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ABSTRACT. Based on finite dimensional reduction meth-
ods, we approximate the spatial dynamic model of seasonal

migration birds with stopovers by a simple discrete periodic

system which captures four seasonal activities: spring migra-
tion, summer breeding, autumn migration and winter refuging.

The transient functions describing the mapping of bird popu-

lation from one major patch to another are obtained in terms
of model parameters such as the migration rate and mortal-

ity rate. Using perturbation techniques, we further derive an

explicit asymptotic formula for the persistent/extinct thresh-
old of the bird population. Sensitivity analysis shows that this

dynamic threshold is more vulnerable to the change of bird
death rates at autumn migratory stopovers than that at spring

migratory stopovers. We thus conclude that the effect of re-

peated epizootic (i.e. H5N1) during autumn season is stronger
than spring season. This conclusion supports numerical phe-

nomenon simulated in existing literature.

1 Introduction The spread of Highly Pathogenic Avian Influenza
(HPAI) virus of type A of subtype H5N1 has been a serious threat to
domesticated birds and human beings. It led to the culling of hundreds
of millions of domestic poultry [11] and caused more than 400 human
death cases worldwide [15, 16]. In 2005, the H5N1 virus brought about
mortality of more than 6,000 wild birds in Qinghai Lake, China [4].
Among them were more than 3,000 bar-headed (Anser indicus) geese
[19]. It was recognized that migratory birds were the source and dis-
seminator of H5N1 [14]. On the other hand, various bird species such
as ducks, geese and swans are regarded as the natural reservoir of avian
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influenza virus [13, 8, 6]. It is thus important to investigate potential
effects of H5N1 virus on populations of seasonal migratory birds.

Although the outbreak of H5N1 during spring seems more severe than
autumn [10], numerical simulations gave an opposite conclusion that for
equal duration of residence at two stopovers during spring and autumn
migrations respectively, the average number of birds at equilibrium is
higher when the disease occurs repeatedly during the spring migration
[2]. Here, we intend to provide theoretical support to this numerical
observation.

It has been proved that the model system of migratory birds is strongly
monotone and strictly sub-homogeneous [5], and hence exhibits thresh-
old dynamics [18]: either the bird population will be extinct, or it will
persist in a periodic way. Although the threshold condition can be de-
termined by the spectral radius of a certain monodromy operator, it
remains an open problem to tie the spectral radius to the model param-
eters explicitly.

In a previous paper [12], we made a first attempt to address this
problem by studying a simple two-patch migration model. Our approach
was based on three assumptions: the migratory activity is insignificant
during summer breeding season and winter refuge time; the population
left in the winter refuge site (resp. summer breeding site) after spring
(resp. autumn) migration is comparably negligible; and the breeding
activity does not occur during autumn and winter seasons. Under the
first and third assumptions, we may regard the parameters in the system
(i.e., migration rates and birth rates) to be piecewise constants. The
second assumption ensures us to adopt some perturbation techniques
from asymptotic analysis and to derive an asymptotic formula for the
threshold parameter explicitly in terms of model parameters.

In this paper, we will continue to investigate the more general case
where stopovers during migratory seasons are considered. We make
the same assumptions as mentioned above, and then approximate the
threshold parameter by the model parameters including the death rates
at the stopovers. Sensitive analysis shows that given two similar stopovers
during spring and autumn migrations respectively (namely, the migra-
tion rates and death rates at these two stopovers are the same), the
threshold parameter is more easily affected by the change of death rate
at the autumn stopover. This means that repeated occurrence of H5N1
during autumn migration leads to greater loss of bird population than
that during spring migration. This coincides with the numerical simu-
lation in [2] and challenges the assertion in [10].

The material of this paper is organized as below. In the following
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section, we will describe the migration model as established in [2, 5]
and give some basic assumptions on the model parameters. We will
then derive an asymptotic formula for the threshold and conduct some
sensitivity analysis. Some conclusions will be given in the last section,
and the perturbation argument will be described in the Appendix.

2 Migration model and basic assumptions We follow Bourouiba
et al. [2] and Gourley et al. [5] to consider a single species bird popu-
lation migrating between a summer breeding patch and a winter refuge
patch. Suppose there are k stopovers during spring migration and l
stopovers during autumn migration. Let xs,0(t), xs,i(t) with 1 ≤ i ≤ k,
xa,0(t) and xa,j(t) with 1 ≤ j ≤ l be the numbers of birds in winter
refuge site, the i-th spring stopover, the summer breeding site, and the
j-th autumn stopover respectively (cf. Figure 1). This leads to the
following periodic system of delay differential equations

(2.1)

ẋs,0(t) = −(ms,0(t) + µs,0)xs,0(t)

+ αa,lma,l(t− τa,l)xa,l(t− τa,l);

ẋs,i(t) = −(ms,i(t) + µs,i)xs,i(t)

+ αs,i−1ms,i−1(t− τs,i−1)xs,i−1(t− τs,i−1),

1 ≤ i ≤ k;

ẋa,0(t) = −(ma,0(t) + µa,0)xa,0(t)

+ αs,kms,k(t− τs,k)xs,k(t− τs,k)

+ γ(t)xa,0(t)(1− xa,0(t)/K);

ẋa,j(t) = −(ma,j(t) + µa,j)xa,j(t)

+ αa,j−1ma,j−1(t− τa,j−1)xa,j−1(t− τa,j−1),

1 ≤ j ≤ l.

Due to seasonality of migration and reproduction, it is natural to set
all the coefficients in the system to be periodic functions with the period
T = 365 days. For more details on migration strategies of migratory
birds, please refer to [7, 17] and references therein. Let t0 = nT , for an
arbitrarily fixed n ∈ N. We normalize the time so t0 is the starting date
when the birds begin to fly to the summer breeding site in a particular
year. We let t1 be the time when the birds in the winter patch stop
their spring migration to the summer breeding site. Therefore, the time
when the last spring migratory bird arrives at the summer site is t1 +τs,
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FIGURE 1: Illustration of bird migration and reproduction.

where τs :=
∑k
i=0 τs,i is the durations of spring migration (similarly,

we set τa :=
∑l
j=0 τa,j to be the duration of autumn migration). We

then assume, after the summer breeding, the birds start their autumn
migration at the time t2 and autumn migration ends at the date t3; see
Figure 2.

Let T1 := t1 − t0, T2 := t2 − t1, T3 := t3 − t2 and T4 := t0 + T − t3
represent the durations of the aforementioned biological activities, we
have T1 +T2 +T3 +T4 = T , and assume t1 +τs < t2 and t3 +τa < t0 +T .

In what follows, we assume the migratory activities only occur dur-
ing migratory seasons (namely, spring and autumn). Thus, the migra-
tion rates are set to be piecewise constants, namely, for t in a period
[t0, t0 + T ], we assume that for i = 0, 1, · · · , k,

ms,i(t) =


Ms,i, t−

i−1∑
p=0

τs,p ∈ (t0, t1);

0, otherwise,

(2.2)
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FIGURE 2: Timings when spring or autumn migration starts and ends.

and for j = 0, 1, · · · , l,

ma,j(t) =


Ma,j , t−

j−1∑
q=0

τs,q ∈ (t2, t3);

0, otherwise.

(2.3)

We make the second assumption that the migration rates are so large
that almost all the birds leave the winter (resp. summer) patch after
spring (resp. autumn) migration. Mathematically, it means that the
quantity

(2.4) ε :=

k∑
i=0

e−Ms,iT1 +

l∑
j=0

e−Ma,jT3

is sufficiently small. Finally, we assume that breeding activity does not
take place during autumn and winter seasons, namely, the birth function
is also a piecewise constant:

(2.5) γ(t) =

γ0, t ∈ (t0 + τs, t2);

0, t ∈ [t0, t0 + τs] ∪ [t2, t0 + T ].

Noting that we have assumed there is no birth at the beginning of spring
season (namely, on the interval [t0, t0 + τs]). This is reasonable because
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at the time t0 the number of birds at the summer site is negligible by
the second assumption; and due to the time lag, the bird population
will not be growing until the first spring migratory bird arrives at the
summer site.

t0
t0 +

i−1∑

p=0

τs,p
t0 + τs t1

t1 +
i−1∑

p=0

τs,p
t2
t2 +

j−1∑

q=0

τa,q
t3
t3 +

j−1∑

q=0

τa,q
t3 + τa t0 + T

γ0 > 0

Ms,i > 0 Ma,j > 0

FIGURE 3: Schematic illustrations of migration rates ms,i(t), ma,j(t)
and birth rate γ(t) in one period [t0, t0 + T ].

3 Dynamic threshold and sensitivity analysis It has been
proved that the model system (2.1) exhibits threshold dynamics: ei-
ther all solutions converge to the trivial solution, or the system has a
positively and globally attractive periodic solution [5]. We follow the
perturbation techniques developed in [12] to derive an asymptotic for-
mula for the threshold in terms of model parameters explicitly. Firstly,
we approximate the retarded periodic system (2.1) by a simple discrete
system which characterizes the dynamics of the bird population. Ob-
serving that most of the birds stay at the winter refuge site when the
spring migration begins. We denote the number of this majority by An
(where n ∈ N means the number of periods (years) we have counted
at this time). When the spring migration ends the birds arrive at the
summer breeding site and this population is denoted by Bn. We set
Cn to be the bird population at the summer breeding site at the time
when autumn migration starts. When autumn migration finishes, the
bird majority comes back to the winter site and the population size is
denoted by Dn; see Figure 4.

Similarly to the approach in [12], we derive the following discrete
dynamic system from the model system (2.1) and our basic assumptions
stated in the previous section (see Appendix for details in deriving this
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FIGURE 4: The discrete dynamics of the bird population at major patches.

discrete system):

(3.1)

Bn = f1(An) = Ane
(γ0−µa,0)T1

k∏
i=0

αs,iMs,i

Ms,i + µs,i − µa,0 + γ0

+ higher order terms of An;

Cn = f2(Bn) =
(1− µa,0

γ0
)Ke(γ0−µa,0)(T2−τs)

(1− µa,0

γ0
) KBn
− 1 + e(γ0−µa,0)(T2−τs)

;

Dn = f3(Cn) = Cne
−µs,0T3

l∏
j=0

αa,jMa,j

Ma,j + µa,j − µs,0
;

An+1 = f4(Dn) = Dne
−µs,0(T4−τa).

Here, we remark that the major difference between this discrete sys-
tem with the one in a previous paper [12] is that the function f1 here can
not be expressed in terms of well-known functions, while Bessel function
[9] was used to give an explicit description of the dynamics of spring mi-
gration in our early paper. However, to calculate the dynamic threshold
of this discrete system, only the first term of f1 (as given in the formula)
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is enough, even though in practise, we can compute recursively as many
terms as possible.

The threshold of this discrete system (3.1) is easily calculated as

(3.2) R := rs · ps · tr,

where
rs := eγ0(T1+T2−τa)

is the reproduction ratio in the summer,

ps :=

( k∏
i=0

αs,i

)
× e−µa,0(T1+T2−τa) ×

( l∏
j=0

αa,j

)
× e−µs,0(T3+T4−τa)

is the survival probability during four seasons, and

tr :=

( k∏
i=0

Ms,i

Ms,i + µs,i − µa,0 + γ0

)
×
( l∏
j=0

Ma,j

Ma,j + µa,j − µs,0

)
is the transition rate during spring and autumn migrations. Conse-
quently, we have a clear ecological interpretation of R as the annual
reproduction rate.

The discrete system (3.1) approximates the original dynamic system
(2.1) if ε defined in (2.4) is small. We thus obtain an asymptotic formula
for the threshold of the model system (2.1):

(3.3) r = R+O(ε),

where O(ε) is a small perturbation which tends to zero as ε → 0. The
threshold is defined as the spectral radius of the monodromy operator
of system (2.1) linearized at the zero solution. A rigorous proof of this
formula is given later in Appendix.

We are now ready to carry out sensitivity analysis. Suppose there are
two similar stopovers during spring and autumn migrations respectively.
Similarity means migration rates and death rates are the same, namely,
Ms,i = Ma,j = M and µs,i = µa,j = µ for some i in 1, 2, · · · , k and j in
1, 2, · · · , l. Now we assume there is repeated deadly epizootic of H5N1
at spring migration stopovers, namely, µs,i = µ̄ > µ. Consequently, the
threshold R in (3.2) decreases by

βs,i =
µ̄− µ

M + µ̄− µa,0 + γ0
.
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On the other hand, when there are repeated H5N1 outbreaks at autumn
migration stopovers, the corresponding decreasing rate of the threshold
is

βa,j =
µ̄− µ

M + µ̄− µs,0
.

Since γ0 > µa,0 (birth rate is greater than death rate at the summer
site) and µs,0 > 0, it is easily seen that

βs,i < βa,j ,

which implies that epizootic of H5N1 during spring migration has greater
impact reducing the bird population than that during autumn migration.
This gives a mathematical verification of the simulated results in [2].

4 Conclusion Based on the finite dimensional reduction method
developed in our early paper [12], we approximated the continuous dy-
namic system for migratory birds by a simple discrete system. Con-
sequently, an asymptotic formula for the threshold of spatial dynamic
model was derived. Sensitivity analysis on this explicit formula shows
that deadly H5N1 outbreaks at autumn stopovers will influence more on
the bird population than the disease during spring migration.

Acknowledgements This work was partially supported by CRC,
GEOIDE, Mitacs, Mprime and NSERC. We are grateful to the referees
for their helpful suggestions and corrections.

A The discrete system (3.1) Here, we provide some details in
deriving the discrete system (3.1) from the original system (2.1) and our
basic assumptions (2.2), (2.3), (2.4) and (2.5). For simplicity, we only
consider the case when k = l = 1; the case with general k and l can
be studied similarly. Firstly, in view of the assumptions (2.2), (2.3) and
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(2.5), we obtain from (2.1) that (noting τs := τs,0 + τs,1)

(A.1)

ẋs,0(t) = −(Ms,0 + µs,0)xs,0(t), t ∈ [t0, t1];

ẋs,1(t) = −(Ms,1 + µs,1)xs,1(t) + αs,0Ms,0xs,0(t− τs,0),

t ∈ [t0 + τs,0, t1 + τs,0];

ẋa,0(t) = −µa,0xa,0(t) + αs,1Ms,1xs,1(t− τs,1)

+ γ0xa,0(t)(1− xa,0(t)/K),

t ∈ [t0 + τs, t1 + τs];

ẋa,0(t) = −µa,0xa,0(t) + γ0xa,0(t)(1− xa,0(t)/K),

t ∈ [t1 + τs, t2].

Here, we mention that xs,1(t0 +τs,1) is fully determined by xs,1(t0) since
there is only natural death at the first stopover during spring migration
for t in the interval [t0, t0 + τs,1]. Similarly, xa,0(t0 + τs) is fully de-
termined by xa,0(t0). This observation, together with the one to be
remarked in the paragraph before equation (A.6), demonstrate that the
solutions to the system (2.1) can be fully determined as long as the
initial values at time t0 is known. Solving the above equations (A.1)
one-by-one, we have

(A.2) xs,0(t) = xs,0(t0)e−(Ms,0+µs,0)(t−t0)

for t ∈ [t0, t1], and

xs,1(t) = xs,1(t0 + τs,0)e−(Ms,1+µs,1)(t−t0−τs,0)

+

∫ t

t0+τs,0

e−(Ms,1+µs,1)(t−s)αs,0Ms,0

× xs,0(t0)e−(Ms,0+µs,0)(s−t0−τs,0)ds

= xs,1(t0 + τs,0)e−(Ms,1+µs,1)(t−t0−τs,0)

+ αs,0Ms,0xs,0(t0)

× e−(Ms,1+µs,1)(t−t0−τs,0) − e−(Ms,0+µs,0)(t−t0−τs,0)

(Ms,0 + µs,0)− (Ms,1 + µs,1)

(A.3)

for t ∈ [t0 + τs,0, t1 + τs,0], and

xa,0(t) = xa,0(t0 + τs)e
(γ0−µa,0)(t−t0−τs)(A.4)
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+

∫ t

t0+τs

e(γ0−µa,0)(t−s)αs,1Ms,1xs,1(s− τs,1)ds

+ higher order terms

= xa,0(t0 + τs)e
(γ0−µa,0)(t−t0−τs)

+ αs,1Ms,1xs,1(t0 + τs,0)

× e(γ0−µa,0)(t−t0−τs) − e−(Ms,1+µs,1)(t−t0−τs)

(Ms,1 + µs,1) + (γ0 − µa,0)

+
αs,1Ms,1αs,0Ms,0xs,0(t0)

(Ms,0 + µs,0)− (Ms,1 + µs,1)

× e(γ0−µa,0)(t−t0−τs) − e−(Ms,1+µs,1)(t−t0−τs)

(Ms,1 + µs,1) + (γ0 − µa,0)

− αs,1Ms,1αs,0Ms,0xs,0(t0)

(Ms,0 + µs,0)− (Ms,1 + µs,1)

× e(γ0−µa,0)(t−t0−τs) − e−(Ms,0+µs,0)(t−t0−τs)

(Ms,0 + µs,0) + (γ0 − µa,0)

+ higher order terms

for t ∈ [t0 + τs, t1 + τs], and

(A.5) xa,0(t) =
(1− µa,0/γ0)K exp[(γ0 − µa,0)(t− t1 − τs)]

(1−µa,0/γ0)K
xa,0(t1+τs)

− 1 + exp[(γ0 − µa,0)(t− t1 − τs)]

for t ∈ [t1 + τs, t2]. The above four equations characterize dynamics
of bird population during spring and summer time [t0, t2]. Similarly,
during autumn and winter time [t2, t0 + T ], we have from (2.1), (2.2),
(2.3) and (2.5) that

ẋa,0(t) = −(Ma,0 + µa,0)xa,0(t), t ∈ [t2, t3];

ẋa,1(t) = −(Ma,1 + µa,1)xa,1(t) + αa,0Ma,0xa,0(t− τa,0),

t ∈ [t2 + τa,0, t3 + τa,0];

ẋs,0(t) = −µs,0xs,0(t) + αa,1Ma,1xa,1(t− τa,1), t ∈ [t2 + τa, t3 + τa];

ẋs,0(t) = −µs,0xs,0(t), t ∈ [t3 + τa, t0 + T ].

Again, we have to remark that xa,1(t2 + τa,0) is fully determined by
xa,1(t0) and xs,0(t2 + τa) is fully determined by xs,0(t1). This, together
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with the observation mentioned after the equation (A.1) indicate that
the system (2.1) is fully determined by the initial values at one single
time t0. Solving the above equations one-by-one, we obtain

xa,0(t) = xa,0(t2)e−(Ma,0+µa,0)(t−t2), t ∈ [t2, t3];(A.6)

xa,1(t) = xa,1(t2 + τa,0)e−(Ma,1+µa,1)(t−t2−τa,0)(A.7)

+ αa,0Ma,0xa,0(t2)

× e−(Ma,1+µa,1)(t−t2−τa,0) − e−(Ma,0+µa,0)(t−t2−τa,0)

(Ma,0 + µa,0)− (Ma,1 + µa,1)
,

t ∈ [t2 + τa,0, t3 + τa,0];

xs,0(t) = xs,0(t2 + τa)e−µs,0(t−t2−τa)(A.8)

+ αa,1Ma,1xa,1(t2 + τa,0)

× e−µs,0(t−t2−τa) − e−(Ma,1+µa,1)(t−t2−τa)

(Ma,1 + µa,1)− µs,0

+
αa,1Ma,1αa,0Ma,0xa,0(t2)

(Ma,0 + µa,0)− (Ma,1 + µa,1)

× e−µs,0(t−t2−τa) − e−(Ma,1+µa,1)(t−t2−τa)

(Ma,1 + µa,1)− µs,0

− αa,1Ma,1αa,0Ma,0xa,0(t2)

(Ma,0 + µa,0)− (Ma,1 + µa,1)

× e−µs,0(t−t2−τa) − e−(Ma,0+µa,0)(t−t2−τa)

(Ma,0 + µa,0)− µs,0
,

t ∈ [t2 + τa, t3 + τa];

xs,0(t) = xs,0(t3 + τa)e−µs,0(t−t3−τa), t ∈ [t3 + τa, t0 + T ].(A.9)

On account of (2.4), it follows from (A.2)–(A.9) that as ε→ 0,

xa,0(t1 + τs) =
αs,1Ms,1αs,0Ms,0xs,0(t0)e

(γ0−µa,0)T1

[(Ms,1 + µs,1) + (γ0 − µa,0)] · [(Ms,0 + µs,0) + (γ0 − µa,0)]

+O(ε) + higher order terms of xs,0(t0);

xa,0(t2) =
(1− µa,0/γ0)K exp[(γ0 − µa,0)(T2 − τs)]

(1−µa,0/γ0)K

xa,0(t1+τs)
− 1 + exp[(γ0 − µa,0)(T2 − τs)]

;
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xs,0(t3 + τa) =
αa,1Ma,1αa,0Ma,0xa,0(t2)

[(Ma,1 + µa,1)− µs,0] · [(Ma,0 + µa,0)− µs,0]
+O(ε);

xs,0(t0 + T ) = xs,0(t3 + τa)e
−µs,0(T4−τa).

For any t0 := nT , we let An := xs,0(t0) be the bird population in the
winter site at the beginning of spring migration; Bn := xa,0(t1 + τs) be
the bird population in the summer site at the end of spring migration;
Cn := xa,0(t2) be the bird population in the summer site at the beginning
of autumn migration; Dn := xs,0(t3 + τa) be the bird population in the
winter site at the end of autumn migration. The approximating discrete
system (3.1) follows immediately from the four equations given above.

Remark A.1. In view of (2.4), we observe from (A.3) and (A.7) that
as ε→ 0, xs,1(t1 + τs,0) = O(ε) and xa,1(t3 + τa,0) = O(ε), which imply
that the bird population at the stopovers is small after migrations.

B Asymptotic formula of dynamic threshold (3.3) As men-
tioned in the previous section, we observe that the system is fully de-
termined by the initial values at t0. Let F : Rk+l+2 → Rk+l+2 be the
Poincaré mapping which describes the evolution of system (2.1) after one
period, namely, F maps the initial values of xs,i(t0) with i = 0, · · · , k
and xa,j(t0) with j = 0, · · · , l to xa,i(t0 + T ) with 0 ≤ i ≤ k and
xa,j(t0 +T ) with 0 ≤ j ≤ l. It has been proved [5] that F is a monotone
mapping, and hence the dynamic threshold of the original system (2.1)
is characterized by r := ρ(DF (0)), the spectral radius of linear opera-
tor DF (0); see also [18]. Under assumption (2.4), we intend to prove
the asymptotic formula for this threshold (3.3). Firstly, we consider the
linearization of system (2.1) at the zero equilibrium:

(B.1)

ẋs,0(t) = −(ms,0(t) + µs,0)xs,0(t)

+ αa,lma,l(t− τa,l)xa,l(t− τa,l);

ẋs,i(t) = −(ms,i(t) + µs,i)xs,i(t)

+ αs,i−1ms,i−1(t− τs,i−1)xs,i−1(t− τs,i−1),

1 ≤ i ≤ k;

ẋa,0(t) = −(ma,0(t) + µa,0)xa,0(t)

+ αs,kms,k(t− τs,k)xs,k(t− τs,k) + γ(t)xa,0(t);
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ẋa,j(t) = −(ma,j(t) + µa,j)xa,j(t)(B.1)

+ αa,j−1ma,j−1(t− τa,j−1)xa,j−1(t− τa,j−1),

1 ≤ j ≤ l.

Without loss of generality, we may assume that k = l = 1. On account
of (2.2), (2.3) and (2.5), it can be obtained from (B.1) that

(B.2)

ẋs,0(t) = −(Ms,0 + µs,0)xs,0(t), t ∈ [t0, t1];

ẋs,1(t) = −(Ms,1 + µs,1)xs,1(t) + αs,0Ms,0xs,0(t− τs,0),

t ∈ [t0 + τs,0, t1 + τs,0];

ẋa,0(t) = −µa,0xa,0(t) + αs,1Ms,1xs,1(t− τs,1)

+ γ0xa,0(t)(1− xa,0(t)/K),

t ∈ [t0 + τs, t1 + τs];

ẋa,0(t) = −µa,0xa,0(t) + γ0xa,0(t), t ∈ [t1 + τs, t2].

The above equations can be solved one-by-one, and the solutions are
given by

xs,0(t) = xs,0(t0)e−(Ms,0+µs,0)(t−t0)

for t ∈ [t0, t1], and

xs,1(t) = xs,1(t0 + τs,0)e−(Ms,1+µs,1)(t−t0−τs,0) + αs,0Ms,0xs,0(t0)

× e−(Ms,1+µs,1)(t−t0−τs,0) − e−(Ms,0+µs,0)(t−t0−τs,0)

(Ms,0 + µs,0)− (Ms,1 + µs,1)

for t ∈ [t0 + τs,0, t1 + τs,0], and

xa,0(t) = xa,0(t0 + τs)e
(γ0−µa,0)(t−t0−τs) + αs,1Ms,1xs,1(t0 + τs,0)

× e(γ0−µa,0)(t−t0−τs) − e−(Ms,1+µs,1)(t−t0−τs)

(Ms,1 + µs,1) + (γ0 − µa,0)

+
αs,1Ms,1αs,0Ms,0xs,0(t0)

(Ms,0 + µs,0)− (Ms,1 + µs,1)
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× e(γ0−µa,0)(t−t0−τs) − e−(Ms,1+µs,1)(t−t0−τs)

(Ms,1 + µs,1) + (γ0 − µa,0)

− αs,1Ms,1αs,0Ms,0xs,0(t0)

(Ms,0 + µs,0)− (Ms,1 + µs,1)

× e(γ0−µa,0)(t−t0−τs) − e−(Ms,0+µs,0)(t−t0−τs)

(Ms,0 + µs,0) + (γ0 − µa,0)

for t ∈ [t0 + τs, t1 + τs], and

xa,0(t) = xa,0(t1 + τs)e
(γ0−µa,0)(t−t1−τs)

for t ∈ [t1 + τs, t2]. In view of (2.4), we have
(B.3)

xs,0(t1) = O(ε)xs,0(t0);

xs,1(t1 + τs,0) = O(ε)xs,0(t0) +O(ε)xs,1(t0);

xa,0(t1 + τs) = O(1)xa,0(t0) +O(1)xs,1(t0)

+
αs,1Ms,1αs,0Ms,0xa,0(t0)e

(γ0−µa,0)T1

[(Ms,1 + µs,1) + (γ0 − µa,0)] · [(Ms,0 + µs,0) + (γ0 − µa,0)]
;

xa,0(t2) = xa,0(t1 + τs)e
(γ0−µa,0)(T2−τs).

Here, we have made use of xs,1(t0 + τs,0) = xs,1(t0)e−µs,1τs,0 and
xa,0(t0 + τs) = xa,0(t0)e−µa,0τs . Similarly, on account of (2.2), (2.3),
(2.4) and (2.5), it follows from (B.1) that

(B.4)

xa,0(t3) = O(ε)xa,0(t2);

xa,1(t3 + τa,0) = O(ε)xa,0(t2) +O(ε)xa,1(t2);

xs,0(t3 + τa) = O(1)xs,0(t2) +O(1)xa,1(t2)

+
αa,1Ma,1αa,0Ma,0xa,0(t2)e

−µs,0T3

[(Ma,1 + µa,1)− µs,0] · [(Ma,0 + µa,0)− µs,0]
;

xs,0(t0 + T ) = xs,0(t3 + τa)e
−µs,0(T4−τa).

Since

xs,0(t2) = xs,0(t1)e−µs,0T2 ;

xs,1(t0 + T ) = xs,1(t1 + τs,0)e−µs,1(T−T1−τs,0);

xa,0(t0 + T ) = xa,0(t3)e−µa,0T4 ;
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xa,1(t2) = xa,1(t0)e−µa,1(T1+T2);

xa,1(t0 + T ) = xa,1(t3 + τa,0)e−µa,1(T4−τa,0),

we have from (B.3) and (B.4) that (recall the formula of R in (3.2))

xs,0(t0 + T ) = [R+O(ε)]xs,0(t0) +O(1)xs,1(t0)

+O(1)xa,0(t0) +O(1)xa,1(t0);

xs,1(t0 + T ) = O(ε)xs,0(t0) +O(ε)xs,1(t0);

xs,0(t0 + T ) = O(ε)xs,0(t0) +O(ε)xs,1(t0) +O(ε)xa,0(t0);

xa,1(t0 + T ) = O(ε)xs,0(t0) +O(ε)xs,1(t0)

+O(ε)xa,0(t0) +O(ε)xa,1(t0).

This implies that

DF (0) =


R+O(ε) O(1) O(1) O(1)

O(ε) O(ε) 0 0

O(ε) O(ε) O(ε) 0

O(ε) O(ε) O(ε) O(ε)

 .

Finally, we obtain r := ρ(DF (0)) = R+O(ε). This proves (3.3).
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