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Abstract In this paper, we propose a procedure for detecting multiple change-points
in a mean-shift model, where the number of change-points is allowed to increase with
the sample size. A theoretic justification for our new method is also given. We first
convert the change-point problem into a variable selection problem by partitioning
the data sequence into several segments. Then, we apply a modified variance inflation
factor regression algorithm to each segment in sequential order. When a segment that
is suspected of containing a change-point is found, we use a weighted cumulative
sum to test if there is indeed a change-point in this segment. The proposed procedure
is implemented in an algorithm which, compared to two popular methods via simu-
lation studies, demonstrates satisfactory performance in terms of accuracy, stability
and computation time. Finally, we apply our new algorithm to analyze two real data
examples.

Keywords CUSUM · Mean-shift model · Partition · Variable selection ·
Variance inflation factor regression algorithm

1 Introduction

Change-point problems can be found in many areas of science and engineering.
Detecting change-points in a data sequence is of great importance. If there exists
a change-point in a data sequence, it is not appropriate to make statistical inferences
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without considering its existence, because the results derived from such inferences
may be misleading. The problem of detecting a single change-point has been stud-
ied extensively in the literature [see Csörgő and Horváth (1997) and Chen and Gupta
(2012) among others]. However, in this data-rich era, many data sequences have a very
large size, and thus it is not surprising that multiple change-points might occur in such
a data sequence. It becomes desirable to find a fast and efficient method to detect the
locations of these change-points. Recent literature in this area includes Harchaoui and
Lévy-Leduc (2008, 2010), Killick et al. (2012), Jin et al. (2013) among others. In this
paper, we will tackle the problem of multiple change-point detection in a mean-shift
model given below

yi =
b∑

r=0

μr I{kr ,...,kr+1−1}(i) + εi , i = 1, . . . , n, (1)

where IA(·) denotes the indicator function of the set A; 1 < k1 < · · · < kb < n are
the unknown locations of b change-points satisfying limn→∞ minr (kr −kr−1)/n > 0;
μ0, . . . , μb are the means such that μr �= μr+1 for 0 ≤ r ≤ b − 1; and ε1, . . . , εn

are random errors with zero mean. Here, we have used the convention that k0 = 1 and
kb+1 = n + 1. We denote the set of change-points by K = {k1, . . . , kb}.

Let us illustrate the application of multiple change-point detection by the following
example. Consider the problemof recognizing a one-dimensional barcode that encodes
0123456789 in the top panel of Fig. 1 (http://barcode.tec-it.com/barcode-generator.
aspx). When the image is converted into matrix form, all of the values in the matrix
lie between 0 (black pixel) and 1 (white pixel). It is noted that all rows in this matrix
are identical, and minr (kr − kr−1) in any row is 40. The barcode recognition problem
here can be converted into a multiple change-point detection problem in a mean-shift
model. Decontaminating the barcodes is equivalent to finding the set of change-points
K. To simulate the scanned input, we add two levels of noise to each element of the
matrix. The resulting data are left-truncated at 0 and right-truncated at 1, which yields
two barcodes, shown respectively in panels 2, 3 in Fig. 1.

Fig. 1 Top panel the original barcode encoding 0123456789 without noise. Middle panel the original
barcode contaminated by the added Gaussian noise with mean zero and σ = 0.1. Bottom panel the original
barcode contaminated by the added Gaussian noise with mean zero and σ = 0.2
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In addition to the barcode recognition problem, the detection of multiple change-
points has many applications in areas such as genetic data analysis (see, e.g., Barry
and Hartigan 1992, 1993; Erdman and Emerson 2007, 2008) and signal processing
(see, e.g., Qu and Tu 2006).

There is a great need for efficient methods for detecting multiple change-points.
Barry and Hartigan (1993) proposed a Bayesian analysis for change-point problems
with the complexity of O(n3). This method was further improved by Erdman and
Emerson (2008), who reduced the computation time to O(n). While there are some
other methods with computational complexity of order O(n2) (see e.g. Auger and
Lawrence (1989), Jackson et al. (2005) and Rigaill (2010)), Scott and Knott (1974)
proposed a faster binary segmentation algorithm with only O(n log n) computational
complexity. The main feature of this algorithm is that it only considers a subset of the
2n−1 possible solutions (Killick and Eckley 2014).

The circular binary segmentation (CBS) and the Pruned Exact Linear Time (PELT)
are two popular methods for detecting multiple change-points in a mean-shift model.
CBS was proposed by Olshen et al. (2004) to detect change-points in the genomic
data, and has been implemented in the R package DNAcopy (Seshan and Olshen
2015). PELT was proposed in Killick et al. (2012), and has also been implemented in
the R package changepoint (Killick et al. 2014). The main idea behind PELT is to
consider the data sequentially, and record the optimal segmentation at each step, for
the data up to that step (Killick et al. 2012). The computation time of PELT is of order
O(n) , but its R package changepoint is not stable when there are outliers in the data.
Throughout this paper, we use CBS and PELT to stand for the R packages DNAcopy
and changepoint, respectively.

It is noted that by properly segmenting a data sequence, the multiple change-point
detection problem above can be equivalently expressed as a linear regression vari-
able selection problem, with a large number of regression coefficients (see Harchaoui
and Lévy-Leduc 2008; Jin et al. 2013 among others). Thus a modern variable selec-
tion method can be utilized to obtain a rough estimation of multiple change-points.
Recently, Lin et al. (2011) proposed the variance inflation factor (VIF) regression algo-
rithm for variable selection. This algorithm is much faster than many modern variable
selection methods including LASSO and SCAD. In this paper, we modify the stage-
wise regression of the VIF regression algorithm, and perform the variable selection
sequentially in segment order. Once the segment containing a possible change-point is
flagged, we adopt a weighted cumulative sum to justify and locate the change-point in
this segment. The proposed procedure is implemented by the algorithm VIFCP (“CP”
stands for “change-point”). Wewould like to remark that our new algorithm allows the
number of change-points to increase with the sample size, which makes our method
applicable to various practical problems.

The rest of this paper is organized as follows. In Sect. 2, the proposed procedure
VIFCP is presented in detail and its theoretical justification is provided. In Sect. 3,
we run simulation studies to examine the proposed procedure and to compare its
performance with CBS and PELT. In Sect. 4, we give two real data examples. We
conclude the paper in Sect. 5. The proof of the theoretical justification of the proposed
procedure of Sect. 2 is provided in an “Appendix”. The following notation is used
throughout the rest of this paper. Let {cn} be a sequence of nonnegative numbers and
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{dn} be a sequence of positive numbers. If the sequence {cn/dn} is bounded, it is
denoted as cn = O(dn). If cn/dn → 0 as n → ∞, it is denoted as cn = o(dn). If
cn/dn → 1 as n → ∞, it is denoted as cn ∼ dn . If a sequence of random variables

{ξn} tends to 0 in probability, it is denoted as ξn = op(1). The symbol
d−→ denotes

convergence in distribution. For convenience, we denote them ×1 vectors (1, . . . , 1)T

and (0, . . . , 0)T by 1m and 0m , respectively, and write �m1,m2 = (0T
m1

, 1T
m2

)T . In
addition, Im stands for an m × m identity matrix (the subscript m may be suppressed
if there is no confusion), ‖ · ‖ stands for the Euclidean norm, �c	 the largest integer
less than or equal to a real number c, and Φ(·) the cumulative distribution function of
the standard normal random variable.

2 The VIFCP procedure and its theoretical justification

To establish a connection between the multiple change-point detection and variable
selection, we follow the ideas of Harchaoui and Lévy-Leduc (2008) and Jin et al.
(2013) to reformulate the model (1) as follows:

yn =
b∑

r=0

γr�kr −1,n−(kr −1) + εn, (2)

where yn = (y1, . . . , yn)T is a column vector of n observations, γr with r = 1, . . . , b
are the differences between two successive means μr − μr−1, and γ0 = μ0, and
εn = (ε1, . . . , εn)T . Thus we can consider detectingmultiple change-points for model
(1) as carrying out variable selection for model (2). It is noted that this variable selec-
tion problem is different from the traditional one, since K is unknown in model (2).
Nevertheless, the problem can be solved by applying the multiple change-point detec-
tion procedure as given below. Themain idea of our new procedure is to divide the data
sequence into smaller segments and sample each segment in sequential order. If no
change-point is detected in a segment, the next segment is added to the collective pool
of other segments that have been labeled as such. If this segment exhibits potential for
containing a change-point, it is flagged and a weighted cumulative sum (CUSUM) is
applied to test if there is a change-point in this segment.

2.1 Modified VIF regression algorithm and its justification

We first introduce an artificial partition Q = {q1, . . . , qa} which divides the set
{1, . . . , n} into a + 1 segments, where l = �n/(a + 1)	 is the length of each seg-
ment excluding the first one. We set qs = n − (a + 1 − s)l for each s = 1, . . . , a.
Without loss of generality, we may assume that n is a multiple of a + 1, and hence
qs = sl with l = n/(a + 1) being the length of all segments. By convention, we also
set q0 = 0.

Note that each artificial segment contains at most one change-point by the setup of
model (1) and Assumption A1 below.
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To reflect the artificial partition in model (2), we rewrite it as

yn =
a∑

s=0

βs�qs ,n−qs − ηn + εn . (3)

The regression coefficients βs (with s = 1, . . . , a) are zeros, except when the artificial
segment [qs + 1, qs+1] contains a change-point, say kr , and in this case, βs = γr .
By convention, we set β0 = γ0. The error vector εn = (ε1, . . . , εn)T is defined in
the same way as in (2). Thus, we have correction vector ηn = ∑a

s=0 βsτ n(qs) with
τ n(qs) being the zero vector 0n if βs = 0, that is, no change-point exists in the segment
[qs + 1, qs+1], and

τ n(qs) = �kr −1,n−(kr −1) − �qs ,n−qs = (0T
qs

, 1T
kr −1−qs

, 0T
n−(kr −1))

T

if βs = γr , i.e., the r th change-point kr ∈ [qs +1, qs+1]. By convention, τ n(q0) = 0n .
It is readily seen that ηn is a sparse vector, because the change-points are sparse and
the length of each artificial segment is comparably small. We would like to remark
that if the artificial partition has exactly n segments, then model (2) reduces to the one
studied by Harchaoui and Lévy-Leduc (2008). An illustration of the artificial partition
is plotted in Fig. 2, where n = 10, ε10 = 010, b = 2, k1 = 4 and k2 = 7. The model
(2) is

y10 = γ0110 + γ1�3,7 + γ2�6,4.

Given an artificial partition Q = (2, 4, 6, 8), namely, a = 4, l = 2 and qs = 2s, this
model can be re-expressed as follows:

Fig. 2 The upper plot is the observations y of size 10 without random errors; the one below is the symbolic
illustration of a parametric transformation (without the correction vector) by an artificial partition. Here the
signs ‘star’ and ‘diagonal stripe’ represent locations of change-points and segments, respectively
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y10 = β0110 + β1�2,8 + β2�4,6 + β3�6,4 + β4�8,2 − η10,

where β0 = γ0, β1 = γ1, β2 = 0, β3 = γ2, β4 = 0, and the correction vector
η10 = (0, 0, γ1, 0, 0, 0, 0, 0, 0, 0)T , which is symbolically illustrated in Fig. 2.

As mentioned previously, we will adopt the VIF regression algorithm (Lin et al.
2011) because it is an extremely fast algorithm for variable selection with satisfactory
accuracy. It consists of two steps: the search step and the evaluation step. The search
step takes advantage of sparsity (i.e., the nonzero regression coefficients are sparse in
the set of all regression coefficients). The evaluation step is similar to that of a variation
of a stepwise regression, forward stagewise regression, which evaluates variables using
only marginal correlations. A typical forward stagewise regression can be used to test
the following alternative model:

y =
m∑

j=0

β j x j + βnewxnew + ε,

where x0, . . . , xm are linearly independent predictors and xnew is a new predictor.
Let X = (x0, . . . , xk). Now, we define r y = y − X (X T X)−1X T y and rnew =
xnew − X (X T X)−1X T xnew to be the residuals of y and xnew, respectively. The least
squares estimation of βnew is given by

β̂new = rT
newr y/rT

newrnew = xT
newr y/xT

newrnew = xT
new[I − X (X T X)−1X T ] y/ρ2,

(4)
where

ρ2 = xT
newrnew = xT

new[I − X (X T X)−1X T ]xnew. (5)

Since I −X (X T X)−1X T is an idempotent symmetricmatrix (a fact whichwill be used
frequently throughout this paper), one can derive that the variance of β̂new is ρ−2σ 2.
Lin et al. (2011) suggested constructing the t-statistic t̂ = β̂newρ/σ̂ = xT

newr y/(σ̂ρ),
where σ̂ = ‖r y‖/√(n − k − 2), the corresponding root-mean-square error (RMSE)
of the residual r y . If Φ(|t̂ |) > 1−α/2 for significance level α, then the new predictor
xnew is added to the model. This is the key to the algorithm given in Lin et al. (2011).

We remark that the VIF regression algorithm cannot be directly applied to our vari-
able selection problem, because any two successive vectors �qs ,n−qs and �qs+1,n−qs+1

differ only by o
(
n2/3

)
number of elements under Assumption A1 below, and hence

are asymptotically correlated. However, to overcome these obstacles, we can modify
the stagewise regression of the VIF regression algorithm as follows.

Suppose the predictors x1,i , . . . , xm,i have been selected based on the first il rows
of yn . Here xr,i = �sr l,(i−sr )l and s1 < · · · < sm < i . We now check whether

x(i+1)
new = �il,l should be included as a new predictor via the following model

y(i+1) =
m∑

j=0

β j,i+1x j,i+1 + β(i+1)
new x(i+1)

new − η(i+1) + ε(i+1), (6)
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where y(i+1) = y(i+1)l contains the first (i +1)l rows of yn and x0,i+1 = 1(i+1)l . The
error vector ε(i+1) and correction vector η(i+1) are the first (i + 1)l rows truncated
from the original vectors εn and ηn , respectively. Let X (i+1) = (x0,i+1, . . . , xm,i+1).
β

(i+1)
new is estimated by

β̂(i+1)
new = ρ−2

i+1

(
x(i+1)
new

)T
{

I − X (i+1)
[(

X (i+1)
)T

X (i+1)
]−1 (

X (i+1)
)T

}
y(i+1),

(7)
where

ρ2
i+1 =

(
x(i+1)
new

)T
{

I − X (i+1)
[(

X (i+1)
)T

X (i+1)
]−1 (

X (i+1)
)T

}
x(i+1)
new . (8)

Applying (6) and (8) to (7) gives

β̂(i+1)
new = β(i+1)

new + ρ−2
i+1

(
x(i+1)
new

)T
{

I − X (i+1)
[(

X (i+1)
)T

X (i+1)
]−1 (

X (i+1)
)T

}

×
(
ε(i+1) − η(i+1)

)
. (9)

Following Lin et al. (2011), let

t̂i+1 =
(
x(i+1)
new

)T
r(i+1)/(σ̂i+1ρi+1), (10)

where r(i+1) = [I − X (i+1)[(X (i+1))T X (i+1)]−1(X (i+1))T ] y(i+1) is the residual and
σ̂i+1 = ‖r(i+1)‖/√(i + 1)l − m − 2 is the corresponding RMSE. If Φ(|t̂i+1|) >

1 − α/2, we put xm+1,i+1 = x(i+1)
new and sm+1 = i + 1, and repeat the above process

with i and m replaced respectively by i +1 and m +1. Otherwise, we repeat the above
process by replacing i by i + 1.

Before giving a theoretical justification of the modified VIF regression algorithm,
we make the following two assumptions.

A1. Assume that l → ∞ and bl3/2 � n as n → ∞.
A2. Assume that the errors {εi } in model (1) are independent and identically

distributed (iid) zero-mean random variables with variance σ 2. Furthermore,
E |εi |2+ν < ∞ for some positive constant ν > 0.

Remark 1 Assumption A1 allows b to go to infinity in the order of n/M(n), where
M(n) → ∞ as n → ∞. Assumption A2 is a very basic assumption that is necessary
for establishing asymptotic normality of the estimators of βs.

Remark 2 The choice of l should follow the rule that there is nomore than one change-
point in one partition. Under this condition, we can expect a more accurate estimate
of a change-point with larger l.

The following theorem shows that under the assumptions A1–A2, the modified
stagewise regression is warranted. Its proof is given in the “Appendix”.
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Theorem 1 If the assumptions A1–A2 are satisfied, then as n → ∞,

ρ−1
i+1

(
x(i+1)
new

)T
{

I − X (i+1)
[(

X (i+1)
)T

X (i+1)
]−1 (

X (i+1)
)T

}
ε(i+1) d−→ N

(
0, σ 2

)
,

[(
X (i+1)

)T
X (i+1)

]−1

= O(1/n), ρ2
i+1/ l → 1, (11)

where l = n/(a + 1) is the length of each artificial segment. Note that l is large but
l3/2/n is small by Assumption A1. Furthermore, the following statements hold true:

(a) If the null hypothesis is accepted, i.e., β
(i+1)
new = 0, then the scaled estimate

ρi+1β̂
(i+1)
new converges to N (0, σ 2) in distribution as n → ∞.

(b) If the alternative hypothesis is accepted, i.e., β
(i+1)
new �= 0, then

(i) β̂
(i+1)
new = β

(i+1)
new [1−ρ−2

i+1(km −il)]+op(1), where km denotes the change-point
in the artificial segment [1 + il, (i + 1)l].

(ii) Moreover, if the change-point km lies in the artificial segment [1+ (i − 1)l, il]
(i.e., the change-point was not detected during the previous search), then
β̂

(i)
new = β

(i)
new + op(1).

2.2 A CUSUM test and its justification

By Theorem 1(b)(i), we may conclude that a change-point exists in the artificial time
segment [il + 1, (i + 1)l] if β̂

(i+1)
new �= 0. The precise location of the change-point,

however, is unknown because the formula (7) does not fully reflect the information
contained in the correction vector ηn . To locate a change-point in the artificial segment
[il + 1, (i + 1)l], one may conduct a test for a single change-point over this segment,
which, jointly with Theorem 1(b)(ii) suggests that the test only needs to be carried out
over the segment [1 + (i − 1)l, il + �l/2	].

Consider a univariate sequence {Zi } for i = 1, . . . , n with variance σ 2. We intend
to test the null hypothesis

H0 : E(Z1) = · · · = E(Zn)

versus the alternative hypothesis

Ha : E(Z1) = · · · = E(Zk∗) �= E(Zk∗+1) = · · · = E(Zn)

for some k∗ ∈ (1, n). The change-point k∗ is unknown, and both k∗/n and 1 − k∗/n
are assumed to be bounded away from zero as n → ∞. Many single change-point
detection methods in the literature can be used to solve this problem. Here, we apply
the following CUSUM

Uk = Ck/wk (12)
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to perform the test, where

Ck =
(

n

k(n − k)

)1/2
(

k∑

i=1

Zi − k

n

n∑

i=1

Zi

)
, (13)

and

wk =

√√√√√1

n

k∑

i=1

⎛

⎝Zi − 1

k

k∑

j=1

Z j

⎞

⎠
2

+ 1

n

n∑

i=k+1

⎛

⎝Zi − 1

n − k

n∑

j=k+1

Z j

⎞

⎠
2

. (14)

If B(log n)max1≤k<n |Uk | ≤ − log(− 1
2 log(1 − α)) + D(log n), where B(x) =

(2 log x)1/2 and D(x) = 2 log x + (1/2) log log x − (1/2) logπ , then there is no
change-point, otherwise the change-point exists and is estimated by k̂ = argmax |Uk |.
It is noted that the above CUSUM is also related to the quasi-likelihood ratio test sta-
tistic. See Csörgő and Horváth (1997) (Eq. 1.4.25) for details.

2.3 The algorithm

Theproposedmethod is implemented by the algorithmVIFCPbelow.Here,we provide
the pseudocode for the VIFCP algorithm:

1. INPUT yn and l.
2. INITIALIZATION, a = n/ l − 1, w = 0.05, dw = 0.05, flag = 0, K̂ = ∅, i = 1,

j = 1.
3. LOOP{
4. SET α = w/(1 + i − flag).
5. OBTAIN statistic t̂i+1 by (10).
6. IF 2Φ(|t̂i+1|) > 2 − α

7. Test for a change-point k∗ in [(i − 1)l, il + �l/2	] using the CUSUM.
8. IF the test is significant, obtain k̂ j .
9. K̂ ← K̂ ∪ {k̂ j }, flag← i , w ← w + dw, j = j + 1.

10. ELSE w ← w − α/(1 − α).
11. END IF
12. ELSE w ← w − α/(1 − α).
13. END IF
14. UPDATE i ← i + 1.
15. }UNTIL i ≥ a + 1 or w ≤ 0.
16. RETURN K̂.

The values w, dw and α represent the wealth, payout and significance level, respec-
tively. The details are given in Lin et al. (2011). From the third line to the 15th line, we
use a loop to find all change-points. In the fifth line, we calculate the statistic t̂i+1 using
the formula (10); this is the first key part of our algorithm. If the test is significant,
then there may exist a change-point in the artificial segment [il + 1, (i + 1)l]. The 7th
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line is the second key part of our algorithm, where we apply the algorithm CUSUM
defined in (12) to locate the change-point k∗ in the interval [(i − 1)l, il + �l/2	].
Here we set the significance level of CUSUM to be 0.05. After the loop, we obtain
K̂, the estimates of multiple change-points. We remark that this algorithm has been
implemented in the R package VIFCP (Shi et al. 2015).

We use the example in Sect. 2 to provide a more thorough explanation of our
algorithm. The true change-points are located at 4 and 7. As the sample size is 10 and
l = 2, firstly we set i = 1 and will find there is no change-point in the interval [0,
3]; after setting i = 2, we will find a change-point in the interval [2, 5] at 4. If we set
i = 3, we will not detect any changes in the interval [4, 7]. The change-point at 7 will
be detected when we set i = 4 in the interval [6, 9]. No change-point will be detected
in [8, 10] upon setting i = 5.

Now, we study the computational complexity of the algorithm VIFCP. Under
Assumption A1, the computation time for the variable selection is of order O(n2/ l),
and the computation time for performing all the single change-point tests is of order
O(bl). Hence the complexity of the algorithm VIFCP is O(n2/ l + bl). It is noted that
for finite b, the complexity of the algorithm VIFCP can be as low as O(n4/3M(n))

(M(n) is defined in Remark 1), while for b = o(n), the complexity is o(n2).

3 Simulation studies

In this section, we present three simulation studies. A Dell server (two E5520 Xeon
Processors, two 2.26GHz 8M Caches, 16GB Memory) is used to perform the simu-
lation studies. We will compare the performance of the algorithm VIFCP with CBS
and PELT in terms of the accuracy of successfully detecting each true change-point,
the accuracy of successfully detecting all true change-points under the condition that
the number of true change-points is correctly estimated, and efficiency as determined
by the elapsed running time in seconds (ERT).

In the simulation studies, we consider the following three model settings:
S1: yi = ∑5

r=0 μr I{kr ,...,kr+1−1}(i) + εi , i = 1, . . . , 2000, where

1. {k0, k1, k2, k3, k4, k5, k6 − 1} = {1, 324, 620, 1102, 1386, 1610, 2000},
2. (μ0, μ1, μ2, μ3, μ4, μ5) = (0, 0.3, 0.7, 0.2,−0.2, 0.3),
3. εi , 1 ≤ i ≤ n, are iid ∼ N (0, σ 2),
4. σ = 0.2, 0.3 and 0.4.

Simulated data for S1 with different value of σ , are plotted in Fig. 3.
S2: This setting is the same as the setting S1 with only the following exception: in

each simulation, we randomly select five locations between 1 and n, and then add five
to each value at these locations. The values at these five locations are considered as
outliers.

S3: This setting is the same as the setting S1 with only the following exception: in
each simulation, we randomly select ten locations between 1 and n, and then add five
to each value at these locations. The values at these ten locations are considered as
outliers.

For each of themodel settings S1, S2, and S3, we first generate a data sequence, and
then apply all three methods PELT, CBS, and VIFCP, to detect multiple change-points
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Fig. 3 Simulated data for S1 with σ = 0.2, 0.3 and 0.4 (from the top to bottom panels)

in the dataset. We denote the set of estimated change points in the mth simulation by
K(m) and define

A(m)
ki

= K(m) ∩ [ki − 5, ki + 5], (15)

where i = 1, . . . , 5. Actually, A(m)
ki

is the set of estimated change-points, derived from
the mth simulation, lying in the neighborhood of the i th true one. Moreover, we define
the function J (x) as

J (A) =
{
0 if A = ∅
1 otherwise

(16)

Furthermore, we define B(m) = 1 if J (A(m)
ki

) = 1 for all i = 1, . . . , 5 and the size

of K(m) is exactly 5; B(m) = 0, otherwise. Note that B(m) = 1 if and only if the mth
simulation is successful in the sense that it detects exactly five change-points and all of
these five estimated change-points are close to the corresponding exact change-points.
With the aid of B(m), we define

AL LC P =
M∑

m=1

B(m)/M,

the successful simulations as a percentage of all simulations. Here, M is the number
of simulations, and in the current paper, we choose M = 1000.

The simulation results are reported respectively in Tables 1, 2 and 3.
We observe from Tables 1, 2 and 3 that VIFCP, PELT and CBS have similar per-

formances in accuracy for S1. As for S2, that differs from S1 by having five outliers,
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VIFCP and CBS have better accuracy in multiple change-point detection than PELT,
and hence, are more stable. However, for S3, the performance of PELT decreases
sharply with the increase of the number of outliers. Actually, PELT is very sensitive
to the sudden change in observations, and detects outliers as change-points in both S2
and S3.

If we compare these three methods in terms of ERT.S, we find that VIFCP is much
faster than CBS and PELT in all three simulation studies. To examine whether or not
the results obtained by using VIFCP are sensitive to the choice of l, we have varied the
value of l. It can be seen from the three tables that the results for l = 80 and l = 100
are similar.

4 Real data examples

In this section, we will analyze the following two real data examples.

4.1 Denoising a barcode

The original barcode was given in the top panel of Fig. 1. As explained in Sect. 1, all
the values in the original image matrix range from 0 (black) to 1 (white). We now add
Gaussian noiseswithmean 0, and standard deviationσ = 0.1 or 0.2, to each element of
the original image matrix. Note that the resulting matrices may have elements smaller
than 0 or larger than 1. To mimic an image matrix, we replace such elements by 0 or
1, i.e., we apply the transformation x I[0, 1](x) + I(1, ∞)(x) to each element of the two
noise-added matrices to make the noised grayscales range from 0 to 1. We name these
two resulting matrices as Matrix 1 and Matrix 2, respectively.

Fig. 4 The data produced by a scanner through reading the first row of contaminated barcode image with
different noise levels (σ = 0.1 and σ = 0.2). The true change-points are marked by vertical lines
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One realization of the first row of each of Matrices 1–2 is plotted in Fig. 4. The
task is to reconstruct the original barcode, i.e., to find all the change-points marked
by vertical lines (obtained from the original image in the top panel of Fig. 1). Here,
the true number of change-points is 48. We choose l = 20 for applying the VIFCP
algorithm. For both datasets, VIFCP correctly detected all change-points. In contrast,
CBS and PELT failed to detect all change-points. For the case when σ = 0.1, PELT
detected 17 change-points, while CBS correctly detected all of the change-points.
When σ = 0.2, PELT still detected 17 change-points, but CBS failed to detect two
change-points. Thus in terms of the multiple change-point detection accuracy, even
though CBS and PELT failed to compete with VIFCP, CBS outperformed PELT in
this example.

4.2 Genetic data

In this subsection, we consider a test using a genetic dataset involving 57 bladder tumor
samples (Stransky et al. 2006); see web page http://microarrays.curie.fr/publications/
oncologie_moleculaire/bladder_TCM/. The problem is to find changes in the DNA
copy number of an individual using array comparative genomic hybridization (CGH).

In order to perform multiple change-point detection, we first deal with missing
values in the dataset. Following Matteson and James (2013), we remove all series that
had more than 7% of values missing, which left genome samples of 42 individuals
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VIFCP (l=8)

0 500 1000 1500 2000

PELT

0 500 1000 1500 2000

CBS

Fig. 5 The normalized relative aCGHsignal for the 11th individualwith a bladder tumor. The change-points
detected by VIFCP with l = 8, PELT and CBS are indicated by the vertical lines

123

http://microarrays.curie.fr/publications/oncologie_moleculaire/bladder_TCM/
http://microarrays.curie.fr/publications/oncologie_moleculaire/bladder_TCM/


A sequential multiple change-point detection procedure via. . .

0 500 1000 1500 2000

VIFCP(l=13)

0 500 1000 1500 2000

PELT

0 500 1000 1500 2000

CBS

−
1.
0

0.
0
0.
5
1.
0

−
1.
0

0.
0
0.
5
1.
0

−
1.
0

0.
0
0.
5
1.
0

Fig. 6 The normalized relative aCGHsignal for the 13th individualwith a bladder tumor. The change-points
detected by VIFCP with l = 13, PELT and CBS are indicated by the vertical lines

for analysis. As in Matteson and James (2013), we also normalize the data so that
the modal ratio is zero on a logarithmic scale. For each missing value, we find the 3
nearest neighbors using a Euclidean metric, and infer the missing value by averaging
the values of its neighbors. As an illustration, we randomly choose two individuals’
array CGH dataset for analysis. Here we choose the 11th and 13th individuals.

The choice of l is critical in the real data analysis. We will give a criterion for
choosing l later in Sect. 5 [see the formula (17) for more details]. We first limited
the range of l to {5, 6, . . . , 30} before applying this criterion. The application of the
criterion returned l = 8 and l = 13, respectively, for the 11th and 13th patient, as the
optimal value of l.

For individual 11, VIFCP with l = 8 detects 22 change-points, while PELT and
CBS claim respectively 9 and 35 change-points, which are displayed in Fig. 5. From
this figure, we observe that both VIFCP andCBS perform better than PELT. PELT fails
to detect some change-points. As a matter of fact, neither VIFCP or CBS is perfect in
detecting the change-points. There are three potential change-points around 150, 500
and 600 but VIFCP fails to detect them. As for CBS, the minimum distance between
two successive change-points is 3, and in addition, the distance between adjacent
change-points in each of two pairs is 5. Thus CBS may overestimate the number of
change-points.

For individual 13, VIFCP with l = 13 detects 18 change-points, while PELT and
CBS report 6 and 44 change-points, respectively. The result is shown in Fig. 6. We
conclude that CBS and VIFCP perform better than PELT because PELT fails to detect
some potential change-points.Moreover, VIFCPmay fail to claim some change-points
while CBS obviously overestimates the number of change-points.
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5 Discussion

In this paper, we propose a procedure, as well as its theoretical justification, for
detecting multiple change-points in the mean-shift model, where the number of
change-points is allowed to increase with the sample size. We first convert a change-
point detection problem into a variable selection problem by partitioning the data
sequence. This allows us to apply a modified variance inflation factor regression algo-
rithm to perform the variable selection sequentially in segment order.Once the segment
containing a possible change-point is flagged, aweightedCUSUMalgorithm is applied
to test if there is a change-point in this segment. This procedure is implemented in
the algorithm, named VIFCP. Simulation studies demonstrate that VIFCP, when com-
pared with two popular algorithms, CBS and PELT, has a satisfactory performance in
accuracy and computation time. It is also shown in the barcode example that VIFCP is
better than CBS and PELT in terms of detection accuracy of multiple change-points.
In the second real-data analysis, VIFCP and CBS outperform PELT from the point-
of-view of estimating change-point locations.

In the simulation studies, segment length l is set to be 100, 80 for n = 2000. In the
barcode example, l is set as 20, to account for the barcode design. The choice of l is
a very important issue. We may make the optimal choice of l by applying a Bayesian
information criterion as follows:

lopt = argmin
l

{log(n)(DFl + 1) + n log(RSSl/n)}, (17)

where DF is the number of estimated change-points and RSSl = ∑n
i=1(yi − ŷi )

2.
In this paper, it can be seen that the proposed procedure for a mean-shift model

can be extended to detect multiple change-points in other types of regression models,
including generalized linearmodels. The algorithm for implementing such a procedure
is also feasible, requiring only a straightforward extension of VIFCP.

Acknowledgments The authors would like to thank the associate editor and two anonymous reviewers
for the critical comments and constructive suggestions which have led to the improvement of this paper.
The authors would also like to thank Professor Trueman MacHenry for polishing the paper.

Appendix: Proof of Theorem 1

Since εi , i = 1, 2, . . ., are iid zero-mean variables with variance σ 2, it follows from
the definition of ρi+1 in (8) and the idempotence of I − X (i+1)[(X (i+1))T X (i+1)]−1

(X (i+1))T that the variance of ρ−1
i+1(x

(i+1)
new )T {I − X (i+1)[(X (i+1))T X (i+1)]−1

(X (i+1))T }ε(i+1) is still σ 2. By the central limit theorem, we obtain that

ρ−1
i+1

(
x(i+1)
new

)T
{

I − X (i+1)
[(

X (i+1)
)T

X (i+1)
]−1 (

X (i+1)
)T

}
ε(i+1) d−→ N

(
0, σ 2) .
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Note that (X (i+1))T X (i+1) can be expressed as (U (i+1))T Λ(i+1)U (i+1), where U (i+1)

is the lower triangularmatrix of order k+1whose nonzero entries are all 1’s, andΛ(i+1)

is a diagonal matrix with diagonal entries being k1−k0, k2−k1, . . . , km −km−1, 1+
(i + 1)l − km . Since the change-points are well-separated, i.e., kr − kr−1 = O(n),
(Λ(i+1))−1 is of order O(1/n), we have that [(X (i+1))T X (i+1)]−1 is also of order
O(1/n).

Next, we prove that ρi+1 defined in (8) is asymptotically equal to
√

l. Note that
x(i+1)
new = �il,l is the vector with only the last l elements being ones, and all other

elements are zeros. It can be seen that (x(i+1)
new )T x(i+1)

new = l and (x(i+1)
new )T X (n+1) =

O(l). Therefore, as n → ∞, it is readily seen from [(X (i+1))T X (i+1)]−1 = O(1/n)

that

ρ2
i+1 =

(
x(i+1)
new

)T
x(i+1)
new −

(
x(i+1)
new

)T

×
{

I − X (i+1)
[(

X (i+1)
)T

X (i+1)
]−1 (

X (i+1)
)T

}
x(i+1)
new

= l − O
(

l2/n
)

∼ l.

Under the null hypothesis, there exists no change-point in the interval [1+ il, (i +1)l].
It can be shown that the last l elements of the correction vector η(i+1) are zeros, which
implies that (x(i+1)

new )T η(i+1) = 0. Since (x(i+1)
new )T X (i+1) = O(l), (X (i+1))T η(i+1) =

op(bl), [(X (i+1))T X (i+1)]−1 = O(1/n) and ρi+1/
√

l → 1, by Assumption A1, it
follows that

ρ−1
i+1

(
x(i+1)
new

)T
{

I − X (i+1)
[(

X (i+1)
)T

X (i+1)
]−1 (

X (i+1)
)T

}
η(i+1) = o(1).

In view of the fact that β(i+1)
new = 0, i.e., there is no change-point in [1+ il, (i +1)l],

and ρi+1 → ∞, by (7) and (9), we obtain that

ρi+1β̂
(i+1)
new

d−→ N (0, σ 2).

This proves Theorem 1(a).
Under the alternative hypothesis, there exists a change-point, say km , in the segment

[1 + il, (i + 1)l]. Moreover, km − il many of the last l elements of the correction
vector η(i+1) are equal to β

(i+1)
new , and β

(i+1)
new �= 0, which implies (x(i+1)

new )T η(i+1) =
β

(i+1)
new (km − il).
Moreover, we have

ρ−2
i+1

(
x(i+1)
new

)T
X (i+1)

[(
X (i+1)

)T
X (i+1)

]−1 (
X (i+1)

)T
η(i+1) = op(1)
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from the Proof of Theorem 1(a). In view of (11), we obtain that

ρ−2
i+1

(
x(i+1)
new

)T
{

I − X (i+1)
[(

X (i+1)
)T

X (i+1)
]−1 (

X (i+1)
)T

}
ε(i+1) = op(1).

Applying these results to (7) yields

β̂(i+1)
new = β(i+1)

new

[
1 − ρ−2

i+1(km − il)
]

+ op(1).

Furthermore, if the change-point km is located in the artificial interval [1+ (i −1)l, il]
(i.e., the change-point was previously undetected), then the correction vector η(i+1)

has zero components in the last l rows, which implies that (x(i+1)
new )T η(i+1) = 0. A

similar argument as above yields that β̂(i+1)
new = β

(i+1)
new + op(1). This ends the proof of

Theorem 1(b).
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