/

√
2)

2nΓ (n/2 + 1/2)
.

We then have

Pn+1(x) + Pn−1(x) =
xΓ (n/2 + 1/2)
√

2Γ (n/2 + 1)
Pn(x), n ≥ 1. (4.1)

The initial conditions are P0(x) = 1 and P1(x) = x
√
π/2. Note that Bn = 0 and

An =
Γ (n/2 + 1/2)
√

2Γ (n/2 + 1)
∼ n−1/2

(
1 −

1
4n

+
1

32n2 + · · ·

)
, n → ∞.

Thus, θ = 1/2, βk = 0, α0 = 1, α1 = −1/4, . . ., and the scale is x = n1/2 y. Moreover, the
leading coefficient of Pn(x) is

A0 · · · An−1 =
Γ (1/2)

2n/2Γ (n/2 + 1/2)
∼

en/2

√
2nn/2

, n → ∞.

This implies that k0 = 1/
√

2. We observe L(y) = y/2, Ro(y) =
√

y2 − 4/2, and∫
∞

y

α0ny1/θ

2t1/θ Ro(t)
dt =

∫
∞

y

ny2

t2
√

t2 − 4
dt =

ny(y −
√

y2 − 4)
4

.
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Substituting the above formulas into (3.3) gives

Pn(n1/2 y) =
1

√
2

(
y +

√
y2 − 4

2

)n(
y +

√
y2 − 4

2
√

y2 − 4

)1/2

× exp

{
ny(y −

√
y2 − 4)

4
+ O

(
1
n

)}
(4.2)

for y ∈ C \ [−2, 2]. A further application of (3.6) yields

Pn(n1/2 y) =
1

√
2

(
y + i

√
4 − y2

2

)n(
y + i

√
4 − y2

2i
√

4 − y2

)1/2

× exp

{
ny(y − i

√
4 − y2)

4
+ O

(
1
n

)}

+
1

√
2

(
y − i

√
4 − y2

2

)n(
y − i

√
4 − y2

−2i
√

4 − y2

)1/2

× exp

{
ny(y + i

√
4 − y2)

4
+ O

(
1
n

)}
(4.3)

for y in a complex neighborhood of (−2, 0) ∪ (0, 2). By analytic continuation, the above
asymptotic expansion remains valid in a complex neighborhood of y = 0.

Now, we continue to calculate the higher-order terms. From (2.16) we obtain

ψ2(y) =
y5

− 10y3
− 36

24(y2 − 4)5/2 +
8t2

− t4

8(y2 − 4)2 .

Substituting this into (2.22) gives

φ1(y) =
1
8

+
2

y2(y2 − 4)
−

y3
+ 6y

24(y2 − 4)3/2 +
c1

y2 .

Therefore,

Pn(n1/2 y) =
1

√
2

(
y +

√
y2 − 4

2

)n(
y +

√
y2 − 4

2
√

y2 − 4

)1/2

exp

{
ny(y −

√
y2 − 4)

4

}

× exp
{

1
8n

+
2

ny2(y2 − 4)
−

y3
+ 6y

24n(y2 − 4)3/2 +
c1

ny2 + O
(

1
n2

)}
(4.4)

for y ∈ C \ [−2, 2]. To determine the integration constant c1, we need to match both sides of
(4.4) by letting n → ∞ and y → ∞. Note from (4.1) and the initial conditions P0(x) = 1 and
P1(x) = x

√
π/2 that

Pn(x) = A0 · · · An−1[xn
−

n(n − 1)
2

xn−2
+ · · · ].

Thus,

Pn(n1/2 y) ∼
Γ (1/2)nn/2 yn

2n/2Γ (n/2 + 1/2)
(1 −

n − 1
2y2 ) ∼

en/2 yn

√
2

(1 +
1

12n
−

n − 1
2y2 ).
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Fig. 1. The log–log plot of relative errors for the first-order and second order approximations of the Hermite polynomials,
respectively. In the left panel, we choose y = 3.3 and use (4.2) and (4.4); while in the right panel, we set y = 0.39 and
apply (4.3) and (4.5).

On the other hand, the right-hand side of (4.4) is asymptotically equal to

1
√

2
yn(1 −

n
y2 )(1 +

1
2y2 ) exp{

n
2

+
n

2y2 +
1

8n
−

1
24n

−
1

2ny2 +
c1

ny2 }.

By asymptotic matching, we obtain c1 = 1/2. It then follows from (3.6) that

Pn(n1/2 y) =
1

√
2

(
y + i

√
4 − y2

2

)n(
y + i

√
4 − y2

2i
√

4 − y2

)1/2

exp

{
ny(y − i

√
4 − y2)

4

}

× exp
{

1
8n

+
2

ny2(y2 − 4)
+ i

y3
+ 6y

24n(4 − y2)3/2 +
1

2ny2 + O
(

1
n2

)}
+

1
√

2

(
y − i

√
4 − y2

2

)n(
y − i

√
4 − y2

−2i
√

4 − y2

)1/2

exp

{
ny(y + i

√
4 − y2)

4
+ O

(
1
n

)}

× exp
{

1
8n

+
2

ny2(y2 − 4)
− i

y3
+ 6y

24n(4 − y2)3/2 +
1

2ny2 + O
(

1
n2

)}
(4.5)

for y in a complex neighborhood of (−2, 2).
To illustrate the accuracy of our asymptotic expansions, we choose y = 3.3 and use (4.2)

and (4.4), respectively, to approximate the Hermite polynomial with different values of n. From
the log–log plot (see left panel in Fig. 1), we observe that the first-order approximation (4.2)
has linear convergence rate, while the second-order approximation (4.4) converges quadratically.
Similarly, we choose y = 0.39 and use (4.3) and (4.5), respectively, to approximate the Hermite
polynomials in the oscillatory region. Again, we observe from the right panel of Fig. 1 that (4.3)
is accurate up to an error of order O(1/n), while (4.5) is accurate with error O(1/n2).
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To demonstrate that our systematic method has a wide application, we consider the monic
continuous dual Hahn polynomials [16, (9.3.1)]

πn(z) = (−1)n Sn(x2
; a, b, c) = (−1)n(a + b)n(a + c)n3 F2

(
−n, a + i x, a − i x

a + b, a + c

⏐⏐⏐⏐1) ,
where a, b, c are parameters and z = x2. The corresponding difference equation is given by [16,
(9.3.5)]

πn+1(z) =[z − 2n2
− (2a + 2b + 2c − 1)n − ab − bc − ca]πn(z)

− n(n + a + b − 1)(n + b + c − 1)(n + c + a − 1)πn−1(z),

with initial conditions π0(z) = 1 and π1(z) = z −ab −bc − ca. By setting Pn(z) = γnπn(z) with

γn =
Γ ((a + b)/2)Γ ((b + c)/2)Γ ((c + a)/2)Γ (1/2)

4nΓ ((n + a + b)/2)Γ ((n + b + c)/2)Γ ((n + c + a)/2)Γ ((n + 1)/2)
,

we arrive at the difference Eq. (1.1), where the coefficients An and Bn have the asymptotic
expansions in (1.2). Especially, one can calculate θ = 2, α0 = 1, β0 = 2, α1 = 1/2 − a − b − c,
β1 = 0, α2 = a2

+ b2
+ c2

+ 3(ab + bc + ca)/2 − (a + b + c) + 1/8, and β2 = −1/4. Since
An = γn+1/γn and γ0 = 1, we have

A0 · · · An−1 = γn ∼ k0n3/2−a−b−c(e/n)2n,

where

k0 = 2a+b+c−7/2π−2Γ

(
a + b

2

)
Γ

(
b + c

2

)
Γ

(
c + a

2

)
Γ

(
1
2

)
.

A further computation on the expression (3.3) gives

Pn(n2 y) =k0n3/2−a−b−c yn
(

y
y − 4

)1/4
(

y/2 − 1 +
√

y2/4 − y
y

)n+(a+b+c)/2−1/4

× exp
{
−in

√
y ln

√
y − 4 + 2i

√
y

+
φ1(y)

n
+ O

(
1
n2

)}
(4.6)

for y ∈ C \ [0, 4], where

φ1(y) = −α2

√
y − 4

y
−
α1(y − 2)
2(y − 4)

+
α2

1(y − 6)
2
√

y(y − 4)
−

2y2
− 11y + 32

12(y − 4)
√

y(y − 4)
+

c1

y1/2 . (4.7)

By a tedious but simple asymptotic matching, we find c1 = 0. Numerical simulation (not shown
here) also verifies that the asymptotic formula has an accuracy of second order.

5. Discussion

In this paper, we provide a unified method to derive asymptotic expansion for orthogonal
polynomials from their difference equations. The key idea is to find two linearly independent
solutions to the difference equation whose logarithms have asymptotic expansions in terms of
powers of the polynomial degree. This logarithmic-type asymptotic method has the advantage
of preserving the symmetry in the difference equation, and thus we are able to find explicit
expressions for the higher-order terms. To be more specific, the coefficient functions in the
asymptotic expansion can be explicitly written as a simple integral whose integrand has nice
structure and satisfies a recurrence relation; see (2.22), Theorem 2.4 and Corollary 2.10.
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Therefore, it is easy to compute the integrands and obtain an asymptotic expansion up to an
arbitrary high order.

Another contribution of this paper is to connect the general asymptotic solutions of the
difference equation with initial conditions by applying the principle of asymptotic matching.
As a result, we derive asymptotic expansions for the orthogonal polynomials in the outer and
oscillatory regions, respectively. For the sake of simplicity, we only use Hermite polynomials
as an illustrative example, but it is remarked that our formula is general such that it can be
directly applied to any difference equation that can be converted to the symmetric form (1.1)
with coefficients satisfying a relatively general asymptotic condition (1.2). It is not surprising,
but still worthwhile noting that, to obtain an asymptotic expansion of the general solution up to
mth order, one would need and only need the (m +1)th asymptotic expansion for the coefficients
in the difference equation. However, to find asymptotic expansion for the orthogonal polynomials
with given initial conditions, one would need more global information on the coefficients such
as the product A0 · · · An−1, and so on.

It is noted that we have restricted our focus only on asymptotic analysis in the outer and
oscillatory regions. For the study of uniform asymptotic expansions near the turning points, we
refer the authors to the papers by Wang-Wong [22–24] and by Cao-Li [6]. There is still one
interesting problem which has not been resolved in this paper or in the literature; that is, how to
find a uniform asymptotic expansion for the orthogonal polynomials near the origin from their
difference equations. For Hermite polynomials, this is not a problem because the asymptotic
formula can be analytically continued to a complex neighborhood of the origin. However, in
many other cases when the asymptotic expansion (3.3) has non-removable singularity near the
origin, it becomes a challenging problem to cancel out the singularity. One may need to introduce
an auxiliary function (gamma function, for example). We will leave this as a future project.
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