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Abstract We study the Plancherel–Rotach asymptotics of four families of orthogo-
nal polynomials: the Chen–Ismail polynomials, the Berg–Letessier–Valent polyno-
mials, and the Conrad–Flajolet polynomials I and II. All these polynomials arise
in indeterminate moment problems, and three of them are birth and death process
polynomials with cubic or quartic rates. We employ a difference equation asymptotic
technique due to Z. Wang and R. Wong. Our analysis leads to a conjecture about large
degree behavior of polynomials orthogonal with respect to solutions of indeterminate
moment problems.
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1 Introduction

The Plancherel–Rotach asymptotics for orthogonal polynomials refer to asymptotics
of the orthogonal polynomials scaled by the largest zero. There are three types of
Plancherel–Rotach asymptotics depending on whether we are in the oscillatory re-
gion between the largest and smallest zeros, in the exponential region beyond the
largest (or smallest) zero, or in the transition region near the largest (or smallest)
zero. If the extreme zero moves as the polynomial degree increases, the last type of
asymptotics is related to the soft edge asymptotics in the random matrix theory and
describes the eigenvalues of large random Hermitian matrices near the tail end, see
[2]. The Plancherel–Rotach asymptotics for Hermite and Laguerre polynomials are
given in [23] and [2]. The corresponding asymptotics for the exponential weights
were developed by using the Deift–Zhou steepest descent analysis for corresponding
Riemann–Hilbert problems in [8] and [15].

Every birth and death process leads to a family of orthogonal polynomials. The
birth rates {λn} and the death rates {μn} are assumed to satisfy the conditions that
λn and μn+1 are positive and μ0 ≥ 0. The recurrence relation of the birth and death
process polynomials {Qn(x)} is

−xQn(x) = λnQn+1(x) + μnQn−1(x) − (λn + μn)Qn(x), n > 0, (1.1)

with the initial conditions

Q0(x) = 1, Q1(x) = (λ0 + μ0 − x)/λ0.

It is known in the literature that some classical continuous and discrete orthogonal
polynomials can be written as birth and death process polynomials with certain spe-
cial rates. For example, one can find the birth and death rates for Laguerre polyno-
mials, Jacobi polynomials, and Charlier polynomials in [11, Sect. 5.2]. Of course,
for these classical polynomials, their weight functions are well-known and unique.
However, for quite a few choices of λn and μn, the corresponding moment problem
is indeterminate. This means that the orthogonality measures of such polynomials are
not unique. For example, Letessier and Valent [18] introduced polynomials associated
with quartic rates

λn = (4n + 1)(4n + 2)2(4n + 3), μn = (4n − 1)(4n)2(4n + 1). (1.2)

These polynomials were also studied by Berg and Valent [5], and we refer to them
as Berg–Letessier–Valent polynomials. Van Fossen Conrad and Flajolet [25, 26] con-
sidered the following two families with cubic rates:

λn = (3n + c + 1)(3n + c + 2)2, μn = (3n + c)2(3n + c + 1), c > 0,

(1.3)

λn = (3n + c + 1)2(3n + c + 2), μn = (3n + c − 1)(3n + c)2, c > 0;
(1.4)
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see also [9]. The moment problems associated with the above rates are all indetermi-
nate. For the Conrad–Flajolet polynomials, this will be proved in Sect. 6. In fact, the
orthogonality measures of the above polynomials are still unknown in the literature.

Chen and Ismail [7] considered the orthogonal polynomials arising from the fol-
lowing recurrence relation:

Fn+1(x) = xFn(x) − 4n2(4n2 − 1
)
Fn−1(x), (1.5)

with F0(x) = 1 and F1(x) = x. They indicated that these polynomials are also related
to the indeterminate moment problems. Moreover, they found the following family
of weight functions for Fn(x):

wα(x) =
√

1 − α2[cos(ρ
√

x/2) + cosh(ρ
√

x/2)]
2[{cos(ρ

√
x/2) + cosh(ρ

√
x/2)}2 − α2 sin2(ρ

√
x/2) sinh2(ρ

√
x/2)] ,

x ∈ R, (1.6)

where α ∈ (−1,1), ρ is a constant defined in (2.15) below and
√−1 is defined as i;

cf. [7, Eq. (5.11)].
Note that the weight function (1.6) has a singularity at 0, which is similar to

the Freud weight e−|x|β . One may want to use the Riemann–Hilbert method to ob-
tain asymptotic formulas for the Chen–Ismail polynomials, as has been done by
Kriecherbauer and McLaughlin [15] for Freud polynomials. However, since the or-
thogonality measures are usually unknown or too complicated (cf. Chen–Ismail poly-
nomials) for orthogonal polynomials related to the indeterminate moment problems,
it is difficult to apply the powerful Deift–Zhou steepest descent analysis for Riemann–
Hilbert problems. In this paper, we intend to use the difference equation method de-
veloped by Wong and his colleagues in [28–30] to get the asymptotic expansions.
This will be the first time to apply this technique to derive Plancherel–Rotach asymp-
totics for orthogonal polynomials corresponding to indeterminate moment problems.
It must be emphasized that we only use the recurrence relation (or difference equa-
tions) to achieve our asymptotic expansion in this paper. This is a significant improve-
ment compared with the previous works, where some extra asymptotic information
is needed to determine the asymptotic expansion; for example, see [17, 29, 30]. Be-
cause we are dealing with polynomials orthogonal with respect to infinitely many
measures, it is important to use a technique which only depends on the moments but
not on the specific orthogonality measure used.

Before we proceed to the next section, we would like to mention that one useful
tool in estimating the largest and smallest zeros of orthogonal polynomials is the fol-
lowing theorem of Ismail and Li [12]. We did not consider any q-orthogonal polyno-
mials in this work. Ismail and Li [13] considered the Plancherel–Rotach asymptotics
for symmetric q-polynomials when the recursion coefficients grow exponentially. We
hope to treat these types of polynomials in a future work using difference equation
techniques.

Theorem 1.1 Let {Pn(x)} be a sequence of monic polynomials satisfying

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x), (1.7)



64 Constr Approx (2014) 40:61–104

with βn > 0, for 1 ≤ n < N , and let {cn} be a chain sequence. Set

B := max{xn : 0 < n < N}, and A := min{yn : 0 < n < N}, (1.8)

where xn and yn, xn ≥ yn, are the roots of the equation

(x − αn)(x − αn−1)cn = βn, (1.9)

that is,

xn, yn = 1

2
(αn + αn−1) ± 1

2

√
(αn − αn−1)2 + 4βn/cn. (1.10)

Then the zeros of PN(x) lie in (A,B).

In practice, one usually chooses the simple chain sequence cn ≡ 1/4 for all n in the
above theorem.

The present paper is organized as follows. In Sect. 2, we study the Chen–Ismail
polynomials. After applying results in Wang and Wong [30] to obtain two linearly
independent solutions for the difference equation (1.5), we develop ideas used in
Wang and Wong [28] to determine the coefficients of these two solutions. Then the
Plancherel–Rotach asymptotic expansion is obtained, which is given in terms of Airy
functions. Moreover, we study the limiting zero distribution as well as the behav-
ior of the largest zero. In the next three sections, we follow procedures similar to
Sect. 2 and derive asymptotic expansions for Berg–Letessier–Valent polynomials and
Conrad–Flajolet polynomials, respectively. Since Bessel-type asymptotic expansions
appear in these cases, we need to apply the recent results by Cao and Li [6] to get
the two linearly independent solutions of our difference equations. As Sects. 2–5 are
independent of each other, we shall use the same notation for the functions and vari-
ables but it will mean different things in different sections. We hope that this will not
cause any confusion. In the last section of this paper, we list some remarks about the
moment problem and formulate a conjecture about large degree (Plancherel–Rotach)
behavior of orthogonal polynomials associated with indeterminate moment problems.
In this section, we also apply asymptotic results to show that the moment problem as-
sociated with the Conrad–Flajolet polynomials is indeterminate.

We used the term Conrad–Flajolet polynomials because the proper name “Van
Fossen Conrad–Flajolet polynomials” is just too long, and we are sure that Eric Van
Fossen Conrad will not mind.

2 Chen–Ismail Polynomials

Before we derive the Plancherel–Rotach asymptotics for Fn(x), one can easily get a
bound for the largest and smallest zeros from Theorem 1.1.

Proposition 2.1 Let xn,k be zeros of Fn(x) such that xn,1 > xn,2 > · · · > xn,n. Then
we have the following bounds for all n ≥ 1:

xn,1 < 8n2

√

1 − 1

4n2
and xn,n > −8n2

√

1 − 1

4n2
.
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Proof Recall the recurrence relation of Fn(x) in (1.5), and choose cn = 1/4 in The-
orem 1.1. Then the result follows. �

2.1 Difference Equation Method

To derive the Plancherel–Rotach asymptotics of Fn(x), we start from the recurrence
relation in (1.5) and apply Wang and Wong’s difference equation method developed
in [29, 30]. To use their results, we transform the recurrence relation (1.5) into the
following standard form they need:

pn+1(x) − (Anx + Bn)pn(x) + pn−1(x) = 0. (2.1)

Let

Kn := 24nΓ 2
(

n + 1

2

)
Γ

(
n + 3/2

2

)
Γ

(
n + 1/2

2

)
, (2.2)

and Fn(x) = Knpn(x). Then (1.5) becomes

Kn+1pn+1(x) = xKnpn(x) − 4n2(4n2 − 1
)
Kn−1pn−1(x).

Since Kn+1 = 4n2(4n2 − 1)Kn−1, the above recurrence equation reduces to the stan-
dard form (2.1) with An = Kn

Kn+1
and Bn = 0. As n → ∞, the recurrence coefficient

An satisfies the following expansion:

An ∼ n−θ
∞∑

s=0

αs

ns
, (2.3)

with θ = 2 and

α0 = 1

4
, α1 = −1

4
. (2.4)

Since An is of order O(n−2) when n is large, to balance the term Anx in (2.1), we
introduce x = ν2t and ν = n + τ0, where τ0 is a constant to be determined. Then the
characteristic equation for (2.1) is:

λ2 − α0tλ + 1 = 0,

with α0 given in (2.4). The roots of this equation are

λ = 1

2

[
t

4
±
√(

t

4

)2

− 4

]

,

and they coincide when the quantity inside the above square root vanishes, that is,
t = t± = ±8. These points t± are called transition points for difference equations by
Wang and Wong in [29, 30] because in their neighborhood, the behaviors of solutions
to (2.1) change dramatically.
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Since the polynomials p2n(x) and p2n+1(x) are even and odd functions, respec-
tively, let us consider the asymptotics near the large transition point t+ = 8 only.
According to the main theorem in [29, p. 189], we have the following proposition.

Proposition 2.2 When n is large, pn(x) in (2.1) can be expressed as

pn(x) = C1(x)Pn(x) + C2(x)Qn(x),

where C1(x) and C2(x) are two n-independent functions. In the above formula, Pn(x)

and Qn(x) are two linearly independent solutions of (2.1) satisfying the following
Airy-type asymptotic expansions in the neighborhood of t+ = 8:

Pn

(
ν2t
)∼
(

64U(t)

t2 − 64

) 1
4
[

Ai
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+ Ai′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

,

and

Qn

(
ν2t
)∼
(

64U(t)

t2 − 64

) 1
4
[

Bi
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+ Bi′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

,

where ν = n + 1
2 and U(t) is defined as

2

3

[
U(t)
] 3

2 =
√

t

2

[
F

(
π

2
,−1

)
− F

(
arcsin

√
8

t
,−1

)]
− log

t + √
t2 − 64

8
,

t ≥ 8, (2.5)

2

3

[−U(t)
] 3

2 = cos−1 t

8
−

√
2t

8
B

1− t2
64

(
1

2
,

1

4

)
−8 < t < 8. (2.6)

Here F(ϕ, k2) is the elliptic integral of the first kind,

F
(
ϕ, k2)=

∫ ϕ

0

dθ
√

1 − k2 sin2 θ
, (2.7)

Bx(a, b) is the incomplete Beta function

Bx(a, b) =
∫ x

0
ya−1(1 − y)b−1dy, (2.8)

and the leading coefficients are given by

Ã0(U) = 1, B̃0(U) = 0.

Proof Recall the asymptotic expansion for An in (2.3); Eq. (2.1) falls into the case
θ �= 0 and t+ �= 0 considered in [29]. Following their approach, we choose

τ0 = −α1t+
2θ

= 1

2
and ν = n + τ0.

Then our proposition follows from the main theorem in [29]. �
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Remark 2.1 Note that the terms involving the elliptic integral F(ϕ, k2) and the in-
complete Beta function Bx(a, b) in (2.5) and (2.6) can be written as

√
t

2

[
F

(
π

2
,−1

)
− F

(
arcsin

√
8

t
,−1

)]
=
∫ t

8

(t/s)
1
2√

s2 − 64
ds,

√
2t

8
B

1− t2
64

(
1

2
,

1

4

)
=
∫ 8

t

(t/s)
1
2√

64 − s2
ds.

Moreover, one can verify that U(t) defined in (2.5) and (2.6) is a monotonically
increasing function in the neighborhood of 8. Also, we have the following asymptotic
formula:

U(t) = t − 8

8 3
√

2
+ O(t − 8)2 as t → 8. (2.9)

2.2 Determination of C1(x) and C2(x)

In this subsection, we will determine the coefficients C1(x) and C2(x) in Proposi-
tion 2.2 via a matching method. To this end, we shall derive the asymptotic formulas
of Fn(x) (or, pn(x)) in the exponential region and oscillatory region, respectively. In
the following lemma, we provide the asymptotic formula in the exponential region of
the solution to a general class of difference equations. A similar result was obtained
by Van Assche and Geronimo in [24]. Here, we adopt the approach developed by
Wang and Wong in [28].

Lemma 2.1 Let πn(x) be monic polynomials defined from the following recurrence
relation:

πn+1(x) = (x − an)πn(x) − bnπn−1(x),

with initial conditions π0(x) = 1 and π1(x) = x − a0. Here the constants an and bn

are assumed to be polynomials in n and have the following asymptotic behaviors as
n → ∞:

an = anp + αnp−1 + O
(
np−2),

bn = b2n2p + βn2p−1 + O
(
n2p−2),

where a and b ≥ 0 are not identically zero and p > 0 is a positive integer. Let I

be the smallest convex and closed interval which contains 0, a − 2b, and a + 2b,
namely, I = [a − 2b, a + 2b] if a − 2b < 0 < a + 2b; I = [0, a + 2b] if a − 2b ≥ 0;
I = [a − 2b,0] if a + 2b ≤ 0. Note that b ≥ 0 but a could be negative. So, it is
possible (although rarely) that a + 2b ≤ 0. Rescale the variable x by x = xn :=
(n + σ)py with y ∈ C \ I . Then we have the following asymptotic formula for
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πn(xn):

πn(xn) ∼
(

np

2

)n[
(y − a) +√(y − a)2 − 4b2

2y

]1/2

× exp

{
n

∫ 1

0
log
[(

y − arp
)+
√(

y − arp
)2 − 4b2r2p

]
dr

}

× exp

[∫ 1

0

a

2
√

(y − ar)2 − 4b2r2
dr +

∫ 1

0

4b2r + a(y − ar)

2[(y − ar)2 − 4b2r2] dr

]

× exp

[∫ 1

0

pσy
√

(y − asp)2 − 4b2s2p
ds −

∫ 1

0

α

p
√

(y − ar)2 − 4b2r2
dr

]

× exp

[
−
∫ 1

0

2βr

p
√

(y −ar)2 −4b2r2[(y −ar)+√(y − ar)2 − 4b2r2] dr

]
.

(2.10)

Proof Let

πn(x) =
n∏

k=1

wk(x).

We obtain w1(x) = x − a0 and

wk+1(x) = x − ak − bk

wk(x)
(2.11)

for k ≥ 1. Since x = xn = (n + σ)py, we have from successive approximation that
for large n,

wk(xn) = (xn − ak) +√(xn − ak)2 − 4bk

2
(1 + εk), (2.12)

where

εk = ak+1 − ak

2
√

(xn − ak)2 − 4bk

+ 2(bk+1 − bk) + (xn − ak)(ak+1 − ak)

2[(xn − ak)2 − 4bk] + O
(
n−2)

= pakp−1

2
√

(ynp − akp)2 − 4b2k2p
+ 4pb2k2p−1 + pakp−1(ynp − akp)

2[(ynp − akp)2 − 4b2k2p] + O
(
n−2)

uniformly for k = 1,2, . . . , n. Here we have made use of the facts that ak and bk

are polynomials in k, and k/n = O(1) uniformly in k = 1,2, . . . , n. The leading
term in (2.12) is derived from solving the characteristic equation for (2.11). The
first-order term of εk can be obtained (at least formally) from a standard succes-
sive approximation. A rigorous proof of the above asymptotic formula can be given
via induction. On the other hand, noting that xn ∼ ynp + ξnp−1 with ξ = pσy, we
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obtain

(xn − ak) +
√

(xn − ak)2 − 4bk

= (ynp + ξnp−1 − akp − αkp−1)

+
√(

ynp + ξnp−1 − akp − αkp−1
)2 − 4b2k2p − 4βk2p−1 + O

(
np−2).

A simple calculation yields

(xn − ak) +√(xn − ak)2 − 4bk

(ynp − akp) +√(ynp − akp)2 − 4b2k2p
= 1 + ε̂k,

where

ε̂k = ξnp−1 − αkp−1
√

(ynp − akp)2 − 4b2k2p

− 2βk2p−1
√

(ynp − akp)2 − 4b2k2p[(ynp − akp) +√(ynp − akp)2 − 4b2k2p]
+ O
(
n−2)

uniformly for k = 1,2, . . . , n. By the trapezoidal rule, we have the following three
asymptotic formulas:

n∑

k=1

log
[(

ynp − akp
)+
√(

ynp − akp
)2 − 4b2k2p

]

∼ np logn + n

∫ 1

0
log
[(

y − asp
)

+
√(

y − asp
)2 − 4b2s2p

]
ds + 1

2
log

(y − a) +√(y − a)2 − 4b2

2y
,

and

n∑

k=1

εk ∼
∫ 1

0

pasp−1

2
√

(y − asp)2 − 4b2s2p
+ 4pb2s2p−1 + pasp−1(y − asp)

2[(y − asp)2 − 4b2s2p] ds

=
∫ 1

0

a

2
√

(y − ar)2 − 4b2r2
+ 4b2r + a(y − ar)

2[(y − ar)2 − 4b2r2] dr,

and

n∑

k=1

ε̂k ∼
∫ 1

0

ξ − αsp−1
√

(y − asp)2 − 4b2s2p
ds

−
∫ 1

0

2βs2p−1
√

(y − asp)2 − 4b2s2p[(y − asp) +√(y − asp)2 − 4b2s2p] ds
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=
∫ 1

0

ξ
√

(y − asp)2 − 4b2s2p
ds −

∫ 1

0

α

p
√

(y − ar)2 − 4b2r2
dr

−
∫ 1

0

2βr

p
√

(y − ar)2 − 4b2r2[(y − ar) +√(y − ar)2 − 4b2r2] dr.

Combining the above three asymptotic formulas yields the desired formula. �

A direct application of the above lemma yields the following result.

Proposition 2.3 As n → ∞, we have

Fn

(
8(n + 1/2)2y

)

∼
(

2n

e

)2n

exp

{
n log
(
y +
√

y2 − 1
)

+ (2n + 1)
√

yF

(
arcsin

(
1√
y

)
,−1

)}

×
(

y +√y2 − 1

2
√

y2 − 1

)1/2

(2.13)

for complex y bounded away from the interval [−1,1], where F(ϕ, k2) is the elliptic
integral of the first kind in (2.7).

Proof Choose a = α = 0, b = 4, β = 0, p = 2, σ = 1/2, and replace y by 8y. We
obtain from (2.10):

Fn(x) ∼ (2n)2n exp

[
n

∫ 1

0
log
(
y +
√

y2 − t4
)
dt +

∫ 1

0

y
√

y2 − t4
dt

]

×
(

y +√y2 − 1

2
√

y2 − 1

)1/2

.

Note that
∫ 1

0
log
(
y +
√

y2 − t4
)

dt

= t log
(
y +
√

y2 − t4
)∣∣∣

1

0
+
∫ 1

0

2t4
√

y2 − t4(y +√y2 − t4)
dt

= log
(
y +
√

y2 − 1
)

+ 2
√

y

∫ 1/
√

y

0

s4

√
1 − s4 + 1 − s4

ds

= log
(
y +
√

y2 − 1
)

− 2 + 2
√

y

∫ 1/
√

y

0

1√
1 − s4

ds

= log
(
y +
√

y2 − 1
)

− 2 + 2
√

yF

(
arcsin

1√
y

∣∣∣∣− 1

)
,
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and

∫ 1

0

y
√

y2 − t4
dt = √

y

∫ 1/
√

y

0

1√
1 − s4

ds = √
yF

(
arcsin

1√
y

,−1

)
.

Combining the above three equations yields (2.13). �

Once we have the asymptotic formula for Fn(x) outside the interval where the ze-
ros are located, using an argument similar to that in the proof of [28, Theorem 3.2], we
obtain the following result in the oscillatory region. The main idea of this argument is
to match the asymptotic formula in the outer region with that in the oscillatory region.
Note that the second-order recurrence relation (1.1) has two linearly independent so-
lutions in the oscillatory region. The unique solution with given initial conditions can
be written in terms of a linear combination of these two solutions, while the coeffi-
cients can be determined via asymptotic matching. Due to the symmetry of Fn(x),
we consider positive x only.

Proposition 2.4 Let δ > 0 be any fixed small number. As n → ∞, we have

Fn

(
8(n + 1/2)2 cos θ

)

∼ (2n)2ne−2n e(n+ 1
2 )ρ

√
cos θ

sin
1
2 θ

[
cos

((
n + 1

2

)(
θ −

√
cos θ

2
Bsin2 θ

(
1

2
,

1

4

)))

+ sin

((
n + 1

2

)(
θ −

√
cos θ

2
Bsin2 θ

(
1

2
,

1

4

)))]
(2.14)

for θ ∈ [δ, π
2 − δ], where Bx(a, b) is the incomplete Beta function in (2.8) and the

constant ρ is

ρ = 2
∫ 1

0

1√
1 − s4

ds = 2F

(
π

2
,−1

)
= 2

√
πΓ ( 5

4 )

Γ ( 3
4 )

. (2.15)

Finally, we obtain our theorem.

Theorem 2.1 Let ν = n + 1
2 . With Kn and U(t) defined in (2.2), (2.5), and (2.6),

respectively, we have

Fn

(
ν2t
) ∼ Kn

4
√

2π3/2
exp

(
Γ ( 5

4 )

Γ ( 3
4 )

√
πt

2
ν

)(
64U(t)

t2 − 64

) 1
4

×
[

Ai
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+ Ai′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

(2.16)

uniformly for t in compact subsets of (0,∞).



72 Constr Approx (2014) 40:61–104

Proof Let y = (n+ 1
2 )2t

8n2 . Then 8n2y = ν2t = x. Because

n

∫ 1

y

√
y√

u3 − u
du ∼

(
n + 1

2

)∫ 8

t

(t/s)
1
2√

64 − s2
ds − t√

64 − t2
,

we have from (2.2) and (2.14),

pn(x) = 1

Kn

Fn(x)

∼ (2n)2ne−2n

Kn

√
8e(n+ 1

2 )ρ
√

t/8

(64 − t2)
1
4

×
[

cos

((
n + 1

2

)
cos−1 t

8
−
(

n + 1

2

)∫ 8

t

(t/s)
1
2√

64 − s2
ds

)

+ sin

((
n + 1

2

)
cos−1 t

8
−
(

n + 1

2

)∫ 8

t

(t/s)
1
2√

64 − s2
ds

)]
. (2.17)

Recall the asymptotic expansions for Airy function, as x → ∞,

Ai(−x) ∼ 1√
πx1/4

cos

(
2

3
x

3
2 − π

4

)
, (2.18)

Bi(−x) ∼ − 1√
πx1/4

sin

(
2

3
x

3
2 − π

4

)
, (2.19)

then, we have when t < 8,

pn(x) = C1(x)Pn(x) + C2(x)Qn(x)

∼ C1(x)

(
64

64 − t2

) 1
4 1√

π
cos

(
2ν

3

(−U(t)
) 3

2 − π

4

)

− C2(x)

(
64

64 − t2

) 1
4 1√

π
sin

(
2ν

3

(−U(t)
) 3

2 − π

4

)

= C1(x)

(
64

64 − t2

) 1
4 1√

π
cos

(
ν

(
cos−1 t

8
−
∫ 8

t

(t/s)
1
2√

64 − s2
ds

)
− π

4

)

− C2(x)

(
64

64 − t2

) 1
4 1√

π
sin

(
ν

(
cos−1 t

8
−
∫ 8

t

(t/s)
1
2√

64 − s2
ds

)
− π

4

)
.

(2.20)

Comparing (2.17) and (2.20), we have

C1(x) = 1

4
√

2π3/2
exp

(
Γ ( 5

4 )

Γ ( 3
4 )

√
πx

2

)
, C2(x) = 0.

This completes the proof of the theorem. �
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Remark 2.2 Recall the weight functions for Fn(x) given in (1.6). Let α = 0. Then
we have the weight function

w(x) = 1

2[cos(ρ
√

x/2) + cosh(ρ
√

x/2)] , x ∈ R. (2.21)

When x is a large number as in (2.16), that is, x = ν2t . Then we have

w(x)−
1
2 ∼ exp

(
ρ

2

√
x

2

)
∼ exp

(
Γ ( 5

4 )

Γ ( 3
4 )

√
πt

2
ν

)
.

So the main formula in the above theorem can be stated as

w(x)
1
2 Fn(x) = Kn

4
√

2π3/2

(
64U(t)

t2 − 64

) 1
4
[

Ai
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+ Ai′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

. (2.22)

Remark 2.3 In fact, the three-term recurrence relation contains a lot of useful infor-
mation. It can also give us the asymptotic zero distribution of the rescaled polynomi-
als Fn(8n2x) as n → ∞. Using the method developed in Kuijlaars and Van Assche
[16], one can obtain the following limiting zero distribution for Fn(8n2x) from the
recurrence relation (1.5):

1

π

∫ 1

√|x|
1√

s4 − x2
ds, x ∈ [−1,1].

Since the above theorem is uniformly valid in the neighborhood of the large tran-
sition point 8, we have the following asymptotic formula for Fn(x).

Corollary 2.1 Let ν = n+ 1
2 , Kn, and w(x) be given in (2.2) and (2.21), respectively.

Uniformly for a bounded real number s, we have, for x = 8ν2 + 8 3
√

2sν
4
3 ,

w(x)
1
2 Fn(x) = Knν

1
6

217/6π3/2

[
Ai(s) + O

(
ν− 2

3
)]

as ν → ∞. (2.23)

Proof Let t = 8 + 8 3
√

2sν− 2
3 in (2.22), and recall the asymptotic formula for U(t) in

(2.9). We obtain after some computations

w(x)
1
2 Fn(x) = Kn

4
√

2π3/2

(
2−1/3 + O

(
ν− 2

3
))

ν
1
6
[
Ai(s) + O

(
ν− 2

3
)]

.

This above formula proves our corollary. �

Remark 2.4 We may rewrite the polynomial on the left-hand side of (2.23) into an
orthonormal one. Note that if Pn(x) satisfies a three-term recurrence relation in (1.7),
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then P̂n(x) := (
∏n

k=1 βk)
− 1

2 Pn(x) is the corresponding orthonormal polynomial and
satisfies the following recurrence relation:

xP̂n(x) =√βn+1P̂n+1(x) + αnP̂n(x) +√βnP̂n−1(x).

Let F̂n(x) be the orthonormal Chen–Ismail polynomials. Then (2.23) can be rewritten
as

w(x)
1
2 F̂n(x) = ν− 5

6

27/3

[
Ai(s) + O

(
ν− 2

3
)]

as ν → ∞. (2.24)

From the above corollary, an asymptotic approximation of extreme zeros of Fn(x)

can be easily obtained by using the zeros of the Airy function Ai(x). To get it, we
need the following result of Hethcote [10].

Lemma 2.2 In the interval [a − ρ,a + ρ], suppose that f (t) = g(t) + ε(t), where
f (t) is continuous, g(t) is differentiable, g(a) = 0, m = min |g′(t)| > 0, and

E(t) = max
∣∣ε(t)
∣∣< min

∣∣g(a − ρ)
∣∣,
∣∣g(a + ρ)

∣∣.

Then there exists a zero c of f (t) in the interval such that |c − a| ≤ E
m

.

We have the following approximation.

Corollary 2.2 Let xn,k be the zeros of Fn(x) such that xn,1 > xn,2 > · · · > xn,n, and
ak be the zeros of the Airy function Ai(x) in descending order. Then we have for fixed
k and large n,

xn,k = 8ν2 + 8
3
√

2akν
4/3 + O

(
ν2/3),

where ν = n + 1
2 .

Proof A combination of Corollary 2.1 and Lemma 2.2 immediately gives us the re-
sult. �

3 Berg–Letessier–Valent Polynomials

Now we are going to study some birth and death process polynomials Qn(x). Before
we derive the Plancherel–Rotach asymptotics for Berg–Letessier–Valent polynomials
Qn(x) with the rates in (1.2), we can use the chain sequence method to get the bounds
for the largest and smallest zeros as we did in Proposition 2.1.

Proposition 3.1 Let xn,k be zeros of Qn(x) such that xn,1 > xn,2 > · · · > xn,n. Then
we have the following bounds for all n ≥ 1:

xn,1 < 210n4 − 210n3 + 35 · 26n2 and xn,n > 4.29.
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Proof Recall the recurrence relation of Qn(x) in (1.1) and the recurrence coefficients
in (1.2). We choose cn = 1/4 in Theorem 1.1. Note that the solutions xn and yn in
(1.10) are monotonically increasing and decreasing with n, respectively. Then the
result follows. �

3.1 Difference Equation Method

Like what we have done in the previous section, we introduce Qn(x) = (−1)nKn ·
pn(x), with

Kn := Γ (
n+ 3

4
2 )Γ (n+1

2 )2

Γ (
n+ 3

2
2 )2Γ (

n+ 7
4

2 )

(3.1)

to arrive at the standard form. Note that

Kn+1

Kn−1
= (4n − 1)(4n)2

(4n + 2)2(4n + 3)
.

Then the recurrence relation (1.1) with (1.2) reduces to the following standard form:

pn+1(x) − (Anx + Bn)pn(x) + pn−1(x) = 0. (3.2)

As n → ∞, the recurrence coefficients An and Bn satisfy the following expansions:

An = Kn

λn · Kn+1
∼ n−θ

∞∑

s=0

αs

ns
, Bn = − (λn + μn)Kn

λn · Kn+1
∼

∞∑

s=0

βs

ns
, (3.3)

with θ = 4,

α0 = 1

256
, α1 = − 1

256
, (3.4)

and

β0 = −2, β1 = β2 = 0. (3.5)

Let us introduce x = (n + 1/4)4t . Then the characteristic equation for (3.2) is

λ2 − (α0t + β0)λ + 1 = 0, (3.6)

with α0 and β0 given in (3.4) and (3.5), respectively. The roots of this equation coin-
cide when α0t± + β0 = ±2, which gives us two transition points,

t+ = 210, t− = 0.

Near the large transition point t+, we get the Airy-type asymptotic expansion as in
the previous section. But since the small transition point t− is located at the origin, we
obtain the Bessel-type (not Airy-type) expansion in its neighborhood. This is similar
to the case of Laguerre polynomials, in which case Bessel asymptotics are obtained
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near the origin. Although we do not have the weight functions for Berg–Letessier–
Valent polynomials, we guess they are supported on R

+. For a detailed explanation
why the case t− = 0 is so special to give us the Bessel type asymptotics, one may
refer to discussions in [6]. We have the following two different types of expansions.

Proposition 3.2 When n is large, pn(x) in (3.2) can be expressed as

pn(x) = C1(x)Pn(x) + C2(x)Qn(x),

where C1(x) and C2(x) are two n-independent functions, and Pn(x) and Qn(x) are
two linearly independent solutions of (3.2) satisfying the following Airy-type asymp-
totic expansions in the neighborhood of t+ = 210:

Pn

(
ν4t
)∼ 29/2

(
U(t)

t (t −210)

) 1
4
[

Ai
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+Ai′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

,

(3.7)
and

Qn

(
ν4t
)∼ 29/2

(
U(t)

t (t −210)

) 1
4
[

Bi
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+Bi′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

.

(3.8)
Here ν = n + 1

4 , the leading coefficients are given by

Ã0(U) = 1, B̃0(U) = 0,

and U(t) is defined as

2

3

[
U(t)
] 3

2 =
√

2t
1
4

8
B

1− 210
t

(
1

2
,

1

4

)
− log

t − 29 +√t (t − 210)

29
, t ≥ 210,

(3.9)

2

3

[−U(t)
] 3

2 = cos−1
(

t − 29

29

)
−

√
2t

1
4

8
B1− t

210

(
1

2
,

1

4

)
0 < t < 210; (3.10)

see (2.8) for the definition of Bx(a, b).

Proof With

τ0 = −α1t+ + β1

(2 − β0)θ
= 1

4
and ν = n + τ0,

our results follow from the main Theorem in [29]. �

Proposition 3.3 When n is large, pn(x) in (3.2) can be expressed as

pn(x) = C∗
1 (x)(−1)nP ∗

n (x) + C∗
2 (x)(−1)nQ∗

n(x),
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where C∗
1 (x) and C∗

2 (x) are two n-independent functions, and P ∗
n (x) and Q∗

n(x)

are two linearly independent solutions of (3.2) satisfying the following Bessel-type
asymptotic expansions in the neighborhood of t− = 0:

P ∗
n

(
ν4t
) ∼ 29/2ν

1
2

(
U∗(t)

t (210 − t)

) 1
4
[

J 1
2

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ J 3
2

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

, (3.11)

and

Q∗
n

(
ν4t
) ∼ 29/2ν

1
2

(
U∗(t)

t (210 − t)

) 1
4
[

W 1
2

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ W 3
2

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

. (3.12)

Here ν = n + 1
4 ,

Wα(x) := Yα(x) − iJα(x), (3.13)

the leading coefficients are given by

Ã∗
0

(
U∗)= 1, B̃∗

0

(
U∗)= 0,

and U∗(t) is defined as

[−U∗(t)
] 1

2 =
∫ 0

t

(t/s)
1
4

√
s(s − 210)

ds − log
29 − t +√t (t − 210)

29
, t ≤ 0, (3.14)

[
U∗(t)

] 1
2 =

√
2t

1
4

8
B t

210

(
1

4
,

1

2

)
− cos−1

(
29 − t

29

)
0 < t < 210; (3.15)

see (2.8) for the definition of Bx(a, b).

Proof With the asymptotic expansions for An and Bn in (3.3), our results follow from
the main theorem in [6]. �

Remark 3.1 Note that the integral in (3.14) can be written as a hypergeometric func-
tion as follows:

∫ 0

t

(t/s)
1
4

√
s(s − 210)

ds =
√

2(−t)
1
2

2
2F1

(
1

4
,

1

2
,

5

4
, t

)
.

The two functions U(t) and U∗(t) are both monotonically increasing functions in the
neighborhood of 210 and 0, respectively. In fact, from their definitions in the above
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two propositions, we have the following asymptotic formulas:

U(t) = t − 210

210 3
√

4
+ O
(
t − 210)2, as t → 210, (3.16)

and

U∗(t) = t

28
+ O
(
t2) as t → 0.

3.2 Determination of C1(x) and C2(x)

For convenience, we state a special case of Lemma 2.1 which will be used in deter-
mining C1(x) and C2(x) for all three types of birth and death polynomials considered
in this paper.

Lemma 3.1 Assume πn(x) satisfies the following recurrence relation:

πn+1(x) = [x − (λn + μn)
]
πn(x) − λn−1μnπn−1(x),

with π0(x) = 1 and π1(x) = x − (λ0 + μ0). Here, λn and μn are assumed to be
polynomials in n and satisfy the following asymptotic formulas as n → ∞:

λn = b
(
np + unp−1)+ O

(
np−2),

μn = b
(
np + vnp−1)+ O

(
np−2),

where b > 0 and p > 0. Rescale the variable x by x = xn := (n + σ)py with y ∈
C \ [0,4b]. Then we obtain the following asymptotic formula:

πn(xn) ∼
(

ynp

ep

)n

(1 − 4b/y)−1/4
[

1 + √
1 − 4b/y

2

]2n+ u+v
p

× exp

{∫ 1

0

(n + σ)p√
1 − 4bsp/y

ds

}
. (3.17)

Proof We will show that (3.17) is a special case of (2.10) with a = 2b, α = b(u+ v),
and β = b2(u + v − p). Due to the fact that a = 2b, we have following formulas for
the integrals in (2.10):

∫ 1

0

a

2
√

(y − ar)2 − 4b2r2
dr =

∫ 1

0

a

2
√

y2 − 2ayr
dr = 1 − √

1 − 2a/y

2
,

and
∫ 1

0

4b2r + a(y − ar)

2[(y − ar)2 − 4b2r2] dr =
∫ 1

0

ay

2[y2 − 2ayr] dr = 1

4
log

y

y − 2a
,

and
∫ 1

0

α

p
√

(y − ar)2 − 4b2r2
dr = α(1 − √

1 − 2a/y)

pa
,
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and
∫ 1

0

2βr

p
√

(y − ar)2 − 4b2r2[(y − ar) +√(y − ar)2 − 4b2r2] dr

= 4β

pa2

[
log

2

1 + √
1 − 2a/y

− 1 − √
1 − 2a/y

2

]
.

Therefore, we have from (2.10),

πn(xn) ∼
(

np

2

)n

(1 − 2a/y)−1/4
[

1 + √
1 − 2a/y

2

]1+ 4β

pa2

× exp

{
n

∫ 1

0
log
[(

y − asp
)+
√

y2 − 2aysp
]
ds +

∫ 1

0

pσy
√

y2 − 2aysp
ds

}

× exp

[(
1

2
− α

pa
+ 2β

pa2

)(
1 −√1 − 2a/y

)]
.

Furthermore, since

(
y − asp

)+
√

y2 − 2aysp = (√y +√y − 2asp
)2

/2,

we have
∫ 1

0
log
[(

y − asp
)+
√

y2 − 2aysp
]
ds = − log 2 + 2

∫ 1

0
log
[√

y +√y − 2asp
]
ds.

According to integration by parts, the right-hand side becomes

− log 2 + 2 log
[√

y +√y − 2a
]+ p

∫ 1

0

√
y − √

y − 2asp

√
y − 2asp

ds

= log
(
√

y + √
y − 2a)2

2
− p +

∫ 1

0

p
√

y√
y − 2asp

ds.

Therefore, we obtain

πn(xn) ∼
(

ynp

ep

)n

(1 − 2a/y)−1/4
[

1 + √
1 − 2a/y

2

]2n+1+ 4β

pa2

× exp

{∫ 1

0

(n + σ)p√
1 − 2asp/y

ds +
(

1

2
− α

pa
+ 2β

pa2

)(
1 −√1 − 2a/y

)}
.

Note that

1

2
− α

pa
+ 2β

pa2
= 1

2
− u + v

2p
+ u + v − p

2p
= 0.

The asymptotic formula (3.17) for πn(xn) follows. �
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Since the birth and death process polynomials Qn(x) defined in (1.1) are related
to the monic one as follows,

Qn(x) =
[

(−1)n
n−1∏

k=0

λk

]−1

πn(x), (3.18)

we have the following results for Berg–Letessier–Valent polynomials from the above
lemma.

Proposition 3.4 Let x = xn := (n+ 1/4)4t with t ∈C \ [0,210]. We have as n → ∞,

pn(xn) ∼ 2−8n−5/2
(

n + 1

4

)
tn
(
1 − 210/t

)−1/4
[

1 +√1 − 210/t

2

]2n+1/2

× exp

{
4(n + 1/4)

(210/t)1/4
F
(
arcsin

(
210/t

)1/4
,−1
)}

.

Here, the function F is the elliptic integral of the first kind defined in (2.7).

Proof Recall the definition of Kn in (3.1). We have

Kn = Γ (
n+ 3

4
2 )Γ (n+1

2 )2

Γ (
n+ 3

2
2 )2Γ (

n+ 7
4

2 )

∼ 2

n + 1
4

,

which yields Qn(x) = (−1)nKnpn(x) ∼ (−1)n 2
n+ 1

4
pn(x). Moreover, by applying

Stirling’s formula, we obtain

n−1∏

k=0

λk = 28nΓ (1/4 + n)Γ (1/2 + n)2Γ (3/4 + n)

Γ (1/4)Γ (1/2)2Γ (3/4)

∼ 28nΓ (n)4n2

Γ (1/4)Γ (1/2)2Γ (3/4)

∼ 28n(2π)2(n/e)4n

Γ (1/4)Γ (1/2)2Γ (3/4)

∼ 28n2
√

2(n/e)4n.

It is readily seen that

πn(x) = (−1)n
n−1∏

k=0

λkQn(x) ∼ 28n+3/2(n/e)4n 2

n + 1
4

pn(x).

Since πn(x) satisfies the asymptotic formula in (3.17) with σ = 1/4, p = 4, b = 28,
u = 2, and v = 0, our result follows from the above formula. �
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Again, using an argument similar to that in the proof of [28, Theorem 3.2], we
obtain the following result in the oscillatory region.

Proposition 3.5 Let x = xn := (n + 1/4)4t with t = 210 cos2 θ, θ ∈ [δ, π
2 − δ]. We

have as n → ∞,

pn(xn) ∼ √
2

(
n + 1

4

)
1

(210 − t)
1
4

exp

[(
n + 1

4

)
t

1
4 2−5/2ρ

]

× cos

{
π

4
− (2n + 1/2)θ +

(
n + 1

4

)∫ 210

t

(t/s)1/4

√
210s − s2

ds

}
, (3.19)

where

ρ =
∫ ∞

1

du

u
1
4
√

u2 − u
=

√
πΓ ( 1

4 )

Γ ( 3
4 )

.

Then we have a result in the interval containing t+ = 210.

Theorem 3.1 Let ν = n + 1
4 . With Kn and U(t) defined in (3.1), (3.9), and (3.10),

respectively, we have

Qn

(
ν4t
) ∼ (−1)nKn

√
2πνt

1
4 exp

(√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

νt
1
4

)(
U(t)

t (t − 210)

) 1
4

×
[

Ai
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+ Ai′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

(3.20)

uniformly for t in compact subsets of (0,∞).

Proof When t < 210, recall the asymptotic expansions for the Airy function in (2.18)
and (2.19) again. We have from (3.7) and (3.8),

pn(x) = C1(x)Pn(x) + C2(x)Qn(x)

∼ C1(x)
29/2

[t (210 − t)] 1
4

1√
π

cos

(
2ν

3

(−U(t)
) 3

2 − π

4

)

− C2(x)
29/2

[t (210 − t)] 1
4

1√
π

sin

(
2ν

3

(−U(t)
) 3

2 − π

4

)

= C1(x)
29/2

[t (210 − t)] 1
4

1√
π

cos

(
ν

(
cos−1

(
t − 29

29

)

−
∫ 210

t

(t/s)
1
4

√
s(210 − s)

ds

)
− π

4

)
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− C2(x)
29/2

[t (210 − t)] 1
4

1√
π

sin

(
ν

(
cos−1

(
t − 29

29

)

−
∫ 210

t

(t/s)
1
4

√
s(210 − s)

ds

)
− π

4

)
.

Comparing the above formula and (3.19), we have

C1(x) =
√

πx
1
4

24
exp

(
x

1
4

√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

)
, C2(x) = 0.

This completes the proof of the theorem. �

Remark 3.2 As in Remark 2.3, we can obtain the following limiting zero distribution
for Qn(210n4x) from the recurrence relation (1.2):

1

π

∫ 1

x1/4

1
√

x(s4 − x)
ds, x ∈ [0,1].

Since the above theorem is uniformly valid in the neighborhood of the large tran-
sition point 210, we have the following asymptotic formula for Qn(x).

Corollary 3.1 Let ν = n+ 1
4 and Kn be given in (3.1). Uniformly for a bounded real

number s, we have, for x = 210ν4 + 210 3
√

4sν
10
3 ,

x− 1
4 exp

(
−

√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

x
1
4

)
Qn(x) = (−1)nKn

√
πν

1
6

16 3
√

4

[
Ai(s)+O

(
ν− 2

3
)]

as ν → ∞.

(3.21)

Proof Let t = 210 + 210 3
√

4sν− 2
3 in (3.20), and recall the asymptotic formula of U(t)

in (3.16). We have after some computations

x− 1
4 exp

(
−

√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

x
1
4

)
Qn(x) = (−1)nKn

√
2π

(
1

32 6
√

2

)
ν

1
6
[
Ai(s) + O

(
ν− 2

3
)]

.

This above formula proves our corollary. �

Remark 3.3 We can put the left-hand side of (3.21) into its orthonormal form as
in Remark 2.4. Let Q̂n(x) be the orthonormal Berg–Letessier–Valent polynomials.
Then (3.21) can be rewritten as

x− 1
4 exp

(
−

√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

x
1
4

)
Q̂n(x) = ν− 11

6

16 3
√

4

[
Ai(s) + O

(
ν− 2

3
)]

as ν → ∞. (3.22)

Unlike (2.24), we don’t have w(x) on the left-hand side of the above equation because
the weight function w(x) is unknown for the Berg–Letessier–Valent polynomials.
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But it seems reasonable to conjecture that at least one of the weight functions for the
Berg–Letessier–Valent polynomials should behave like

x− 1
2 exp

(
−

√
πΓ ( 1

4 )

23/2Γ ( 3
4 )

x
1
4

)
as x → ∞.

We shall revisit this issue in Sect. 6.

We have the following approximation.

Corollary 3.2 Let xn,k be the zeros of Qn(x) such that xn,1 > xn,2 > · · · > xn,n, and
ak be the zeros of the Airy function Ai(x) in descending order. Then we have for fixed
k and large n,

xn,k = 210ν4 + 210 3
√

4akν
10/3 + O

(
ν8/3), (3.23)

where ν = n + 1
4 .

Proof A combination of Corollary 3.1 and Lemma 2.2 immediately gives us the re-
sult. �

We also have a result in the interval containing t− = 0.

Theorem 3.2 Let ν = n + 1
4 . With Kn and U∗(t) defined in (3.1), (3.14), and (3.15),

respectively, we have

Qn

(
ν4t
)∼ Kn

√
πν

3
2 t

1
4 exp

(√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

νt
1
4

)(
U∗(t)

t (210 − t)

) 1
4

×
{

sin

(√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

νt
1
4

)[

J 1
2

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ J 3
2

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

− cos

(√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

νt
1
4

)[

Y 1
2

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ Y 3
2

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]}

(3.24)

uniformly for −∞ < t ≤ M < 210.
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Proof When 0 < t ≤ M , we have from (3.11) and (3.12),

pn(x) = (−1)nC∗
1 (x)P ∗

n (x) + (−1)nC∗
2 (x)Q∗

n(x)

∼ (−1)n29/2ν
1
2

(
U∗(t)

t (210 − t)

) 1
4 [

C∗
1 (x)J 1

2

(
νU∗ 1

2 (t)
)+ C∗

2 (x)W 1
2

(
νU∗ 1

2 (t)
)]

.

As pn(x) is real, we may choose C∗
1 (x) = Ĉ1(x) + iĈ2(x) and C∗

2 (x) = Ĉ2(x) such
that

pn(x) ∼ (−1)n29/2ν
1
2

(
U∗(t)

t (210 − t)

) 1
4 [

Ĉ1(x)J 1
2

(
νU∗ 1

2 (t)
)+ Ĉ2(x)Y 1

2

(
νU∗ 1

2 (t)
)]

= (−1)n25
(

1

t (210 − t)

) 1
4 1√

π

{
Ĉ1(x) sin

[
ν

(∫ t

0

(t/s)
1
4

√
s(210 − s)

ds

− cos−1
(

29 − t

29

))]

− Ĉ2(x) cos

[
ν

(∫ t

0

(t/s)
1
4

√
s(210 − s)

ds − cos−1
(

29 − t

29

))]}
. (3.25)

Since
∫ 210

t

(t/s)1/4

√
210s − s2

ds = 2−5/2ρt
1
4 −
∫ t

0

(t/s)1/4

√
210s − s2

ds,

and 2θ = π − cos−1( 29−t

29 ), we rewrite (3.19) as

pn(x) ∼ √
2

(
n + 1

4

)
1

(210 − t)
1
4

exp

[(
n + 1

4

)
t

1
4 2−5/2ρ

]

× cos

{
−π

4
+νπ −ν cos−1

(
29 − t

29

)
−νt

1
4 2−5/2ρ + ν

∫ t

0

(t/s)1/4

√
210s − s2

ds

}

= √
2

x
1
4 (−1)n

(210t − t2)
1
4

exp
[
x

1
4 2−5/2ρ

]

× cos

[
ν

(∫ t

0

(t/s)
1
4

√
s(210 − s)

ds − cos−1
(

29 − t

29

))
− x

1
4 2−5/2ρ

]
.

Comparing (3.25) and the above formula, we have

Ĉ1(x) =
√

πx
1
4

29/2
exp

(
x

1
4

√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

)
sin

(
x

1
4

√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

)
,

Ĉ2(x) = −
√

πx
1
4

29/2
exp

(
x

1
4

√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

)
cos

(
x

1
4

√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

)
.

This completes the proof of the theorem. �



Constr Approx (2014) 40:61–104 85

Remark 3.4 To get the asymptotic formula for t < 0 from (3.24), one needs to con-
sider the value t ± iε and take the limit as ε → 0. Interested readers may compare
the formula (3.24) with the Bessel-type asymptotic expansion for the Laguerre-type
orthogonal polynomials in [27, Eq. (2.15)].

Remark 3.5 From our expansion (3.24), it is also possible to study the smallest zeros
of Qn(x). As in Corollary 3.1, we have, as ν → ∞,

x− 1
4 exp

(
−

√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

x
1
4

)
Qn(x)

= Kn

√
νπ

16
√

2

[
sin

(√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

x
1
4

)
J 1

2
(s) − cos

(√
πΓ ( 1

4 )

25/2Γ ( 3
4 )

x
1
4

)
Y 1

2
(s) + O

(
ν−1)
]

uniformly for a bounded real number s, where x = 28ν2s. Then approximations for
the smallest zeros can be obtained from the above formula and Lemma 2.2. However,
due to the sine and cosine terms, the formula is not as elegant as (3.23). We leave it
to interested readers. A similar situation happens for the smallest zeros of Conrad–
Flajolet polynomials in the subsequent two sections.

4 Conrad–Flajolet Polynomials I

We can easily get a bound for the largest zero for Qn(x) from Theorem 1.1.

Proposition 4.1 Let xn,k be zeros of Qn(x) such that xn,1 > xn,2 > · · · > xn,n. Then
we have the following bounds for all n ≥ 1:

xn,1 < 108n3 + 108cn2,

where c is the positive constant given in (1.3).

Proof Recall the recurrence coefficients of Qn(x) in (1.3), and choose cn = 1/4 in
Theorem 1.1. Then the result follows. �

Note that we don’t provide a bound for the smallest zero in this case. The reason is
that, although the chain sequence method can give us an estimation, it is not useful. In
fact, we know that all the zeros of Conrad–Flajolet polynomials should be positive,
but Theorem 1.1 can only give us xn,n > −6n − 3. For a similar reason, we only
consider the largest zero in Proposition 5.1, too.

4.1 Difference Equation Method

As usual, we introduce Qn(x) = (−1)nKnpn(x) with

Kn := Γ (
n+ c

3 +1
2 )2

Γ (
n+ c

3 + 5
3

2 )2
(4.1)
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to arrive at the standard form. Note that

Kn+1

Kn−1
= (3n + c)2

(3n + c + 2)2
.

Then the recurrence relation (1.1) with (1.3) reduces to the following standard form:

pn+1(x) − (Anx + Bn)pn(x) + pn−1(x) = 0. (4.2)

As n → ∞, the recurrence coefficients satisfy the following expansions:

An = Kn

λn · Kn+1
∼ n−θ

∞∑

s=0

αs

ns
, Bn = − (λn + μn)Kn

λn · Kn+1
∼

∞∑

s=0

βs

ns
, (4.3)

with θ = 3,

α0 = 1

27
, α1 = −c + 1

27
, (4.4)

and

β0 = −2, β1 = 0, β2 = 2

9
. (4.5)

Let x = (n+ c+1
3 )3t . Then the roots of the characteristic equation (3.6) coincide when

α0t± +β0 = ±2, with α0 and β0 given above. This gives us the two transition points:

t+ = 108, t− = 0.

These transition points are similar to what we have for Berg–Letessier–Valent poly-
nomials. So the two Airy-type and Bessel-type expansions follow.

Proposition 4.2 When n is large, pn(x) in (4.2) can be expressed as

pn(x) = C1(x)Pn(x) + C2(x)Qn(x),

where C1(x) and C2(x) are two n-independent functions, and Pn(x) and Qn(x) are
two linearly independent solutions of (4.2) satisfying the following Airy-type asymp-
totic expansions in the neighborhood of t+ = 108:

Pn

(
ν3t
) ∼ 3

√
6

(
U(t)

t (t −108)

) 1
4
[

Ai
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+ Ai′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

, (4.6)
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and

Qn

(
ν3t
)∼ 3

√
6

(
U(t)

t (t − 108)

) 1
4
[

Bi
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+ Bi′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

. (4.7)

Here ν = n + c+1
3 , the leading coefficients are given by

Ã0(U) = 1, B̃0(U) = 0,

and U(t) is defined as

2

3

[
U(t)
] 3

2 =
3
√

2t

6
B1− 108

t

(
1

2
,

1

3

)
− log

t − 54 + √
t (t − 108)

54
, t ≥ 108, (4.8)

2

3

[−U(t)
] 3

2 = cos−1
(

t − 54

54

)
−

3
√

2t

6
B1− t

108

(
1

2
,

1

6

)
0 < t < 108; (4.9)

see (2.8) for the definition of Bx(a, b).

Proof With

τ0 = −α1t+ + β1

(2 − β0)θ
= c + 1

3
and ν = n + τ0,

our results follow from the main theorem in [29]. �

Proposition 4.3 When n is large, pn(x) in (4.2) can be expressed as

pn(x) = C∗
1 (x)(−1)nP ∗

n (x) + C∗
2 (x)(−1)nQ∗

n(x),

where C∗
1 (x) and C∗

2 (x) are two n-independent functions, and P ∗
n (x) and Q∗

n(x)

are two linearly independent solutions of (4.2) satisfying the following Bessel-type
asymptotic expansions in the neighborhood of t− = 0:

P ∗
n

(
ν3t
) ∼ 3

√
6ν

1
2

(
U∗(t)

t (108 − t)

) 1
4
[

J 1
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ J 4
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

, (4.10)
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and

Q∗
n

(
ν3t
)∼ 3

√
6ν

1
2

(
U∗(t)

t (108 − t)

) 1
4
[

W 1
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ W 4
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

. (4.11)

Here ν = n + c+1
3 , Wα(x) is defined in (3.13), the leading coefficients are given by

Ã∗
0

(
U∗)= 1, B̃∗

0

(
U∗)= 0, (4.12)

and U∗(t) is defined as

[−U∗(t)
] 1

2 =
∫ 0

t

(t/s)
1
3√

s(s − 108)
ds − log

54 − t + √
t (t − 108)

54
, t ≤ 0,

(4.13)

[
U∗(t)

] 1
2 =

3
√

2t

6
B t

108

(
1

6
,

1

2

)
− cos−1

(
54 − t

54

)
, 0 < t < 108; (4.14)

see (2.8) for the definition of Bx(a, b).

Proof With the asymptotic expansions for An and Bn in (4.3), our results follow from
the main theorem in [6]. �

Remark 4.1 Again, the integral in (4.13) can be written as a hypergeometric function,

∫ 0

t

(t/s)
1
3√

s(s − 108)
ds = 3

√
2(−t)

1
2 2F1

(
1

6
,

1

2
,

7

6
, t

)
.

U(t) and U∗(t) are two monotonically increasing functions in the neighborhood of
108 and 0, respectively, with the following asymptotic formulas:

U(t) = t − 108

54 3
√

18
+ O(t − 108)2 as t → 108, (4.15)

and

U∗(t) = 4t

27
+ O
(
t2) as t → 0. (4.16)

4.2 Determination of C1(x) and C2(x)

According to Lemma 3.1, we have the following result.
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Proposition 4.4 Let x = xn := (n + (c + 1)/3)3t with t ∈ C \ [0,108]. We have as
n → ∞,

pn(xn) ∼ Γ ((c + 1)/3)Γ ((c + 2)/3)2tn

33nnc+1(2π/n)3/222/3
(1 − 108/t)−1/4

×
[

1 + √
1 − 108/t

2

]2n+1+ (2c−1)
3

exp

{∫ 1

0

3n + c + 1
√

1 − 108s3/t
ds

}
.

Proof Recall the rates given in (1.3) and Kn defined in (4.1). By Stirling’s formula,
we have Kn ∼ 22/3n−2/3 and

n−1∏

k=0

λk = 33nΓ ((c + 1)/3 + n)Γ ((c + 2)/3 + n)2

Γ ((c + 1)/3)Γ ((c + 2)/3)2

∼ 33nnc+5/3Γ (n)3

Γ ((c + 1)/3)Γ ((c + 2)/3)2

∼ 33nnc+5/3(2π/n)3/2(n/e)3n

Γ ((c + 1)/3)Γ ((c + 2)/3)2
.

It thus follows from (3.18) that

πn(x) = Kn

n−1∏

k=0

λkpn(x) ∼ 33nnc+1(2π/n)3/2(n/e)3n22/3

Γ ((c + 1)/3)Γ ((c + 2)/3)2
pn(x).

Since πn(x) satisfies the asymptotic formula (3.17) with p = 3, b = 27, u = c + 5/3,
and v = c + 1/3, our result follows from the above formula. �

Again, using an argument similar to that in the proof of [28, Theorem 3.2], we
obtain the following result in the oscillatory region.

Proposition 4.5 Let x = xn := (n + (c + 1)/3)3t with t = 108 cos2 θ, θ ∈ [δ, π
2 − δ].

We have as n → ∞,

pn(xn) ∼ 3c+1Γ (c+1
3 )Γ 2( c+2

3 )

27/6π3/2(108t − t2)1/4

1

(n3t)
2c−1

6

exp

((
n + c + 1

3

)(
t

108

)1/3

ρ

)

× cos

{
π

4
−
(

2n + (2c + 2)

3

)
θ +
(

n + c + 1

3

)∫ 108

t

(t/s)1/3

√
108s − s2

ds

}
,

(4.17)

where

ρ =
∫ ∞

1

du

u
1
3
√

u2 − u
=

√
πΓ ( 1

3 )

Γ ( 5
6 )

. (4.18)

Then we get the Airy-type expansion in the interval containing t+ = 108.
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Theorem 4.1 Let ν = n + c+1
3 . With Kn and U(t) defined in (4.1), (4.8), and (4.9),

respectively, we have

Qn

(
ν3t
) ∼ (−1)nKn

3c+1Γ (c+1
3 )Γ 2( c+2

3 )

2
7
6 πν

2c−1
2 t

2c−1
6

exp

( √
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

νt
1
3

)(
U(t)

t (t − 108)

) 1
4

×
[

Ai
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+ Ai′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

(4.19)

uniformly for 0 < δ ≤ t < ∞.

Proof When t < 108, recall the asymptotic expansions for the Airy function in (2.18)
and (2.19) again. We have from (4.6) and (4.7),

pn(x) = C1(x)Pn(x) + C2(x)Qn(x)

∼ C1(x)
3
√

6

[t (108 − t)] 1
4

1√
π

cos

(
2ν

3

(−U(t)
) 3

2 − π

4

)

− C2(x)
3
√

6

[t (108 − t)] 1
4

1√
π
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(
2ν

3

(−U(t)
) 3

2 − π

4

)

= C1(x)
3
√

6

[t (108 − t)] 1
4

1√
π

cos

(
ν

(
cos−1

(
t − 54

54

)

−
∫ 108

t

(t/s)
1
3√

s(108 − s)
ds

)
− π

4

)

− C2(x)
3
√

6

[t (108 − t)] 1
4

1√
π

sin

(
ν

(
cos−1

(
t − 54

54

)

−
∫ 108

t

(t/s)
1
3√

s(108 − s)
ds

)
− π

4

)
.

Comparing the above formula and (4.17), we have

C1(x) = 3c−1/2Γ ((c + 1)/3)Γ 2((c + 2)/3)

24/3πx
2c−1

6

exp

((
x

108

) 1
3
√

πΓ ( 1
3 )

Γ ( 5
6 )

)
,

C2(x) = 0.

This completes the proof of the theorem. �

Remark 4.2 As in Remark 2.3, we can obtain the following limiting zero distribution
for Qn(108n3x) from the recurrence relation (1.3):

1

π

∫ 1

x1/3

1
√

x(s3 − x)
ds, x ∈ [0,1]. (4.20)
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Since the above theorem is uniformly valid in the neighborhood of the large tran-
sition point 108, we have the following asymptotic formula for Qn(x).

Corollary 4.1 Let ν = n + c+1
3 and Kn be given in (4.1). Uniformly for a bounded

real number s, we have, for x = 108ν3 + 54 3
√

18sν
7
3 ,

x
2c−1

6 exp

(
−

√
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

x
1
3

)
Qn(x)

= (−1)nKn

3c− 2
3 Γ (c+1

3 )Γ 2( c+2
3 )ν

1
6

4π

[
Ai(s) + O

(
ν− 2

3
)]

as ν → ∞. (4.21)

Proof Let t = 108 + 54 3
√

18sν− 2
3 in (4.19), and recall the asymptotic formula for

U(t) in (4.15). We have after some computations,

x
2c−1

6 exp

(
−

√
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

x
1
3

)
Qn(x)

= (−1)nKn

3c+1Γ (c+1
3 )Γ 2( c+2

3 )

2
7
6 π

(
1

3
5
3 2

5
6

+ O
(
ν− 2

3
))

× ν
1
6
[
Ai(s) + O

(
ν− 2

3
)]

.

This above formula proves our corollary. �

Remark 4.3 Again we can put the left-hand side of (4.21) into its orthonormal form.
Let Q̂n(x) be the orthonormal Conrad–Flajolet polynomials I. Then (4.21) can be
rewritten as

x
2c−1

6 exp

(
−

√
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

x
1
3

)
Q̂n(x) =

√
c + 1Γ (c + 1)ν− 4

3

2
1
3 3

5
3

[
Ai(s) + O

(
ν− 2

3
)]

as ν → ∞. (4.22)

According to the above formula, it again seems reasonable to conjecture that at least
one of the weight functions for the Conrad–Flajolet polynomials I should behave like

x
2c−1

3 exp

(
−

√
π

3
√

2Γ ( 1
3 )

3Γ ( 5
6 )

x
1
3

)
as x → ∞.

We have the following approximation.

Corollary 4.2 Let xn,k be the zeros of Qn(x) such that xn,1 > xn,2 > · · · > xn,n, and
ak be the zeros of the Airy function Ai(x) in descending order. Then we have for fixed
k and large n,

xn,k = 108ν3 + 54 3
√

18akν
7/3 + O

(
ν5/3),

where ν = n + c+1
3 .
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Proof A combination of Corollary 4.1 and Lemma 2.2 gives us the result. �

We also get the Bessel-type expansion in the interval containing t− = 0.

Theorem 4.2 Let ν = n + c+1
3 . With Kn and U∗(t) defined in (4.1), (4.13), and

(4.14), respectively, we have

Qn

(
ν3t
) ∼ Kn

3c+1Γ (c+1
3 )Γ 2( c+2

3 )ν1−c

25/3πt
2c−1

6

exp

( √
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

νt
1
3

)(
U∗(t)

t (108 − t)

) 1
4

×
{

sin

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
π

)[

J 1
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ J 4
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

− cos

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
π

)[

Y 1
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ Y 4
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]}

uniformly for −∞ < t ≤ M < 108.

Proof When 0 < t ≤ M , we have from (4.10) and (4.11),

pn(x) = (−1)nC∗
1 (x)P ∗

n (x) + (−1)nC∗
2 (x)Q∗

n(x)

∼ (−1)n3
√

6ν
1
2

(
U∗(t)

t (108 − t)

) 1
4 [

C∗
1 (x)J 1

3

(
νU∗ 1

2 (t)
)+ C∗

2 (x)W 1
3

(
νU∗ 1

2 (t)
)]

.

Note the following asymptotic expansions for Bessel functions, as x → ∞,

Jν(x) ∼
(

2

πx

) 1
2

cos

(
x − νπ

2
− π

4

)
,

Yν(x) ∼
(

2

πx

) 1
2

sin

(
x − νπ

2
− π

4

)
.

(4.23)

As pn(x) is real, we choose C∗
1 (x) = Ĉ1(x) + iĈ2(x) and C∗

2 (x) = Ĉ2(x) such that

pn(x) ∼ (−1)n3
√

6ν
1
2

(
U∗(t)

t (108 − t)

) 1
4 [

Ĉ1(x)J 1
3

(
νU∗ 1

2 (t)
)+ Ĉ2(x)Y 1

3

(
νU∗ 1

2 (t)
)]

∼ (−1)n
6
√

3√
π

(
1

t (108 − t)

) 1
4
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×
{
Ĉ1(x) cos

[
ν

(∫ t

0

(t/s)
1
3√

s(108 − s)
ds − cos−1

(
54 − t

54

))
− 5

12
π

]

+ Ĉ2(x) sin

[
ν

(∫ t

0

(t/s)
1
3√

s(108 − s)
ds − cos−1

(
54 − t

54

))
− 5

12
π

]}
.

(4.24)

Since

∫ 108

t

(t/s)1/3

√
108s − s2

ds =
√

πΓ ( 1
3 )

2
2
3
√

3Γ ( 5
6 )

t
1
3 −
∫ t

0

(t/s)1/3

√
108s − s2

ds

and 2θ = π − cos−1( 54−t
54 ), we rewrite (4.17) as

pn(x) ∼ 3c+1Γ (c+1
3 )Γ 2( c+2

3 )

27/6π3/2(108t − t2)1/4

1

x
2c−1

6

exp

((
x

108

)1/3

ρ

)

× cos

{
−π

4
+ νπ − ν cos−1

(
54 − t

54

)

− ν

√
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

t
1
3 + ν

∫ t

0

(t/s)1/3

√
108s − s2

ds

}

= 3c+1Γ (c+1
3 )Γ 2( c+2

3 )

27/6π3/2

(−1)n

x
2c−1

6 (108t − t2)
1
4

exp

((
x

108

)1/3

ρ

)

× cos

[
ν

(∫ t

0

(t/s)
1
3√

s(108 − s)
ds − cos−1

(
54 − t

54

))

− 5

12
π −

√
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 +
(

c

3
+ 1

2

)
π

]
.

Comparing (4.24) and the above formula, we have

Ĉ1(x) = 3c−1/2Γ (c+1
3 )Γ 2( c+2

3 )

213/6πx
2c−1

6

exp

(
x

1
3

√
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

)
sin

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
π

)
,

Ĉ2(x) = −3c−1/2Γ (c+1
3 )Γ 2( c+2

3 )

213/6πx
2c−1

6

exp

(
x

1
3

√
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

)
cos

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
π

)
.

This completes the proof of the theorem. �

5 Conrad–Flajolet Polynomials II

Again we use Theorem 1.1 to get a bound for the largest zero for Qn(x) as follows.
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Proposition 5.1 Let xn,k be zeros of Qn(x) such that xn,1 > xn,2 > · · · > xn,n. Then
we have the following bounds for all n ≥ 1:

xn,1 < 108n3 + 108cn2.

Proof Recall the recurrence coefficients of Qn(x) in (1.4), and choose cn = 1/4 in
Theorem 1.1. Then the result follows. �

5.1 Difference Equation Method

As we have done before, we introduce Qn(x) = (−1)nKnpn(x) with

Kn := Γ (
n+ c

3 + 2
3

2 )Γ (
n+ c

3 +1
2 )2

Γ (
n+ c

3 + 4
3

2 )2Γ (
n+ c

3 + 5
3

2 )

(5.1)

to arrive at the standard form. Note that

Kn+1

Kn−1
= (3n + c − 1)(3n + c)2

(3n + c + 1)2(3n + c + 2)
.

Then the recurrence relation (1.1) with (1.4) reduces to the standard form (4.2). As
n → ∞, the recurrence coefficients satisfy the following expansions:

An = Kn

λn · Kn+1
∼ n−θ

∞∑

s=0

αs

ns
, Bn = − (λn + μn)Kn

λn · Kn+1
∼

∞∑

s=0

βs

ns
, (5.2)

with θ = 3,

α0 = 1

27
, α1 = −2c + 1

54
, (5.3)

and

β0 = −2, β1 = 0, β2 = 5

36
. (5.4)

Since α0 and β0 are the same as those in (4.4) and (4.5), we get the same transition
points as follows:

t+ = 108, t− = 0.

Again we get two different types of asymptotic expansions near t+ and t−. Due to
the similarity between the current case and that in Sect. 4, we get the same Airy-type
expansion as that in Proposition 4.2 except that in this case, ν = n + 2c+1

6 .
Because the higher-order coefficients in (5.3) and (5.4) are different from those in

(4.4) and (4.5), we have a corresponding difference in the order of Bessel functions.
The Bessel-type expansion near t− is given as follows.
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Proposition 5.2 When n is large, pn(x) in (4.2) can be expressed as

pn(x) = C∗
1 (x)(−1)nP ∗

n (x) + C∗
2 (x)(−1)nQ∗

n(x),

where C∗
1 (x) and C∗

2 (x) are two n-independent functions, and P ∗
n (x) and Q∗

n(x)

are two linearly independent solutions of (4.2) satisfying the following Bessel-type
asymptotic expansions in the neighborhood of t− = 0:

P ∗
n

(
ν3t
) ∼ 3

√
6ν

1
2

(
U∗(t)

t (108 − t)

) 1
4
[

J 2
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ J 5
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

,

and

Q∗
n

(
ν3t
) ∼ 3

√
6ν

1
2

(
U∗(t)

t (108 − t)

) 1
4
[

W 2
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ W 5
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

.

Here ν = n + 2c+1
6 , Wα(x) is defined in (3.13), the leading coefficients are given by

Ã∗
0

(
U∗)= 1, B̃∗

0

(
U∗)= 0,

and U∗(t) is the same as defined in (4.13) and (4.14).

Proof With the asymptotic expansions for An and Bn in (5.2), our results follow from
the main theorem in [6]. �

5.2 Determination of C1(x) and C2(x)

According to Lemma 3.1, we have the following result.

Proposition 5.3 Let x = xn := (n + (2c + 1)/6)3t with t ∈ C \ [0,108]. We have as
n → ∞,

pn(xn) ∼ Γ ((c + 1)/3)2Γ ((c + 2)/3)tn

33nnc+1/2(2π/n)3/225/6
(1 − 108/t)−1/4

×
[

1 + √
1 − 108/t

2

]2n+1+ (2c−2)
3

exp

{∫ 1

0

3n + c + 1/2
√

1 − 108s3/t
ds

}
.
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Proof Recall the rates in (1.4) and Kn defined in (5.1). By Stirling’s formula, we
have Kn ∼ 25/6n−5/6 and

n−1∏

k=0

λk = 33nΓ ((c + 1)/3 + n)2Γ ((c + 2)/3 + n)

Γ ((c + 1)/3)2Γ ((c + 2)/3)

∼ 33nnc+4/3Γ (n)3

Γ ((c + 1)/3)2Γ ((c + 2)/3)

∼ 33nnc+4/3(2π/n)3/2(n/e)3n

Γ ((c + 1)/3)2Γ ((c + 2)/3)
.

Then from (3.18), we have

πn(x) = Kn

n−1∏

k=0

λkpn(x) ∼ 33nnc+1/2(2π/n)3/2(n/e)3n25/6

Γ ((c + 1)/3)2Γ ((c + 2)/3)
pn(x).

Because πn(x) satisfies (3.17) with p = 3, b = 27, u = c + 4/3, and v = c − 1/3, we
get our proposition from the above formula. �

Again, based on the above proposition, we obtain the following result in the oscil-
latory region.

Proposition 5.4 Let x = xn := (n+ (2c+1)/6)3t with t = 108 cos2 θ, θ ∈ [δ, π
2 −δ].

We have as n → ∞,

pn(xn) ∼ 3c+1/2Γ 2( c+1
3 )Γ ( c+2

3 )

24/3π3/2(108t − t2)1/4

1

(n3t)
c−1

3

exp

((
n + 2c + 1

6

)(
t

108

)1/3

ρ

)

× cos

{
π

4
−
(

2n + (2c + 1)

3

)
θ +
(

n + 2c + 1

6

)∫ 108

t

(t/s)1/3

√
108s − s2

ds

}
,

(5.5)

where ρ is defined in (4.18).

Then the Airy-type expansion can be obtained.

Theorem 5.1 Let ν = n + 2c+1
6 . With Kn and U(t) defined in (5.1), (4.8), and (4.9),

respectively, we have

Qn

(
ν3t
) ∼ (−1)nKn

3c+ 1
2 Γ 2( c+1

3 )Γ ( c+2
3 )

2
4
3 πνc−1t

c−1
3

exp

( √
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

νt
1
3

)(
U(t)

t (t − 108)

) 1
4

×
[

Ai
(
ν

2
3 U(t)

) ∞∑

s=0

Ãs(U)

νs− 1
6

+ Ai′
(
ν

2
3 U(t)

) ∞∑

s=0

B̃s(U)

νs+ 1
6

]

uniformly for 0 < δ ≤ t < ∞.
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Proof When t < 108, recall the asymptotic expansion for the Airy function in (2.18)
and (2.19) again. We have from (4.6) and (4.7),

pn(x) = C1(x)Pn(x) + C2(x)Qn(x)

∼ C1(x)
3
√

6

[t (108 − t)] 1
4

1√
π

cos

(
2ν

3

(−U(t)
) 3

2 − π

4

)

− C2(x)
3
√

6

[t (108 − t)] 1
4

1√
π

sin

(
2ν

3

(−U(t)
) 3

2 − π

4

)

= C1(x)
3
√

6

[t (108 − t)] 1
4

1√
π

cos

(
ν

(
cos−1

(
t − 54

54

)

−
∫ 108

t

(t/s)
1
3√

s(108 − s)
ds

)
− π

4

)

− C2(x)
3
√

6

[t (108 − t)] 1
4

1√
π

sin

(
ν

(
cos−1

(
t − 54

54

)

−
∫ 108

t

(t/s)
1
3√

s(108 − s)
ds

)
− π

4

)
.

Comparing the above formula and (5.5), we have

C1(x) = 3c−1Γ 2((c + 1)/3)Γ ((c + 2)/3)

25/6πx
c−1

3

exp

((
x

108

) 1
3
√

πΓ ( 1
3 )

Γ ( 5
6 )

)
,

C2(x) = 0.

This completes the proof of the theorem. �

Remark 5.1 Again, we can obtain the limiting zero distribution for Qn(108n3x) from
the recurrence relation (1.4). It is the same as that in (4.20).

Since the above theorem is uniformly valid in the neighborhood of the large tran-
sition point 108, we have the following asymptotic formula for Qn(x).

Corollary 5.1 Let ν = n + 2c+1
6 and Kn be given in (5.1). Uniformly for a bounded

real number s, we have, for x = 108ν3 + 54 3
√

18sν
7
3 ,

x
c−1

3 exp

(
−

√
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

x
1
3

)
Qn(x)

= (−1)nKn

3c− 7
6 Γ 2( c+1

3 )Γ ( c+2
3 )ν

1
6

4 6
√

2π

[
Ai(s) + O

(
ν− 2

3
)]

as ν → ∞. (5.6)
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Proof The proof is very similar to that of Corollary 4.1. �

Remark 5.2 Again we can put the left-hand side of (5.6) into its orthonormal form.
Let Q̂n(x) be the orthonormal Conrad–Flajolet polynomials II. Then (5.6) can be
rewritten as

x
c−1

3 exp

(
−

√
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

x
1
3

)
Q̂n(x) = Γ (c + 1)ν− 4

3

2
1
3 3

5
3

[
Ai(s) + O

(
ν− 2

3
)]

as ν → ∞. (5.7)

According to the above formula, it again seems reasonable to conjecture that at least
one of the weight functions for the Conrad–Flajolet polynomials II should behave
like

x
2(c−1)

3 exp

(
−

√
π

3
√

2Γ ( 1
3 )

3Γ ( 5
6 )

x
1
3

)
as x → ∞.

Since (5.6) is very similar to (4.21) except for some constants on the right-hand
side and powers of x changed on the left-hand side, we have the same approximation
for the zeros as in Corollary 4.2, that is,

xn,k = 108ν3 + 54 3
√

18akν
7/3 + O

(
ν5/3),

where ν = n + 2c+1
6 .

The Bessel-type expansion is also obtained as follows.

Theorem 5.2 Let ν = n + 2c+1
6 . With Kn and U∗(t) defined in (5.1), (4.13), and

(4.14), respectively, we have

Qn

(
ν3t
)∼ Kn

3c+1/2Γ 2( c+1
3 )Γ ( c+2

3 )ν
3
2 −c

211/6πt
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3

exp

( √
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3 )

3 3
√
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6 )

νt
1
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)(
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t (108 − t)

) 1
4

×
{

sin

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
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)[

J 2
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ J 5
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(
νU∗ 1

2 (t)
) ∞∑
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B̃∗
s (U∗)
νs

]

− cos

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
π

)[

Y 2
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(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
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∗)
νs

+ Y 5
3

(
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2 (t)
) ∞∑
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B̃∗
s (U∗)
νs

]}

uniformly for −∞ < t ≤ M < 108.
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Proof The proof is similar to that of Theorem 4.2. �

6 Remarks on the Moment Problem

The general solution of an indeterminate moment problem is described in terms of
four entire functions A(z),B(z),C(z),D(z) such that

A(z)D(z) − B(z)C(z) = 1.

The functions are called the Nevanlinna parametrization; see [1, 22]. It is known that
these functions have real and simple zeros. The following theorem, see [11, Thm.
21.1.2], describes all solutions to an indeterminate moment problem.

Theorem 6.1 Let N denote the class of functions {σ }, which are analytic in the open
upper half-plane and map it into the lower half-plane, and satisfy σ(z) = σ(z). Then
the formula

∫

R

dμ(t;σ)

z − t
= A(z) − σ(z)C(z)

B(z) − σ(z)D(z)
, z /∈ R, (6.1)

establishes a one-to-one correspondence between the solutions μ of the moment
problem and functions σ in the class N , augmented by the constant ∞.

A theorem of Herglotz [22, Lemma 2.1] asserts that any σ in the above theorem
has the representation

σ(z) = −c1z + c2 +
∫

R

1 + tz

z − t
dα(t), (6.2)

where α is a finite positive measure on R, c1 and c2 are real constants, and c1 ≥ 0.
The next theorem is in [3] and [14].

Theorem 6.2 Let σ in (6.1) be analytic in Im z > 0, and assume σ maps Im z > 0
into Imσ(z) < 0. If μ(x,σ ) does not have a jump at x and σ(x ± i0) exist, then

dμ(x;σ)

dx
= σ(x − i0+) − σ(x + i0+)

2πi|B(x) − σ(x − i0+)D(x)|2 . (6.3)

A consequence of Theorem 6.2 is that the polynomials associated with this mo-
ment are orthogonal with respect to the weight function

w(x) = γ /π

γ 2B2(x) + D2(x)
(6.4)

for any γ > 0.
Berg and Pedersen [4] showed that the four entire functions A,B,C,D have the

same order, type, and Phragmén–Lindelöf indicator.
The formulas for the orthonormal polynomials in (2.24), (3.22), (4.22), and (5.7)

seem to indicate an interesting pattern about the powers of ν (a constant plus n, the
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degree of the polynomial). Indeed it suggested to us to formulate the following con-
jecture.

Conjecture 6.1 Let {P̂k(x)}nk=1 be a sequence of polynomials orthonormal with re-
spect to the weight function w(x) on an unbounded interval and tn be the large tran-
sition point of P̂n(x). Without loss of generality, we may further assume the interval
to be (0,∞) or (−∞,∞). If the weight function w(x) has the following behavior:

−logw(x) = O
(
xm
)

as x → ∞, (6.5)

then we have

tn = O
(
n

1
m
)

as n → ∞.

Moreover, uniformly for a bounded real number s, we have, for x = tn(1 + sn− 2
3 ),

w(x)
1
2 P̂n(x) ∼ ĉ(s)nk

(
1 + o(1)

)
as n → ∞,

where ĉ(s) is a uniformly bounded function in s and the constant k is given by

k = 1

6
− 1

2m
. (6.6)

Here m > 0, but is not necessarily an integer.
Note that the above conjecture is true for Laguerre polynomials, Hermite polyno-

mials and polynomials orthogonal with respect to the Freud weight e−|x|β . For the
asymptotics of Laguerre polynomials and Hermite polynomials, see [23, Sect. 8.22].
For the asymptotics of polynomials orthogonal with respect to the Freud weight, see
[15, Eq. (1.19)].

When the corresponding moment problem is indeterminate, m in (6.5) equals the
order of any of the entire functions A,B,C, or D. This seems to be the case for the
weight function (6.4). It also agrees with the known weight functions for the Chen–
Ismail polynomials.

Remark 6.1 Note that the large transition point tn is closely related to the largest
zero of the orthogonal polynomials, The asymptotics for the largest zero have been
studied in the literature, which are related to (6.7) in our conjecture. For example,
Levin and Lubinsky obtained the asymptotics for determinate exponential weights in
[20, Thm. 11.3]. They also derived similar results for indeterminate weights and some
weights close to indeterminate ones in [19, Cor. 1.2] and [21, Cor. 1.4], respectively.
However, the interesting relation between k and m in (6.6) seems to be new in the
literature.

In the rest of this section, we shall show that the moment problems corresponding
to Conrad–Flajolet polynomials I and II do not have unique solutions; that is, the
moment problems are indeterminate. The following proposition is in [1] or [22].
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Proposition 6.1 Let P̂n(x) be the orthonormal polynomials satisfying the following
recurrence relation:

xP̂n(x) = bn+1P̂n+1(x) + anP̂n(x) + bnP̂n−1(x). (6.7)

If the moment problem has a unique solution, then the series

∞∑

n=1

∣∣P̂n(z)
∣∣2 (6.8)

diverges for z /∈R. If the above series diverges at one z /∈R, then the moment problem
has a unique solution.

Recall that a birth and death process leads to polynomials Qn(x) defined in (1.1).
We have an = λn + μn, bn = √

λn−1μn in (6.7), and the corresponding orthonormal
one is

Q̂n(x) = (−1)nQn(x)

√√√√
n∏

k=1

λk−1

μk

.

For the orthonormal Conrad–Flajolet polynomials I, we obtain the following result
from Theorem 4.2.

Corollary 6.1 Let ν = n + c+1
3 and x = ν3t . With Kn and U∗(t) defined in (4.1),

(4.13), and (4.14), respectively, we have

Q̂n

(
ν3t
)∼ (−1)n

√√√√
n∏

k=1

λk−1

μk

Kn

3c+1Γ (c+1
3 )Γ 2( c+2

3 )ν1−c

25/3πt
2c−1

6

× exp

( √
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

νt
1
3

)(
U∗(t)

t (108 − t)

) 1
4

×
{

sin

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
π

)[

J 1
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ J 4
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

− cos

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
π

)[

Y 1
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ Y 4
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]}

uniformly for −∞ < t ≤ M < 108. Here λn and μn are defined in (1.3).
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Let z = ν3t be a fixed complex number. Then t = z/ν3 = O(n−3). It follows from
(4.16) that U∗(t) = O(t) = O(n−3). Recalling the asymptotic formulas of Bessel
functions at small arguments, we obtain

J 1
3

(
νU∗ 1

2 (t)
)= O

(
n−1/6), J 4

3

(
νU∗ 1

2 (t)
)= O

(
n−2/3),

Y 1
3

(
νU∗ 1

2 (t)
)= O

(
n1/6), Y 4

3

(
νU∗ 1

2 (t)
)= O

(
n2/3).

Since Ã∗
s (U

∗) = 1 and B̃∗
s (U∗) = 0 by (4.12), we observe that the expressions in-

volving Bessel functions and trigonometric functions are of order O(n1/6). Next, we
obtain the following asymptotic estimate from (1.3), (4.1), and Striling’s formula,

√√√√
n∏

k=1

λk−1

μk

= O
(
n−5/6), Kn = O

(
n−2/3).

A combination of the above estimates yields Q̂n(z) = O(n−5/6). This establishes
the convergence of the series in (6.8). Thus, the corresponding moment problem is
indeterminate.

For the orthonormal Conrad–Flajolet polynomials II, we obtain the following re-
sult from Theorem 5.2.

Corollary 6.2 Let ν = n + 2c+1
6 . With Kn and U∗(t) defined in (5.1), (4.13), and

(4.14), respectively, we have

Q̂n

(
ν3t
)∼ (−1)n

√√
√√

n∏

k=1

λk−1

μk

Kn

3c+1/2Γ 2( c+1
3 )Γ ( c+2

3 )ν
3
2 −c

211/6πt
c−1

3

× exp

( √
πΓ ( 1

3 )

3 3
√

4Γ ( 5
6 )

νt
1
3

)(
U∗(t)

t (108 − t)

) 1
4

×
{

sin

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
π

)[

J 2
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ J 5
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]

− cos

( √
πΓ ( 1

3 )

2
2
3
√

3Γ ( 5
6 )

x
1
3 − c

3
π

)[

Y 2
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

Ã∗
s (U

∗)
νs

+ Y 5
3

(
νU∗ 1

2 (t)
) ∞∑

s=0

B̃∗
s (U∗)
νs

]}

uniformly for −∞ < t ≤ M < 108. Here λn and μn are defined in (1.4).
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With a similar argument as in the case of Conrad–Flajolet polynomials I, we con-
clude that the moment problem for Conrad–Flajolet polynomials II is also indetermi-
nate.
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