Available online at www.sciencedirect.com
JOURNAL OF

CrossMark ScienceDirect Approximation
Theory

ELSEVIER Journal of Approximation Theory 188 (2014) 1-18 —_—
www.elsevier.com/locate/jat

Full length article

Plancherel-Rotach asymptotics of second-order
difference equations with linear coefficients

Xiang-Sheng Wang
Department of Mathematics, Southeast Missouri State University, Cape Girardeau, MO 63701, United States

Received 24 March 2014; received in revised form 28 June 2014; accepted 26 August 2014
Available online 16 September 2014

Communicated by Roderick Wong

Abstract

In this paper, we provide a complete Plancherel-Rotach asymptotic analysis of polynomials that satisfy
a second-order difference equation with linear coefficients. According to the signs of the parameters, we
classify the difference equations into six cases and derive explicit asymptotic formulas of the polynomials in
the outer and oscillatory regions, respectively. It is remarkable that the zero distributions of the polynomials
may locate on the imaginary line or even on a sideways Y-shape curve in some cases. Finally, we apply our
results to find asymptotic formulas for associated Hermite and associated Charlier polynomials.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

All of the classical hypergeometric (monic) orthogonal polynomials m,(x) within Askey
scheme [10] satisfy the following second-order linear difference equation:

Tnp1(x) = (x — A7 (x) — Bpmy—1(x), mo(x) =1, m1(x) = x — Ao, (1.1)
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where the coefficients A, and B,, are polynomials or rational functions of n. For instance, the
Charlier polynomials correspond to A, = n + a and B, = na; the Hermite polynomials cor-
respond to A, = 0 and B, = n/2; and the Chebyshev polynomials correspond to A, = 0
and B, = 1/4. In this paper, we will provide a complete Plancherel-Rotach asymptotic analy-
sis of second-order difference equations with linear coefficients, namely, A, and B,, are linear
functions of n. Upon a shift on x, we may assume A, = dn and B, = an + b.

There are plenty of methods developed for asymptotic analysis of orthogonal polynomials: if
the polynomials can be expressed in terms of an integral, one may adopt the classical Laplace’s
method and steepest-descent method [19]; if the polynomials satisfy a second-order linear
differential equation, the well-known WKB method [12] can be applied; if the polynomials have
an explicit orthogonal weight with certain nice properties, we may use the Riemann—Hilbert
approach and Deift—Zhou nonlinear steepest-descent method [2,5,6]. However, few studies in the
previous literature were considering asymptotic analysis of polynomials via difference equations
due to the loss of continuity. Van Assche and Geronimo [13] did some pioneer works in this
field and obtained asymptotic formulas in the outer region, where trapezoidal rule was used
to build a bridge from discreteness to continuity. Wong and Li [21,22] derived two linearly
independent solutions in the oscillatory region, while determining the coefficients of the linear
combination of the two solutions with given initial values was left as an open problem. In a
series of work [15-18], Wang and Wong established some beautiful lemmas on Airy functions
and Bessel functions to derive uniform asymptotic formulas near the turning points. Wang and
Wong classified the turning points into three cases and considered two of them in [16,17]. The
third case was recently resolved by Cao and Li [3]. It is noted that the turning point theory
developed in [15-18] and [3] was based on the assumption that the asymptotic formulas in the
oscillatory region were given. In [14], Wang and Wong completed this framework by introducing
a matching method to determine the coefficients of linear combination of Wong—-Li solutions in
the oscillatory region from Van Assche—Geronimo solutions in the outer region. Therefore, a
systematic method of asymptotic analysis on difference equations was formulated. This method
was successively applied in the study of several indeterminate moment problems [4] where
only difference equations were known and thus the classical Laplace’s method, steepest descent
method, WKB method, Riemann—Hilbert approach and Deift-Zhou nonlinear steepest-descent
method seem to be inapplicable. For a review of asymptotic analysis for difference equations, we
refer to the survey paper by Wong [20].

To further develop the difference equation technique, we study a general second-order
linear difference equation with linear coefficients. We are interested in the Plancherel-Rotach
asymptotic formulas of solutions in the outer region and oscillatory region. According to the signs
of the parameters d and a, we classify the equations into six cases: (I.LA) d > 0 and a > 0; (I.B)
d>0anda <0;(I1.C)d >0anda =0; (ILA)d =0anda > 0; {I.LB)d =0and a < 0; (II.C)
d = 0and a = 0. The cases with d < 0 can be transformed to the cases with d > 0 by a simple
reflection. Note that the classical orthogonal polynomials (Charlier, Hermite and Chebyshev, for
instance) always have nonnegative a > 0 and their zeros are always real. However, if we choose
a < 0, as we shall see later, the zero distributions of the polynomials 7, (x) may lie on the
imaginary line (subcase II1.B) or even on a sideways Y-shape curve (subcase [.B).

The rest of this paper is organized as follows. In Section 2, we focus on the case d # 0
and divide this case into three subcases according to the sign of a. In Section 3, we investigate
the special case d = 0 and again consider three subcases a > 0, a < 0 and a = 0 in three
subsections, respectively. In Section 4, we derive asymptotic formulas for associated Hermite
and associated Charlier polynomials using our results.
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2. Casel:d # 0

Upon a transformation x — —x and m, — (—1)"m,, we may assume without loss of
generality that d > 0. In the following three subsections, we shall consider three subcases a > 0,
a < 0and a = 0, respectively.

2.1. Subcase LA:a >0

We first state our theorem.

Theorem 2.1. Assume d > O and a > 0. Let x = ny and y = d +z//n. The polynomials 7, (x)
defined in (1.1) have the following large-n asymptotics. As n — oo, for z € C \ [—+/nd, 2./a],
we have

—a/d*—/n(Jnd+z)/d
V2 —da\" (24 vZ—da\ " 2
2/n 2(/nd +z)
Jnd +z\"? 2a — 22 — 4yndz + (z + 4/nd)V7E — 4a
X | —— X ex
V72 —4a P 4d?
and for z in a complex neighborhood of any compact subset in (—2./a, 2./a), we have

—a/d>~/nz/d ajd>+/n(/nd+2)/d
7a(nd + v/nz) ~ (n/e)" (%) <d + i)

Jn
5 (ﬁd+z )‘/Zex <2a — 2 —4ﬁdz)
4a — 22 P 4d>

4 ba — 72
x200s|:< a ﬁz)arccos < £+(z+ Vnd)v/4a Zj|;

tn(nd +/nz) ~ (n/e)" <

; 2.1

2.2)

A2 d 2Ja 4 442

and for z in a complex neighborhood of any compact subset in (—+/nd, —2./a), we have

—a/d*—./nz/d
—z4++—z-2Jay/—z+2J/a [l
2Jn

1/2
X (d + Z/ﬁ)a/d2+ﬁ(ﬁd+z)/d ﬁd +tz
V—z-2Ja\/—z+2Ja

2a — 22 — 4ndz — (z + 4/nd)/—z — 2/ay/—z + 2/a
X exp 12

7, (nd + ﬁz) ~ (n/e)n (

x 2cos[n(—a/d* — /nz/d — 1/2)]. (2.3)

Proof. For x in the outer region such that 3 _1 (x) # 0, we define
T ()

Tk—1(x)

for any k > 1. It follows that

ak +b
wi(x)

wr(x) ==

Wig1(x) =x —dk —
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Let x = ny with y € C\ [0, d + 2+/a/+/n]. We have as n — oo,
x —dk +/(x — dk)? — 4ak

14 d L dx- d’k
X .
2/(x —dk)? — 4ak  2[(x — dk)? — 4ak]

wi (x) ~

The above asymptotic formula can be obtained by successive approximation and proved rigor-
ously by induction on k. Since (x — dk)? — 4ak is of order O (n?) for anyk =1, ..., n, we have

1 —dk —dk)? — 4ak
Inm, ~ Z{lnx + (x2 ) a
k=1

d dx — d%k }

+ +
2/ (x — dk)? — dak  2[(x — dk)? — 4ak]

We will use trapezoidal rule to approximate the three summations on the right-hand side of the
above formula. Firstly, we obtain

i]nx—dk—l— (x —dk)? — 4ak
k=1

2":1 ny — dk + /(ny — dk)* — 4ak
= n

k=1 2

n 1
~nln—+n/ ln[y—dt+\/(y—dt)2—4at/n]dt
2 0

1 ny—a’—i—\/(y—d)2—4a/n

=1
+2 2y

A simple integration gives

1
n/ In[y —dt + \/(y — dt)? — 4at /ndt
0

VO —dn? —4dar/n 1
2d 2
1

~ n{tln[y —dt + \/(y —dt)? —dat/n] +

a |y
- <@ + E) In[dy + 2a/n — d*t —i—d\/(y —dr)? — 4at/n]} .

~nlnly —d+(y = d)? —da/nl + 25 () (v = d) —da/n — y) = 5
2d 2

a ny y—d++/(y—d)?—4a/n+2a/(nd)
- (—2+—)ln .
d d 2y 4+ 2a/(nd)

For the sake of convenience, we introduce a new scale: y = d+z/+/n with z € C\[—+/nd, 2/a].
It follows from the above two formulas that

2":1 x — dk +/(x — dk)? — dak
n

k=1
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2 _
S R I R
( +J_(fd+z)> 7+ 722 —4a+2a/(fd)+_] 2+ V72—
d? d 2(/nd +z) +2a/(Jnd) 2 2(fd+z)'

A further application of trapezoidal rule yields
Xn: d L dx- d’k
= 2J/(x — dk)? —4ak  2[(x —dk)? — 4ak]

0 2\/(y—dl)2—4at/n 2[(y—dt)2 4at/n]
ll Z(x/_d-i-Z) 1 \/_d—i—z
z+m JZ—da

Adding the above two formulas gives

JZ 4
Inm, ~nln%—{—nlnm%—i—ﬁ(\/zz—%z—z)—n

< f(fd—i—z)) 7+ 7% —4a +2a/(/nd) n Jnd +z
d2

~nl In
nn2+n

2(/nd + z) + 2a/(y/nd) +2 VZ—4a

d
Since
| iV —da+2/(nd) Z+ﬁ+ 2a
2(v/nd + z) +2a/(y/nd) 2(Vnd+2)  (Jnd)(z + V7% — 4a)
24> a
T P+ VR ey (nd)(Jnd +2)]
we have

Inm, ~nlnn +nln

z+Vz2—4a_n ( +f(fd~|—z)> 7+Vz2—4
d2

2/n d 2(/nd + z)
N Vi(VZZ —4a —2) _[ 2a(y/nd + 2)
2d (@) (z + /2% — 4a)
3 24> 3 L] lln Jnd +z
d2(z+ 72 —4a)? (@) 2 —4a

A simple calculation yields

(Wt —4a-2) [ 2a(nd +2) 242 _L]
2d @)z +V7E—4da) d2+ V2 —4a)? (@)
_ Ynd(Z—da-2) [(ﬁd +9@-VZ—4a) -VZ -4

2d2 (2d?) 842 (@)
_ 2/ —da-z) |:2(ﬁd +2)(z — V72 — 4a)

42 (4d?)
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B (22 —2a — zv/72 — 4a) 4a:|

4d? 4d?

—22 4 2a — 4ndz + (z + 4/nd)V72 — 4a
4d? '

Consequently,

7+ 72 —4a _<i+«/5(x/ﬁd+z)>l 7+ 72 —4a

Inm, ~nlnn — 1
nm, ~nlnn —n+nln NG 42 d n 2(y/nd + z)
+—z2+2a—4ﬁdz+(z+4ﬁd)vZ2—4a+11 Vnd +z

4d2 2" V7 da

Recall that x = ny and y = d +7z/+/n. For any z € C\ [—+/nd, 2./a], we have 7, (nd + /nz) ~
®,(z) asn — 00, where

—a/d*— d+z)/d
z+Vz2—4a>n <Z+VZ2—4Q> )

Py (z) =(n/e)" (

2/n 2(y/nd + 7)
X(ﬁd+z)1/zxex 2a — 22 — 4ndz + (z + 4y/nd)vVz% — 4a
JZ—4a P 4d2 '

This proves (2.1). Note that &,(z) has a branch cut on [—+/nd, 2./a]. We take the one-sided
limits and define

0@ = lim @,(z%ie), z€(—vnd,2/a).

It is readily seen that ®F(z) can be analytically extended to a neighborhood of (—v/nd, 2./a).
Moreover, if z = z; + iza with z1 € (—4/nd,2/a) and zo > 0, then &,(z) = &, (z) and
&, (z)/ P, (z) is exponentially small as n — oo. On the other hand, if z = z; + iz with
71 € (—+/nd,2\/a) and zo < 0, then ,(z) = &, (z) and B, (z)/ P, (z) is exponentially
small as n — oo. It follows that as n — o0, 7, (nd + /nz) ~ D,(z) ~ @,T(z) + &, (2) for
all z = z1 +izp with z; € (—+/nd, 24/a) and z; # 0. By analytically continuity, we obtain
7, (nd + /nz) ~ &7 (z) + &, (z) for z in a complex neighborhood of any compact subset in
(—+/nd, 24/a). A simple calculation gives

—a/d*—\/nz/d
OH(2) + &, (z) = (n/e)" <£>

Jn
1/2
x (d + Z/ﬁ)wd%ﬁ(ﬁdﬂ)/d —ﬁd )’ exp 2a — 2% — 4/ndz
Via =2 42
a  /nz . w (z+4/nd)Vha -2
x2cos||——= — —— Jarccos —— — — +
a2 d 2Ja 4 4d?

for z in a complex neighborhood of any compact subset in (—24/a, 2+/a), and

—a/d*— d
ety —ajay—zt2ga)
2y/n

() + By (2) = (n/e)" (
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J/nd + i
d+ a/d?>+/n(/nd+z)/d n <

x (d +z/+/n) i

« o [261 — 22— Andz — (z + 4nd)/—7 — 2Ja/—z + 2@}

442
x 2 cos[(—a/d* — /nz/d — 1/2)]
for z in a complex neighborhood of any compact subset in (—+/nd, —24/a). This completes the
proof of (2.2) and (2.3). O
2.2. Casel.B:a <0

For the case a < 0, we observe from numerical simulation that the zeros of m, are not solely
lying on the real line, instead, they will locate on a sideways Y-shape curve (cf. Fig. 1). To
describe the Y-shape curve, we introduce the following definition.

Definition 2.2. Given A > 0, we define I’y to be the curve in the left-half complex plane
satisfying the following equation

—2ivA 2ivA
Re{Z z—2i\/z\/z+2i\/2—zlnz+\/z VAV + “/_}zo. (2.4)
¢ —Vz—2iVAVz +2iVA
It is noted that the above equation formulates a sideways V-shape curve that is symmetric about
the x-axis with two end points +2i+/A; see Fig. 1. Let z4 < 0 be the intersection of "y with the
negative real line. To be specific, z4 is the negative real root of the following equation

Za+ /25 +4A
2,24 +4A —z4ln =0. (2.5)
—za+ /23 +4A

Now, we describe the sideways Y-shape curve as the union of the curve I'4 defined in (2.4)
and the interval [—+/nd, z4]. We have the following theorem.

Theorem 2.3. Assume d > O and a < 0. Let x = ny and y = d + z/+/n. Denote A = —a > 0
and let I'y and z 4 be defined as in Definition 2.2. The polynomials 7, (x) defined in (1.1) have
the following large-n asymptotics. As n — 00, we have for 7 € C \ ([—+/nd, za1U T4),

2_Jn
e+ Ve —2ivave v aiva) T
2n
12
x (d + z/ﬁ)—A/d2+ﬁ(ﬁd+z)/d ( Jnd + z )
V7 —2iAV7 +2iVA

« exp [—2/4 — 22 —4ndz + (2 + 4y/nd)Vz —Ziﬂx/z+2i~/z}
442

tn(nd +/nz) ~ (n/e)" <

; (2.6)

and for z in a complex neighborhood of any compact subset in (—+/nd, z4), we have

AJd?>—nz/d
V2 —2iJAV =z +2iVA
2/n

ta(nd +/nz) ~ (n/e)" <



8 X.-S. Wang / Journal of Approximation Theory 188 (2014) 1-18

—Vnd

Fig. 1. The sideways Y-shape branch cut (curve) and zero distribution (dots).

V—z-— 2i\/z\/—z +2i/A
e [_m — 22 —dndz — (2 + 4/nd)V —z — 2iAV =z + Ziﬂ]

12
x (d + z/ﬁ)—A/d2+ﬁ(ﬁd+z)/d ( Jnd + z )

442
X 200S[7T(A/d2 —nz/d —1/2)]; 2.7

and for z in a complex neighborhood of any compact subset in I'hw=Ta \ {za, £2iVA}, we
have

nn(”d‘i‘\/ﬁz) ~ (ﬁ/e)n(ﬁd+Z)—A/d2+ﬁ(\/ﬁd+z)/d+1/2

—2A — 22 — 4/ndz
X exp ( 12 )

% { [(z+ \/z — Ziﬂ\/z + ziﬂ)/z]A/dz—ﬁz/d
(Vz = 2i/AVz + 2i/A) /2
[(Z +4y/nd)Vz —2iVAVz +2i«/Ki|
X exp
442
Ll V7 = 2iAV 7 + 2i/A) 2144 =Vz/d
(=7 — 2i/AVz + 2i/A)1/2

|:—(z +4ndVz = 2iV/AVz + 21\/2} }
X exp 1 :

2.8)
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Proof. Similar to the proof of Theorem 2.1, we obtain for z € C \ ([—+/nd, 241U I's),

—a/d*—/nz/d
NI
7, (nd + ﬁz) ~ (n/e)n (Z Tz a)

2n
X (d 4 z//n)4*HV/n(/nd+2)/d ( Vnd +z )1/2
Z n —_—
N
« exp |:2a — 22 —d/ndz + (2 + 4/nd)N 7% — 4a:|
4d?

2
1/2
x (d + Z/ﬁ)_A/d2+ﬁ(ﬁd+z)/d ( ﬁd +z )
Vz—2iVAV+2iVA

e |:—2A — 2 —4yndz + (2 + 4ynd)z — 2iVAVZ + Ziﬂ]
4d2 '

2 nz
. z+\/z—2i«/zx/z+2ix/z A nefd
~ (n/e)

This gives (2.6). Denote the right-hand side of (2.6) by &, (z). Note that &, (z) is analytic on
the complex plane except for a Y-shape branch cut [—/nd, 741U I'4 that connects —4/nd and
+2i/A. Moreover, @, (z) is one-side continuous on the branch cut. Therefore, the functions

0, (@) = lim By(z +ie)

are analytic in a complex neighborhood of any compact subset in the branch cut. Note that for z
in a complex neighborhood of any compact subset in (—00, z4),

D (z)
D, (2)

= exp[27i(A/d*> — nz/d — 1/2)];
and for z in a complex neighborhood of any compact subset in I,

2_Jn
QSI;F(Z)=_i(Z+\/Z—2i\/Z\/Z+2i\/Z)A/d Jnz/d
e t—Vz—2iVAVZ+2VA

and
X exp (%\/z VA + 21\/Z> :

It follows from the definition of I'4 in (2.4) that the ratio ¢,/ &, is exponentially large on one
side and exponentially small on the other side of the branch cut [—+/nd, z4]UT'4. Using a similar
argument in the proof of Theorem 2.1, we obtain 7, (nd + /nz) ~ [$,/(z) + &, (z)] for zin a
complex neighborhood of any compact subset in (—+/nd, z4) U Iy A simple calculation yields

AJd?>—/nz/d
74 Vz —2ivAVz +2iVA
2/n

() + By (2) = (n/e)" (
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Vz—2ivAVz+2iVA
Xmm[_zA—zz—4¢ak—«z+4¢anJ«—%¢ZJz+mvﬁ}

1/2
x (d + z/ﬁ)—A/d2+ﬁ(ﬁd+z)/d < Jnd + 7 )

442

x 2cos[m(A/d* — /nz/d —1/2))
for z in a complex neighborhood of any compact subset in (—+/nd, z4), and

&t (z) + &, (2)

—24 — 2 —4/ndz
— («/ﬁ/@)n(ﬁd 4 Z)—A/d2+ﬁ(ﬁd+z)/d+l/2 x eXp< 4d2 f )

et Ve = 20VAVz + 2 VA 2N
Vz = 2iVAVz +2i/A)12

(2 + 4/nd)W7z — 2iAVZ + 2ivA
X exp i

L le- Vz = 2i/ ANz + 2i/A) 2N/~ nz)d
(—v/z — 2iVAVz + 2i/A) /2
[—(z+4ﬁd)\/z —Zix/Z\/z+2i«/Z:|}
X exp

442
for z in a complex neighborhood of any compact subset in I's. This proves (2.7) and (2.8). [

2.3. CaselC:a =0

Theorem 2.4. Assume d > 0and a = 0. Let x = ny, the polynomials 7, (x) defined in (1.1) have
the following large-n asymptotics. As n — 00, we have

y ny/d+1/2
Ta(ny) ~ (n/e)" (—)

o v —d) 29

fory e C\ [0, d]; and

y ny/d+1/2
) x 2cos[r(n —ny/d — 1/2)] (2.10)

ma(ny) ~ (n/e)*(d — y)" (m

for y in a complex neighborhood of any compact subset in (0, d).

Proof. Setting 7 = 4/n(y—d) in (2.1) and taking limita — 07 yields (2.9). A standard argument
of analytical continuity as in the proof of Theorem 2.1 gives (2.10). [

3. Casell:d =0

In this section, we consider the critical case d = 0. Again, we investigate three subcases
according to the sign of a.
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3.1. CasellA:a >0

Theorem 3.1. Assume d = 0 and a > 0. Let x = \/ny. The polynomials 7, (x) defined in (1.1)
have the following large-n asymptotics. As n — oo, we have for y € C \ [-2+/a, 2./a],

12 bja
n/2 2—4 2_4
Vi ~ () 0+ y2—4a)"(y+\/y—“> <y+Jy—a)

2/y* —4a 2y
n
X exp [ﬁ(y /- 4a>} ; 3.1

and for y in a complex neighborhood of any compact subset in (0, 2./a), we have

0 <e>”me)“@)”mp<%>

NN N y} (32)

X 2cos |:(n +1/2 4 b/a) arccos ——
[

and for y in a complex neighborhood of any compact subset in (—2./a, 0), we have

i ~ (%) b (sz —ﬁzﬁw)m (f_f)b/a X exp (%)

-y ny
X 2cos |:(n + 1/2 + b/a) arccos m —r/4+ E\/Z\/_ — y\/Z\/E—i- y:| . 3.3)

Proof. For x in the outer region such that ;1 (x) # 0, we define

o m(x)
wr(x) = ———
Tk—1(x)
for any k > 1. It follows that
k+b
wk+1(x)=x—a + , > 1.
wi (x)
Let x = 4/ny with y € C \ [—2+/a, 2./a]. We have as n — oo,
x +~/x% — 4ak a 2b
wp () ~—— Y2 TPy _ .
2 —4ak  (x ++/x2 — dak)v/x2 — dak

By trapezoidal rule, we obtain

_l’_ .
In7, ~n1n(ﬁ/2)+n/0 In(y + /2 —4at)dt+2 Y Vy

1
a 2b
+ u/ﬁ dt — dt
o y*—dat (v +/y? — 4ar)\/y? — 4at

1
y t
~nl 2 rl 2 ¢t 2 ¢
nn(ﬁ/ )~|—n|: n(y—i-\/y —4a)——,/y —4a ——2 .
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1 Vyt—da 1 2 b
+—1ny+2y—a+—1ny—+—1n(y+,/y2—4ar)
y a

2 4 y2 —4a

1

0
2 ny 2 n
an (\/_/2)+ﬂl]l(y+ y —4(1)——( y —4a—y)__

1 y+y>—4a 1 y? b y+yy*—4a
+-In—————+—-In 4+ —1In .
2 2y 4 y2—4a a 2y

Recall that x = ny. We then obtain 7, (ny) ~ @,(y), where

12
Pu(y) = (i)m (v oyt (Y EVIda
B 2V y% —4a

4e
+v/y2 —4da % n
X (L> X exp |:4—y(y - 4a):| .
a

2y

By a standard argument of analytical continuity, we obtain 7, (ny) ~ &7 (y) + ¢, (y) for yina
complex neighborhood of any compact subset in (—2./a, 0) U (0, 2./a), where

)= lim By(y +ie).

For y in a complex neighborhood of any compact subset in (0, 2./a), a simple calculation gives

1/2
n/2 2
o +o, 0 = ()" evar ( S )

4e 2V2Ja —y\2a+y
2\/5 b/a ny
X (W) X exp [a(y)]

x 2 cos [(n + 1/2 4 b/a) arccos

— wpa- 2y - y\/2~/5+y]
n a 12 a 4 n
- ) ()l

X 2cos [(n + 1/2 4+ b/a) arccos

N
- %\/N‘— y\/2¢5+y] .

Thus, (3.2) follows. Note that for Rey < 0, we can write

5 = (1) 0y by —2vay -y +2vay

y (—y+\/—y—2ﬁx/—y+2ﬁ>]/2
2y —2Jay—-y+2va
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5 (—y+J—y—2ﬁ\/—y+2ﬁ>b/a

_Zy

n
X exp [ﬁ(y + \/—y - Zﬁ\/—y + 2ﬁ):| .
It follows that for y in a complex neighborhood of any compact subset in (—24/a, 0),
1/2
2/a ) /
2V2Ja—yV2Ja+y

<(2) xew[po]

+ — _ i n/2 _1\n n
B0+, 00 = (1) D'V (

-y
X 2 cos |:(n + 1/2 + b/a) arccos m
ey %/2[- y\/2ﬁ+ y]

nan/? ) Ja 1/2 Ja\?
(o () ()

ny? —y
X exp |:4—] 2cos |:(n +1/2 + b/a) arccos 7
a

a

— /44 %\/ZI— y\/2¢5+ y] .

This proves (3.3). O
3.2. Casell.B:a <0

Theorem 3.2. Assume d = 0 and a < 0. Let x = i\/ny, A = —a > 0 and B = —b. The
polynomials 1, (x) defined in (1.1) have the following large-n asymptotics. As n — 0o, we have

fory eC\ [—2VA, 24/A),

n/2
miivay) ~ i (=) 0+ yy? —4a)
y <y+\/y2 —4/4)1/2 (y + /2 —4A>B/A

2/y2 —4A 2y

X exp [%(y N 4A)} : (3.4)

and for y in a complex neighborhood of any compact subset in (0, 2+/A), we have

172
e o
e \/Zﬂ—y\/2ﬂ+y y 4A

y
x2cos|(n+1/2+ B/A) arccos
[ / / 2VA
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/4——\/2f y\/2f+yJ (3.5)

and for y in a complex neighborhood of any compact subset in (—2+/A, 0), we have

12 B/A
) ()
VA -3\ 2VA 4y

-y
2
X exp (zy ) 2cos [(n + 1/2 + B/A) arccos

A n/2
Talin/ny) ~ i" (”7) (—1)"

2
/4+—\/2f w2va —i—y} (3.6)

Proof. The monic polynomials p,(z) := i "m,(iz) satisfy the same difference equation and
initial conditions of ,, with a and b replaced by A = —a and B = —b respectively. Theorem 3.2
follows from Theorem 3.1. [

3.3. Casell.C:a =0

Theorem 3.3. Assume d = 0 and a = 0. If b < 0, we denote /b = i/]b|. The polynomials
7, (x) defined in (1.1) have the following large-n asymptotics. As n — 00, we have for

x € C\ [-2vb, 2+/b],

1
x4\ 1
Tn(X) ~ | —————— —_— 3.7
2 x2 —4b
and for x in a complex neighborhood of any compact subset in (—2+/b, 2+/b), we have
sin [(n + 1) arccos —~ ]
10 (x) ~ 2 (3.8)

2\/4b — x?

The above asymptotic formula is actually an equality.

Proof. Note that

(x + /52 —4b)"H! — \/7 ab)
2n+1 /x2

For x € C\ [-2+/Db, 24/b], we have 7, (x) ~ &,(x) with

> n+1
B, (x) = (x+Vx 1) 1

T (x) =

2 X2—1
This proves (3.7). To be consistent, we use the argument of analytical continuity and obtain
i X
sin[(n + 1) arccos 2\/};]
21/4b — x2

for x in a complex neighborhood of any compact subset in (—2\/5, 2\/5). This gives (3.8). We
remark that the formula (3.8) is actually an equality. [J

T (6) ~ Tim [ By (x + 7€) + By (x — )] =
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4. Associated polynomials

In this section, we will make application of our results to associated polynomials [7] which
are generalized from classical polynomials. To be specific, we will consider associated Hermite
and associated Charlier polynomials in the following two subsections, respectively. These two
polynomials satisfy difference equations with linear coefficients and their asymptotic behaviors
can be directly obtained from our theorems in the previous two sections.

4.1. Associated Hermite polynomials

The (monic) associated Hermite polynomials [1] satisfy the following difference equation.

n—+c
Tn41(x) = X775 (x) — Tnn—l(x), mo(x) =1, m(x) =x. 4.1

According to our classification, the associated Hermite polynomials belong to the case II.A with
d =0,a =1/2and b = c/2. A direct application of Theorem 3.1 gives the following results.

Corollary 4.1. Let x = /ny. The polynomials 7, (x) defined in (4.1) have the following large-n
asymptotics. As n — 00, we have for y € C \ [—v/2, V2],

1/2
n\n/2 Ly EVYr=2
Ta(\/ny) ~ (@> »+/y2=2 (ﬁ)

/o2 —\€
x (”2—§Z> xexp[%y(y— y2—2>]; 2)

and for y in a complex neighborhood of any compact subset in (0, v/2), we have
1/2

n(ny) ~ (l>n/2 A7 <m)c X exp (”_y2>

N W y 2

X 2 cos |:(n + 1/2+c)arccosl —nm/4— %\/\/E—y\/\/vayJ; 4.3)

V2
and for y in a complex neighborhood of any compact subset in (—+/2,0), we have
1/2
n\n/2 V12 VI2\¢ ny?
(Vi) ~ () D" ( xexp (-
e -y 2

VV2=yyV2+y
X 2 cos |:(n +1/24¢) arccos:/—% —n/4+ %\/«/E—y\/\/i—i-y]. 4.4)

4.2. Associated Charlier polynomials

The (monic) associated Charlier polynomials (c.f. [11]) satisfy the following difference
equation (with a > 0):
Tnp1(X) = (x —n —a — o)mp(x) —a(n + ), (x),
mo(x) =1, mx)=x—a—c. 4.5)
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These polynomials can be viewed as special cases of the associated Wilson polynomials studied
in [9]. According to our classification, the associated Charlier polynomials belong to the case I.A
withd = 1 and b = ac. A direct application of Theorem 2.1 gives the following results.

Corollary 4.2. Let x = a +c +ny and y = 1 + z//n. The polynomials m,(x) defined
in (4.5) have the following large-n asymptotics. As n — oo, for z € C \ [—+/n,24/al, we
have

(24 VEa\" (2 VT aa T
Tu(n+nz+a+c)~ (nfe)

2 n 2(/n+2)
NS RV v
N ' * | |

and for z in a complex neighborhood of any compact subset in (—2./a, 2./a), we have
7 —a—y/nz
7a(n + V/nz +a+c) ~ (nfe)" (%) (14 2//m)* T/t
" ( Jn+z )1/26 p<2a -2 —4ﬁz>
N e xp| < TV
Vada — 72 4
Z

r—
X 2.cOs |:(—a — /nz) arccos — — (2 +4y/mida =z i| ; 4.7

T
2Ja 4 4
and for 7 in a complex neighborhood of any compact subset in (—/n, —2./a), we have

—z4++/—z—2Jay/—z + 2\/5)“ﬁZ

2(/n

it 1,2
14 a+/n(yn+z) nTz
x (14 z/y/n) (\/—z—Z\/E\/—erZ\/E

< exp [251 — 22— 4z — G+ 4z —2Ja/ -z + 2\/5}
4

Ta(n+/nz+a+c)~ (nfe)" (

x 2cos[m(—a — «/nz — 1/2)]. (4.8)

Analogous to the treatment on associated Laguerre and Meixner polynomials in [8], we introduce
the second family of associated Charlier polynomials as solutions to the following difference
equation:
Pop1(x) =(x =n—a—c)Py(x) —a(n + ¢) Pp_1(x),
Po(x) =1, Pi(x)=x—c. 4.9

Note that the difference equations for 7, (x) in (4.5) and P,(x) in (4.9) are the same, but the
initial conditions are different; namely, 71 (x) = x — a — ¢ while P;(x) = x — c¢. Define

1
Qn(x) = —[Pup1(xX) = T 1 (0] (4.10)
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It follows that
Onr1ix)=x—n—1—-a—-0)0px)—am+1+c)P,—1(x),
OQox)=1, OQ1x)=x—1—a—c. 4.11)

Observe from (4.10) that
P(n+/nz+a+c)=m,(n+nz+a+c)+cOn_1(n+/nz+a+c.

Therefore, to find asymptotic behaviors of the second family of associated Charlier polynomials
P,(x), we only need to investigate Q,—_1(x). By applying Theorem 2.1 to (4.11), we have the
following results.

Corollary 4.3. Let z, .= z+/n/(n — 1). We have z./n = z,+/n — 1 and
On-1n+nz+a+c)=Qu_1n—1+vn—1lz,+a+c+1).

Moreover, we have the following large-n asymptotics. As n — oo, for z € C \ [—+/n, 24/al, we

have
-1
—1\"1 T4 n
Q"—l(”+«/ﬁz+a+c)~<—ne ) (@)

24/n — 1
—a—/n—1(/n—T+z, N 172
) o+ z,%—4a a—+/n—1(v/n—1+2z,) prgy /
2(vn —1+z,) V72 —4da
2a — 72 —4/n — 1 4n —1)/z22 — 4
Xexp|: 4= n—1Zn +izn+ n—Dvz a:|; (4.12)

and for z in a complex neighborhood of any compact subset in (—2./a, 2./a), we have
Qn-1(n+/nz+a+c)

n—1 *a*\/nj n
- (n— 1) ( Ja ) z a +Zn/«/nTl)a+4/n—l(«/n—1+Zn)

e n—1

1/2
» vn—1+4+z, exp 2a—z£—4«/n— 1z,
Véda —z2 4

4/n — 1)/4a — 72
X 2 cos |:(—a — +/n — 1z,) arccos S T + (@ + 4 )y4a Z":| ;o (4.13)
a

2J/a 4 4
and for z in a complex neighborhood of any compact subset in (—./n, —2./a), we have
On-1(n++/nz+a+c)
N (n — 1)”] (—zn +vV—2 —2ay -z +2/a
e 2vn—1

1/2
x (14 zn//n — DatVn=1(/n=T+z) vn—1+z,
V= —2Jay =z +2/a

) —a—+/n—1z,
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2a — 22 —4n — 1z, — (zn + 4 = D=2, — 2/ay/—z, + 24/a
4

X exp
x 2cos[w(—a —vn — 1z, — 1/2)]. (4.14)
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