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Abstract. In this paper, we propose a novel epidemic model coupling direct
and indirect transmission of disease and study the global dynamic of the model

system. Despite the nonlinearity and complexity of the system, the basic re-

production number exhibits a nice linear property: it is simply the sum of
two basic reproduction numbers for direct and indirect disease transmissions

respectively. We further demonstrate that the local and global dynamics of the

system are related to the basic reproduction number. The new model has the
advantage that it generalizes or connects to various disease models on HIV,

Zika virus, avian influenza, H1N1 and so on.

1. Introduction. We propose and study the following three-dimensional disease
model system:

x′(t) = b− β1x(t)y(t)

x(t) + y(t)
− β2x(t)z(t)− µx(t), (1)

y′(t) =
β1x(t)y(t)

x(t) + y(t)
+ β2x(t)z(t)− γy(t), (2)

z′(t) = py(t)− δz(t), (3)

where x and y denote the susceptible and infected population sizes, respectively.
The constants µ and γ are death rates of these two groups, and b is a constant
birth rate. The disease could transmit directly via a standard incidence function
β1xy/(x+y) and indirectly via a mass-action infection term β2xz, where z accounts
for the vector of the indirect transmission. We assume in the third equation that
the growth of disease vector is proportional to the number of infected individuals,
and its decay rate is a constant δ. The units of parameters β1, µ, γ, p, δ are the same
as the reciprocal of time unit, but the unit for b is the unit of β1 multiplied by the
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population size/density unit, while the unit of β2 is the unit of β1 divided by the
population size/density unit.

If β1 = 0 (namely, there is no direct transmission), the above system (1-3) reduces
to the classical HIV model [17], where x, y, z represent the densities of target cells,
infected cells and virus, respectively. It is well-known that the global dynamics of
this reduced system is fully determined by the basic reproduction number [5, 21]

Ri0 :=
bβ2p

µγδ
. (4)

To be more specific, if Ri0 ≤ 1, then the infection-free equilibrium is globally asymp-
totically stable; if Ri0 > 1, then there exists a unique positive equilibrium which
is globally asymptotically stable. Here, the superscript i means indirect disease
transmission.

On the other hand, if the indirect transmission is ignored (i.e., β2 = 0), then the
equation (3) can be decoupled from the original system, and the remaining system
(1-2) is the same as the Kermack-McKendrick epidemic model [8] with standard
incidence function, while the infected class is assumed to be removed from the
social activity after being recovered/quarantined; see [22]. The basic reproduction
number for the reduced direct-transmission-only model is given by [5, 21]

Rd0 :=
β1
γ
, (5)

where the superscript d corresponds to the direct disease transmission. A similar
dichotomy result holds: if Rd0 ≤ 1, then the disease-free equilibrium is globally
asymptotically stable; if Rd0 > 1, then there exists a unique positive equilibrium
which is globally asymptotically stable. For global stability analysis on epidemic
models with more general direct transmission rates, we refer to [9, 10, 15] and
references therein.

The proposed system (1-3) is motivated by the observations of cell-to-cell trans-
mission of HIV [20] and human-to-human transmission of Zika virus [7]. It is of
both biological and mathematical interests to study a disease model that couples
direct transmission with indirect transmission. The coupled virus models with both
transmissions being assumed to be mass-actions have been studied in [13, 14, 18],
where the basic reproduction number for the coupled system is simply the sum
of two basic reproduction numbers for the subsystems with only direct or indirect
disease transmissions respectively. Similar results were also obtained for cholera
models [19], pathogen models [2, 3] and treatment models [24]. The coupled model
proposed in [1] incorporated two virions with sensitive and resistant strains, respec-
tively, and the basic reproduction number for the full system is the maximum of
two basic reproduction numbers of viral strains. However, the basic reproduction
number corresponds to each viral strain is still the sum of two basic reproduction
numbers for the direct and indirect transmissions when both transmission functions
are chosen as mass-actions. One nature question is whether this linear property of
basic reproduction number of nonlinear coupled systems is universal, regardless of
the choices of nonlinear incidence functions. In our system (1-3), we assume that
the contact probability between a susceptible individual and an infected individual
is decreasing as total population of two groups is increasing [4, 11], which leads
to a standard incidence function for the direct disease transmission. On the other
hand, the contact probability between a susceptible individual and a disease vector
is assumed to be a constant, so the indirect disease transmission is characterized by
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a mass-action incidence (or bilinear function). Biologically, we may still define the
basic reproduction number of this coupled system as the sum of Ri0 and Rd0:

R0 :=
bβ2p

µγδ
+
β1
γ
. (6)

We intend to explore the relation of local and global dynamics for the model system
with the basic reproduction number.

2. Main results. We first establish the nonnegativeness and boundedness of the
solutions to the system (1-3) with given nonnegative initial conditions.

Proposition 1. If the initial values are nonnegative, then the solutions of the
system (1-3) are nonnegative for all t ≥ 0 and ultimately bounded as t→∞.

Proof. Note from (1) that x′(t0) > 0 whenever x(t0) = 0 for some t = t0. This
implies that x(t) > 0 for all t > 0 if x(0) ≥ 0. Now, we claim y(t) and z(t) are
nonnegative for all t ≥ 0. If not, then there exists a t0 ≥ 0 such that y(t) ≥ 0 and
z(t) ≥ 0 for all t ≤ t0 and either y(t) or z(t) becomes negative right after t0. On
one hand, if y(t) < 0 for t close to the right of t0, then y(t0) = 0 and y′(t0) < 0.
However, we obtain from (2) that y′(t0) = β2x(t0)z(t0) ≥ 0, a contradiction. On the
other hand, if z(t) < 0 for t close to the right of t0, then z(t0) = 0 and z′(t0) < 0.
However, we obtain from (3) that z′(t0) = py(t0) ≥ 0, a contradiction. Therefore,
neither y(t) nor z(t) could be negative for any t ≥ 0.

Next, we show that the solutions are ultimately bounded as t → ∞. Adding
equations (1) and (2) gives

x′(t) + y′(t) = b− µx(t)− γy(t) ≤ b−min(µ, γ)[x(t) + y(t)].

Thus, we have lim supt→∞[x(t) + y(t)] ≤ b/min(µ, γ). Especially, x(t) and y(t)
are ultimately bounded as t → ∞. It is then easily seen from (3) that z(t) is also
ultimately bounded as t→∞.

Now, we consider the equilibria which satisfy the following algebraic system:

0 = b− β1xy

x+ y
− β2xz − µx, (7)

0 =
β1xy

x+ y
+ β2xz − γy, (8)

0 = py − δz, (9)

It is readily seen that there is a disease-free equilibrium (x0, 0, 0) with x0 = b/µ.
Now, we are looking for the endemic equilibrium and assume y 6= 0. Eliminating
the variables y and z from equations (7)-(9) gives z = py/δ, y = (b− µx)/γ and

pβ2(γ − µ)x2 + (bpβ2 + β1γδ + γδµ− γ2δ)x− bγδ = 0. (10)

Recall that γ and µ denote the death rates of infected and susceptible individuals,
respectively. Biologically, it is nature to assume that γ ≥ µ. In this case, we always
have a unique positive solution x = x∗ to the above equation, where

x∗ =

{
bγδ/(bpβ2 + β1γδ), γ = µ;
−(bpβ2+β1γδ+γδµ−γ2δ)+

√
(bpβ2+β1γδ+γδµ−γ2δ)2+4bγδpβ2(γ−µ)
2pβ2(γ−µ) , γ > µ.

(11)

We further have y = y∗ and z = z∗, where

y∗ =
b− µx∗

γ
, z∗ =

(b− µx∗)p
γδ

. (12)
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To make y∗ > 0 and z∗ > 0, we need x∗ < b/µ, which, by a simple calculation,
is equivalent with R0 > 1, where R0 is defined in (6). The equivalence is obvious
when γ = µ. When γ > µ, we rewrite x∗ < b/µ as

−B +
√
B2 + 4AC

2A
<
b

µ

where A = pβ2(γ−µ) > 0, B = bpβ2 +β1γδ+γδµ−γ2δ and C = bγδ > 0. Isolating
the square root and squaring both sides gives B + 2Ab/µ > 0 and

B2 + 4AC < B2 +
4BAb

µ
+

4A2b2

µ2
.

Simplifying the last inequality yields Cµ2 < Bbµ + Ab2. We make use of the
expressions of A,B,C and rewrite the inequality as

bγδµ2 < bµ(bpβ2 + β1γδ + γδµ− γ2δ) + b2pβ2(γ − µ).

By expanding and canceling, we obtain γδµ < bpβ2 + β1δµ, which is the same as
R0 > 1. Furthermore, coupling R0 > 1 and γ > µ implies B + 2Ab/µ > 0. Thus,
we obtain that the endemic equilibrium exists if and only if R0 > 1. Next, we will
establish the local stability theory of disease-free and endemic equilibria.

Theorem 2.1. If R0 ≤ 1, then the disease-free equilibrium is locally asymptotically
stable. If R0 > 1, then the disease-free equilibrium is unstable. If further, γ ≥ µ,
then there exists a unique endemic equilibrium and it is locally asymptotically stable.

Proof. We calculate the Jacobian matrix of the system (1-3) about the disease-
free equilibrium (x0, 0, 0) and endemic equilibrium (x∗, y∗, z∗), respectively. At the
disease-free equilibrium, we have

J0 =

−µ −β1 −β2x0
0 β1 − γ β2x0
0 p −δ

 . (13)

The three eigenvalues of the Jacobian matrix are calculated as −µ and (Tr ±√
Tr2 − 4Det)/2, where Tr and Det denote the trace and determinant of the sub-

matrix (
β1 − γ β2x0
p −δ

)
.

That is, Tr = β1−γ−δ and Det = δ(γ−β1)−β2x0p. Recall that x0 = b/µ and R0 =
(bpβ2)/(µγδ) + β1/γ. If R0 < 1, we have Tr < 0 and Det > 0, and thus all three
eigenvalues have negative real parts, which implies that the disease-free equilibrium
is locally asymptotically stable. On the other hand, if R0 > 1, then Det < 0, which
implies that at least one of the three eigenvalues (i.e., (Tr −

√
Tr2 − 4Det)/2) is

real and positive. Consequently, the disease-free equilibrium is unstable.
For the critical case R0 = 1, the Jacobian matrix J0 has two negative real

eigenvalue −µ and β1− γ− δ, and one zero eigenvalue. We introduce the matrix of
eigenvectors

P =

− δγµ (β1−δ)β2x0

β1−γ−δ+µ 1

δ −β2x0 0
p δ 0


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such that J0P = PΛ, where Λ is the diagonal matrix diag{0, β1 − γ − δ,−µ}. We
make the linear transformation (u, v, w)T = P−1(x− x0, y, z)T , where

P−1 =

0 δ
δ2+pβ2x0

β2x0

δ2+pβ2x0

0 −p
δ2+pβ2x0

δ
δ2+pβ2x0

1 β2µ−δγ
µ(β1−β−δ+µ)

(β−µ)β2x0

µ(β1−β−δ+µ)

 .

The Jacobian matrix for the differential equations of (u, v, w) about the zero equi-
librium is exactly Λ. To analyze the local asymptotic stability of this zero equilib-
rium, we need to calculate the restricted dynamical system on the center manifold
for u sufficiently small and v = O(u2), w = O(u2); see [23, Ch. 2]. Note that
u = (δy + β2x0z)/(δ

2 + pβ2x0). We obtain from equations (2-3) that

(δ2 + pβ2x0)u′(t) = δβ2(x− x0)z − δβ1y
2

x+ y
.

Next, we make use of x−x0 = −(δγ/µ)u+O(u2), y = δu+O(u2) and z = pu+O(u2)
to obtain

(δ2 + pβ2x0)u′(t) = −(δ2γpβ2/µ+ δ2β1/x0)u2 +O(u3).

Since the above restricted system is stable about u = 0, the original system (2-3) is
stable about the disease-free equilibrium (x0, 0, 0).

Finally, we investigate the Jacobian matrix at the endemic equilibrium:

J∗ =

−
β1(y

∗)2

(x∗+y∗)2 − β2z
∗ − µ − β1(x

∗)2

(x∗+y∗)2 −β2x∗
β1(y

∗)2

(x∗+y∗)2 + β2z
∗ β1(x

∗)2

(x∗+y∗)2 − γ β2x
∗

0 p −δ

 . (14)

The corresponding characteristic equation is λ3 + c2λ
2 + c1λ1 + c0 = 0, where

c2 =
β1(y∗ − x∗)
x∗ + y∗

+ β2z
∗ + µ+ γ + δ;

c1 =
(γ + δ)β1(y∗)2

(x∗ + y∗)2
− (δ + µ)β1(x∗)2

(x∗ + y∗)2
+ (γ + δ)β2z

∗ − pβ2x∗ + δµ+ µγ + δγ;

c0 =
γδβ1(y∗)2

(x∗ + y∗)2
− δµβ1(x∗)2

(x∗ + y∗)2
+ γδβ2z

∗ + δµγ − µpβ2x∗.

Since the endemic equilibrium (x∗, y∗, z∗) satisfies the system (2-3), we can rewrite
the above expressions as

c2 =
b

x∗
+
β2x
∗z∗

y∗
+ δ;

c1 =
δb

x∗
+
µβ2x

∗z∗

y∗
+

µβ1x
∗y∗

(x∗ + y∗)2
+

γβ1(y∗)2

(x∗ + y∗)2
+ γβ2z

∗;

c0 =
δµβ1x

∗y∗

(x∗ + y∗)2
+
δγβ1(y∗)2

(x∗ + y∗)2
+ δγβ2z

∗.

Especially, c2 > 0, c1 > 0, c0 > 0, and c2c1 > c0. By Routh-Hurwitz criterion, it
follows that all eigenvalues of J∗ have negative real parts, which implies the local
asymptotic stability of endemic equilibrium.

Now, we are ready to establish the global dynamics of the system (1-3).
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Theorem 2.2. If R0 ≤ 1, then the disease-free equilibrium of system (1-3) with
nonnegative initial conditions is globally asymptotically stable; namely, as t → ∞,
we have (x(t), y(t), z(t))→ (x0, 0, 0).

Proof. We consider two different cases: (1) x(t) > x0 for all t ≥ 0; (2) x(t0) ≤ x0
for some t0 > 0.

For the first case, we observe from (1) that x′(t) ≤ b− µx(t) < 0, which implies
that x(t) is strictly decreasing and has a lower bound x0. Thus, there exits x1 ≥
x0 such that x(t) → x1 as t → ∞. We claim x1 = x0. If not, it then follows
from the monotonicity of x(t) and (1) that x′(t) ≤ b − µx1 < 0. Consequently,
x(t) ≤ x(0)e(b−µx1)t → 0 as t → ∞, a contradiction. Hence, the function x(t)
decreases to x0 as t increases to infinity. We add the equations (1) and (2) to
obtain (x + y)′ = b − µx − γy < 0, which implies that x(t) + y(t) is also strictly
decreasing with a lower bound x0. Hence, y(t) has a limit, denoted by y1 ≥ 0, as
t→∞. If y0 > 0, then there exists t1 ≥ 0 such that y(t) > y0/2 for all t ≥ t1. But,
(x + y)′ < −γy0/2 and x(t) + y(t) < [x(t1) + y(t1)]e−γy0(t−t1)/2 → 0 as t → ∞,
a contradiction. So, y0 = 0. Similarly, we could show that z(t) → ∞ as t → ∞,
noting from (1-3) that (x+ y + γz/p)′ = b− µx− γδz/p.

For the second case, we could assume without loss of generality that t0 = 0
and x(0) ≤ x0. We claim that x(t) ≤ x0 for all t ≥ 0. If not, then there exists
t1 ≥ 0 such that x(t) ≤ x0 for all t ≤ t1, x(t1) = x0, and x′(t1) > 0. However,
it follows from (1) that x′(t1) ≤ b − µx(t1) = 0, a contradiction. Now, we define
u(t) := y(t) + βx0z(t)/δ and obtain from (2) and (3) that

u′ = − β1y
2

x+ y
+

(
β1 +

pβ2x0
δ
− γ
)
y + β2(x− x0)z.

Since R0 ≤ 1 and x ≤ x0, we have u′ ≤ 0. Since u ≥ 0, we have u(t)→ u1 as t→∞
for some u1 ≥ 0. We claim u1 = 0. If not, we substitute y = u−βx0z/δ into equation
(3) and find z′ = pu− (pβx0/δ+ δ)z, which, together with the limit of u(t), implies
that z → z1 as t→∞, where z1 = pu1/(pβx0/δ + δ) > 0. Furthermore, y → y1 as
t→∞, where y1 = u1 − βx0z1/δ = δu1/(pβx0/δ + δ) > 0. Especially, there exists
t2 ≥ 0 such that y(t) > y1/2 for all t ≥ t2. However, since u′ ≤ −β1y < −β1y1/2,
we have u(t) < u(t1)e−β1y1(t−t1)/2 → 0 as t → ∞, a contradiction. Therefore, we
have shown that u1 = 0, which implies that y(t) → 0 and z(t) → 0 as t → ∞.
Finally, we set v(t) := x(t) + y(t) and add the equations (1) and (2) to obtain
v′ = b − µv + (µ − γ)y, which, together with the limit of y(t), implies v → x0
as t → ∞. This proves the global asymptotic stability of disease-free equilibrium
(x0, 0, 0).

The next main result states the global asymptotic stability of endemic equilib-
rium.

Theorem 2.3. If the initial values are nonnegative and either y(0) > 0 or z(0) >
0, then the solutions are positive for all t > 0. If further, R0 > 1 and either
γ = µ or γ > µ ≥ β1/4 is satisfied, then the unique endemic equilibrium is globally
asymptotically stable; namely, (x(t), y(t), z(t))→ (x∗, y∗, z∗) as t→∞.

Proof. We assume that the initial conditions are nonnegative and either y(0) > 0
or z(0) > 0. It is readily seen from (1) that x(t) > 0 for all t > 0. If both y(0) and
z(0) are positive, then y(t) and z(t) are positive for any small t > 0. If y(0) > 0 and
z(0) = 0, then it follows from (3) that z′(0) = py(0) > 0, which implies positiveness
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of z(t) for sufficiently small t > 0. If y(0) = 0 and z(0) > 0, then it follows from (2)

that eγty(t) ≥
∫ t
0
β2x(s)z(s)ds > 0 for any small t > 0. Therefore, we have shown

the positiveness of y(t) and z(t) right after the initial time. Now, we claim that both
y(t) and z(t) are positive for all t > 0. Assume the contrary that the positiveness
fails for the first time at t = t1 > 0, which means that y(t) > 0 and z(t) > 0 for all
0 < t < t1, and either y(t1) = 0 or z(t1) = 0. If y(t1) = 0, then y′(t1) < 0, but from
(2) we have y′(t1) = β2x(t1)z(t1) ≥ 0, a contradiction; if z(t1) = 0, then z′(t1) < 0,
but from (3) we have z′(t1) = py(t1) ≥ 0, a contradiction again. Hence, y(t) > 0
and z(t) > 0 for all t > 0.

Now, we assume R0 > 1 and γ ≥ µ, then the endemic equilibrium (x∗, y∗, z∗)
exists and it is unique. We consider the following three cases respectively.

(C1) β1(y∗ − x∗)2 ≤ 4µx∗(x∗ + y∗);
(C2) y∗ − x∗ ≥ 0;
(C3) 0 ≤ x∗ − y∗ ≤ [2µx∗ + 2µγ(x∗ + y∗)/β1]/(µ+ γ) and

µγ2(x∗ + y∗)2 + β1(x∗ + y∗)[γ(µ+ γ)y∗ − µ(γ − µ)x∗] + β2
1y
∗[γy∗ − (γ − µ)x∗] ≥ 0.

We will prove global asymptotic stability of endemic equilibrium for each of the
above three cases by constructing difference Lyapunov functions.

Case I. β1(y∗ − x∗)2 ≤ 4µx∗(x∗ + y∗). We construct the Lyapunov function

V1(x, y, z) := x− x∗ lnx+ y − y∗ ln y +
β2x
∗z∗

py∗
(z − z∗ ln z)−K1, (15)

where K1 is a constant such that V1(x∗, y∗, z∗) = 0. Taking the derivative of V1
along the solution of system (1-3), we obtain

dV1
dt

=

(
1− x∗

x

)(
b− β1xy

x+ y
− β2xz − µx

)
+ (y − y∗)

(
β1x

x+ y
+
β2xz

y
− γ
)

+
β2x
∗z∗

py∗
(z − z∗)

(py
z
− δ
)
.

Recall that the endemic equilibrium satisfies the following equations:

b =
β1x
∗y∗

x∗ + y∗
+ β2x

∗z∗ + µx∗,

γ =
β1x
∗

x∗ + y∗
+
β2x
∗z∗

y∗
,

δ =
py∗

z∗
.

We then have

dV1
dt

=− µ(x− x∗)2

x
− β1y

∗(x− x∗)2

x(x∗ + y∗)
+
β1(x− x∗)[y∗(x− x∗)− x∗(y − y∗)]

(x+ y)(x∗ + y∗)

+ β2x
∗z∗

(
1− x∗

x
− xz

x∗z∗
+

z

z∗

)
+
β1(y − y∗)[y∗(x− x∗)− x∗(y − y∗)]

(x+ y)(x∗ + y∗)

+ β2x
∗z∗

(
1− y

y∗
− xy∗z

x∗yz∗
+

xz

x∗z∗

)
+ β2x

∗z∗
(

1− z

z∗
− yz∗

y∗z
+

y

y∗

)
.

By using x ≤ x+ y, we obtain

dV1
dt
≤− µ(x∗ + y∗)(x− x∗)2

(x+ y)(x∗ + y∗)
− β1y

∗(x− x∗)2

(x+ y)(x∗ + y∗)
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+
β1[y∗(x− x∗)2 + (y∗ − x∗)(x− x∗)(y − y∗)− x∗(y − y∗)2]

(x+ y)(x∗ + y∗)

+ β2x
∗z∗

(
3− x∗

x
− xy∗z

x∗yz∗
− yz∗

y∗z

)
.

Since 3− a− b− c ≤ 0 for any positive a, b, c such that abc = 1, it follows that

dV1
dt
≤
−β1

[
µ(x∗+y∗)

β1
(x− x∗)2 − (y∗ − x∗)(x− x∗)(y − y∗) + x∗(y − y∗)2

]
(x+ y)(x∗ + y∗)

≤ 0

if β1(y∗ − x∗)2 ≤ 4µx∗(x∗ + y∗). The largest invariant set on which V ′1(t) = 0 is
a singleton (x∗, y∗, z∗). We obtain from Lyapunov-LaSalle invariance principle [12,
p. 30] that the endemic equilibrium is globally asymptotically stable.

Case II. y∗−x∗ ≥ 0. We use V1 defined in (15) to construct the Lyapunov function:

V2 := V1 +
β1(y∗ − x∗)

(µ+ γ)(x∗ + y∗)
[x+ y − (x∗ + y∗) ln(x+ y)]−K2, (16)

where K2 is a constant such that V2(x∗, y∗, z∗) = 0. Taking derivative along the
solution of system (1-3), we obtain

dV2
dt
≤
−β1

[
µ(x∗+y∗)

β1
(x− x∗)2 − (y∗ − x∗)(x− x∗)(y − y∗) + x∗(y − y∗)2

]
(x+ y)(x∗ + y∗)

− β1(y∗ − x∗)[(x− x∗) + (y − y∗)][µ(x− x∗) + γ(y − y∗)]
(µ+ γ)(x∗ + y∗)(x+ y)

,

where we have used the equations (x+ y)′ = b− µx− γy and b = µx∗ + γy∗. Note
that the coefficients of (x−x∗)(y−y∗) in the numerator cancel out with each other.
It then follows that

dV2
dt
≤
−β1

{[
µ(x∗+y∗)

β1
+ µ(y∗−x∗)

µ+γ

]
(x− x∗)2 +

[
x∗ + γ(y∗−x∗)

µ+γ

]
(y − y∗)2

}
(x+ y)(x∗ + y∗)

≤ 0.

The largest invariant set on which V ′2(t) = 0 is a singleton (x∗, y∗, z∗). We obtain
from Lyapunov-LaSalle invariance principle [12, p. 30] that the endemic equilibrium
is globally asymptotically stable.

Case III. 0 ≤ x∗ − y∗ ≤ [2µx∗ + 2µγ(x∗ + y∗)/β1]/(µ+ γ) and

µγ2(x∗ + y∗)2 + β1(x∗ + y∗)[γ(µ+ γ)y∗ − µ(γ − µ)x∗] + β2
1y
∗[γy∗ − (γ − µ)x∗] ≥ 0.

We use V1 defined in (15) to construct the Lyapunov function:

V3 := V1 +
λβ1

x∗ + y∗
[x+ y − (x∗ + y∗) ln(x+ y)]−K3, (17)

where

λ :=
2µx∗ + 2µγ(x∗ + y∗)/β1 − (x∗ − y∗)(µ+ γ)

(µ− γ)2
,

and K3 is a constant such that V3(x∗, y∗, z∗) = 0. Taking the derivative along the
solution of system (1-3), we obtain

dV3
dt

=
−β1

{[
µ(x∗+y∗)

β1
+ λµ

]
X2 + [x∗ − y∗ + λ(µ+ γ)]XY + (x∗ + λγ)Y 2

}
(x+ y)(x∗ + y∗)

,
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where X := x− x∗ and Y := y − y∗. To prove V ′3 ≤ 0, it is sufficient to show that

[x∗ − y∗ + λ(µ+ γ)]2 ≤ 4

[
µ(x∗ + y∗)

β1
+ λµ

]
(x∗ + λγ),

which is equivalent with

(µ− γ)2λ2 + 2

[
(x∗ − y∗)(µ+ γ)− 2µx∗ − 2µγ(x∗ + y∗)

β1

]
λ

+ (x∗ − y∗)2 − 4µx∗(x∗ + y∗)

β1
≤ 0.

From the choice of λ, we can rewrite the above inequality as

−
[2µx∗ + 2µγ(x∗+y∗)

β1
− (x∗ − y∗)(µ+ γ)]2

(µ− γ)2
+ (x∗ − y∗)2 − 4µx∗(x∗ + y∗)

β1
≤ 0.

A simple calculation shows that the above inequality is the same as

µγ2(x∗ + y∗)2 + β1(x∗ + y∗)[γ(µ+ γ)y∗ − µ(γ − µ)x∗] + β2
1y
∗[γy∗ − (γ − µ)x∗] ≥ 0.

Thus, V ′3 ≤ 0 if the above inequality is satisfied. Again, the largest invariant set on
which V ′3(t) = 0 is a singleton (x∗, y∗, z∗). We have the global asymptotic stability
of endemic equilibrium from Lyapunov-LaSalle invariance principle [12, p. 30].

Finally, we note that if γ = µ, then either (C2) or (C3) should be satisfied;
namely, either y∗ − x∗ ≥ 0 or

0 ≤ x∗ − y∗ ≤ x∗ =
2µx∗

µ+ γ
≤ 2µx∗ + 2µγ(x∗ + y∗)/β1

µ+ γ
.

On the other hand, if γ > µ ≥ β1/4, then (C1) and (C2) include all possible
parameter values. Assume the contrary, then there exist some parameter values
such that x∗ > y∗ and β1(x∗ − y∗)2 > 4µx∗(x∗ + y∗). Since µ ≥ β1/4, we have
(x∗ − y∗)2 > x∗(x∗ + y∗). But 0 < x∗ − y∗ < x∗ < x∗ + y∗ and thus (x∗ − y∗)2 <
x∗(x∗ + y∗), a contradiction. This concludes the proof.

3. Discussion. In this paper, we propose a simple epidemic model coupling both
direct and indirect transmission mechanisms of infectious diseases. This model has
potential applications in the study of various diseases. For example, it generalizes
the HIV model where x, y, z correspond to uninfected cells, infected cells and virus,
respectively. In the study of Zika virus, we let x, y, z be the uninfected individuals,
infected individuals, and infected mosquitoes, respectively. When we apply our
model to analyze the epidemic waves of H1N1 and seasonal influenzas, x and y
still denote uninfected and infected individuals, respectively, while z stands for
the contaminated environment such as classrooms, buses, theaters, or other public
places. We could also use our model to study the cross transmission of avian
influenza among migratory birds and domestic poultry, where x, y, z denote the
uninfected migratory birds, infected migratory birds, and infected domestic poultry,
respectively.

We would like to mention that the transmission mechanisms within and without
groups may not be the same, so we assume standard incidence function for within
group transmission (such as bird-to-bird transmission, or person-to-person trans-
mission) and mass action function for transmission among different groups (such as
poultry-to-bird transmission, or mosquito-to-person transmission). One may argue
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that there should be poultry-to-poultry transmission and bird-to-poultry transmis-
sion, so that equation (3) would have been written as

z′(t) =
β3w(t)z(t)

w(t) + z(t)
+ β4w(t)y(t)− σz(t),

where w(t) is the population of uninfected poultry. However, for simplicity, we
could assume that this quantity is a large constant w(t) ≡ W with respect to the
infected poultry z(t). Therefore, the above equation can be approximated by (3)
with p = β4W and δ = σ−β3. A similar argument works for mosquito-borne disease
models where x, y, z, w correspond to the uninfected individuals, infected individ-
uals, infected mosquitoes, and uninfected mosquitoes, respectively. When the dy-
namical system on mosquito population is much faster than the disease transmission
system, the population of uninfected mosquitoes reaches its ecological equilibrium
w(t) ≡ W very quickly and thus its variation is negligible in the slow system. For
simplicity, we further assume that the ratio of infected mosquitoes over uninfected
mosquitoes is relatively small. These assumptions help us to obtain a reduced
equation for the infected mosquitoes: z′(t) = py(t) − δz(t). Nevertheless, a more
realistic and more general model incorporating with the changes on the uninfected
mosquitoes should be studied and we leave it as a future work.

It is noted that the basic reproduction number of the coupled system is simply
the sum of the basic reproduction numbers for the two reduced systems with only
direct or indirect disease transmission, respectively. This means that, in the study
of infectious disease (Zika virus, for instance) with multiple transmission mechanics,
it is dangerous to ignore either direct or indirect transmission because that would
underestimate the seriousness of the disease: it is possible that both Rd0 and Ri0 are
less than one, but their sum exceeds the critical value one. To create a suitable policy
for disease control, one should not only reduce the possibility of direct transmission,
but also avoid indirect disease transmission (such as closing schools to reduce vector
transmission channels of H1N1 and other pandemic influenzas [6]).

Due to the difference between direct and indirect transmission mechanisms, it
becomes more difficult to analyze the model system than the one in [13] where
both transmissions were chosen as mass action functions. As seen in the proof
of our main theorems, the most challenging part is the construction of a suitable
Lyapunov function which could nicely balance the two different nonlinear transmis-
sions. Note that we introduce some technical conditions to prove global asymptotic
stability of endemic equilibrium; see (C1)-(C3) in the proof of Theorem 2.3. From
numerical simulations one could still observe global asymptotic stability of endemic
equilibrium even though these technical assumptions are violated. It remains an
open problem to prove global asymptotic stability of endemic equilibrium whenever
it exists. Another future project would be the extension of our results to the more
general situation when disease transmission delay and multi-group [16] are taken
into consideration.
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