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Abstract
There is a substantial interest in detailed models of viral infection and antiviral drug
kinetics in order to optimize the treatment against viruses such asHIV. In this paper, we
studywithin-viral dynamics under general intracellular distributed delays and periodic
combination antiviral therapy. The basic reproduction number R0 is established as a
global threshold determining extinction versus persistence, and spectral methods are
utilized for analytical and numerical computations of R0. We derive the critical matu-
ration delay for virus and optimal phase difference between sinusoidally varying drug
efficacies under various intracellular delays. Furthermore, numerical simulations are
conducted utilizing realistic pharmacokinetics and gamma-distributed viral produc-
tion delays for HIV. Our results demonstrate that the relative timing of the key viral
replication cycle steps and periodic antiviral treatment schedule involving distinct
drugs all can interact to critically affect the overall viral dynamics.

Keywords Antiviral therapy · Intracellular delays · Virus model · Basic reproduction
number · Spectral analysis

Mathematics Subject Classification 92B05 · 37N25

1 Introduction

Modeling within-host virus dynamics has been an extensive area of research in math-
ematical biology. For example, models of HIV dynamics under antiretroviral therapy
(ART) have been utilized to gain insight on the kinetics ofHIV infection and promising
treatment strategies (Adams et al. 2005; Wei et al. 1995; Perelson et al. 1996; Rong
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et al. 2007). ART typically consists of a combination of antiviral medications acting
at different stages of the viral replication stages. In particular, reverse-transcriptase
inhibitors (RTIs) block reverse transcription (RT) after cell infection and before viral
production, whereas protease inhibitors (PIs) target the cell’s production of viable
viral particles. Although ART has been remarkably successful in controlling HIV,
ongoing viral replication can persist during therapy, and drug side effects and adher-
ence continue to be issues. Thus, an important motivation for mathematical models
is optimization of combination drug therapies acting on distinct phases of the viral
replication cycle.

Viral infection is most simply captured by the standard virus model (Perelson and
Nelson 1999); a nonlinear system of three ordinary differential equations (ODEs)
incorporates target cells, infected cells and free virus particles as the state variables.
A more detailed description involves consideration of the replication stages between
virus-cell entry and new (mature) viral production by the infected cell. To account
for the time lag between viral entry of a target cell and subsequent initiation of viral
production from the newly infected cell, known as the eclipse phase, Perelson et al.
included discrete and distributed delays in the standard model (Nelson and Perelson
2002). Building upon the delay model, many authors consider virus models with age
structure in the infected cell compartment where the death (lysis) and viral production
rate can vary with age since the infection of the cell (Browne and Pilyugin 2013;
Nelson et al. 2004; Rong et al. 2007; Huang et al. 2012).

Given that cell infection and viral production are the fundamental steps in the repli-
cation cycle, perhaps the most effective way to incorporate heterogeneity in infected
cell processes is to assume that both the eclipse and viral production phases are dis-
tributed delays (Shu et al. 2013). Here, we extend previous models by generalizing
an age-structured system, with eclipse and virus-producing stages, to an infinite-delay
system with probability distributions describing the time taken in each of these stages.
In this way, recent experimental estimates of these distributions (Beauchemin et al.
2017) can be accurately quantified in the virus models. Also, the kinetics of distinct
classes of drugs can be incorporated in relation to their timing with respect to the
key viral replication stages, building upon previous virus models with antiviral ther-
apy (Rong et al. 2007; Wang et al. 2016). In addition, the probability distributions of
eclipse and viral production stage are convenient for threshold dynamics analysis in
the case of periodic antiviral therapy.

Periodicity in antiviral efficacies occurs as a consequence of the discrete nature of
drug intake for patients. Themagnitude of fluctuations in antiviral drug efficacy within
patients depends upon dosing regimen, adherence and pharmacodynamic properties
of the medication (Shen et al. 2008; Vaidya and Rong 2017). Several works have
explored the dynamics of virus models with time-varying combination antiviral ther-
apy, treatment optimization with respect to minimizing the reproduction number R0
and the threshold quantity determining viral extinction versus persistence (De Leen-
heer 2009; Vaidya and Rong 2017; Wang et al. 2014). The phase difference between
distinct antiviral efficacies was found to critically affect R0 for the standard ODE
virus model with periodic drug efficacy functions as small amplitude perturbations
from constant level (Browne and Pilyugin 2012), “bang–bang” (Browne and Pilyugin
2016) and more realistic pharmacokinetic functions (Wang and Zhao 2013). Further-
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more, Neagu et al. (2018) argued that inherent delays in the viral replication cycle can
substantially affect viral dynamics during periodic (single-drug) antiviral treatment.
Here, we further these previous results by rigorous analysis of R0 and detailed investi-
gation of threshold dynamics in a general distributed delay virus model with periodic
antiviral drug efficacies. In particular, utilizing the definition of R0 in the periodic
infinite-dimensional setting (Bacaër and Ouifki 2007; Bacaër and Abdurahman 2008;
Bacaër and Dads 2012; Posny and Wang 2014; Zhao 2017a), we develop analytical
and numerical methods to optimize periodic combination therapy for viral infections
with a variety of viral intracellular delay distributions. Our results demonstrate that
the relative timing of the key viral replication cycle steps, periodic antiviral treatment
schedule and phase difference between distinct drugs all can interact to critically affect
the overall viral dynamics.

2 TheModel

We begin by considering the following extension of an age-structured virus model
originally proposed by Nelson et al. (2004):

S′(t) = λ − δS(t) − kS(t)V (t),(
∂

∂t
+ ∂

∂τ

)
j(t, τ ) = −(μ1(τ ) + γ (τ)) j(t, τ ), j(t, 0) = kS(t)V (t),

(
∂

∂t
+ ∂

∂a

)
i(t, a) = −μ2(a)i(t, a), i(t, 0) =

∞∫
0

γ (τ) j(t, τ )dτ,

V ′(t) =
∞∫
0

q(a)i(t, a)da − dV (t).

(1)

Here, S(t) is the population size of healthy cells, j(t, τ ) is the density of infected cells
in eclipse phase (before viral production begins) with respect to age since cell infection
τ , i(t, a) is the density of productively infected cell concentration with respect to time
elapsed since initiation of viral production, a, and V (t) is the viral load concentration.
The healthy cells replenish with constant recruitment rate λ and per capita death rate
δ. In the absence of viral infection, the healthy cells will reach at the equilibrium
S̄ = λ/δ. The infection of healthy cells is modeled by a mass action term kSV , where
k is the infectivity rate. The death rate of infected cells in the eclipse phase is μ1(τ ),
and the rate at which infected cells transition to viral production stage is γ (τ), and
both depend on time since cell infection τ . Additionally, μ2(a) and q(a) are the age-
dependent death rate and viral production rate for productively infected cells. System
(1) directly extends the ordinary differential equation virus model with infected cells
to be divided into eclipse and virus-producing stages (Buonomo and Vargas-De-León
2012), by introducing continuous age structures in each class. We are interested in
a detailed description of the progression of infected cells during typical replication
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cycle; thus, we do not consider the small fraction of infected cells, which are in the
resting state, and form the latent reservoir (Rong and Perelson 2009).

Next, we incorporate time-varying combination antiviral treatment into (1):

S′(t) = λ − δS(t) − (1 − η1(t))kS(t)V (t), (2)(
∂

∂t
+ ∂

∂τ

)
j(t, τ ) = −(μ1(τ ) + γ (τ)) j(t, τ ), j(t, 0) = (1 − η1(t))kS(t)V (t),

(
∂

∂t
+ ∂

∂a

)
i(t, a) = −μ2(a)i(t, a), i(t, 0) =

∞∫
0

γ (τ) j(t, τ )dτ,

V ′(t) = (1 − η2(t))

∞∫
0

q(a)i(t, a)da − dV (t), (3)

where η1(t) and η2(t) are the efficacies of reverse-transcriptase inhibitors (RTIs) and
protease inhibitors (PIs), respectively. An extension of system (3) with more detailed
model of the action of the RTI is discussed at the end of this section, in Remark 1.

We assume that the drug efficacies,η1(t) andη2(t), are at least piecewise continuous
periodic functions with a common period T , representative of a periodic therapy, and
η1(t), η2(t) ∈ [0, 1] for all t ∈ R. Two particular examples of periodic drug efficacies
we consider in this paper for explicit analytical and numerical results are:

1. Sinusoidal perturbations from constant efficacy (Browne and Pilyugin 2012)

ηi (t) = ei + εai cosωt, (4)

where ei is the constant (mean) drug efficacy, εai is amplitude of small amplitude
oscillation, and ω = 2π/T with T being the period of drug administration.

2. Classical dose–response with impulse and exponential decays (Shen et al. 2008)

ηi (t) = 1

1 +
(
IC50i
Di (t)

)mi
, Di (t) = Ci

(
e−ri (t mod T ) +

∞∑
n=1

δ(t − nT )

)
, (5)

where Di (t) is the drug concentration in the blood, IC50i is the concentration at
50% target inhibition, mi is a slope parameter analogous to the Hill coefficient,
Ci = Cmaxi /(1 − e−ri T ) with Cmaxi is the maximal concentration achieved in
the blood, ri is the decay rate of drug concentration, and δ(t) is the Dirac delta
function.

The first example, small amplitude sinusoidal drug efficacies, will allow for analytic
approximation of R0 and also can resemble small variations in antiviral drug effi-
cacy under daily periodic dosing. The second example has been utilized to model
pharmacodynamics of antiviral medications (Vaidya and Rong 2017).
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The equations in model (3) can be converted to a delay differential equation system.
By standard application of method of characteristics, we obtain

j(t, τ ) = k(1 − η1(t − τ))S(t − τ)V (t − τ)e− ∫ τ
0 (μ1(s)+γ (s))ds,

i(t, a) =
∞∫
0

γ (τ)β(t − a − τ)S(t − a − τ)V (t − a − τ)e− ∫ τ
0 (μ1(s)+γ (s))dsdτ

e− ∫ a
0 μ2(s)ds,

where β(t) = k(1−η1(t)). Define p(t) = 1−η2(t). Substituting this into the equation
for V ′(t) yields

V ′(t) =p(t)

∞∫
0

∞∫
0

q(a)γ (τ )β(t − a − τ)S(t − a − τ)V (t − a − τ)

e− ∫ τ
0 (μ1(s)+γ (s))dse− ∫ a

0 μ2(s)dsdτda − dV (t). (6)

Equations (2) and (6) togetherwith the initial conditions for viral load V (t) on (−∞, 0]
can formulate a closed system with time delay. Assuming that V (−∞) is bounded,
we rewrite (6) as an integral equation

V (t) =
∞∫
0

e−ds p(t − s)

∞∫
0

∞∫
0

q(a)γ (τ )β(t − s − a − τ)

S(t − s − a − τ)V (t − s − a − τ)

e− ∫ τ
0 (μ1(s)+γ (s))dse− ∫ a

0 μ2(s)dsdτdads. (7)

We now seek to extend the viral model by allowing more general distributed delays
with respect to the key stages in the viral replication cycle. Several previous works
(Culshaw and Ruan 2000) have assumed there is a fixed intracellular delay τ0, so
that γ (τ) = δ(τ − τ0) where δ(τ ) is the Dirac delta function. Others have assumed
an exponentially distributed eclipse phase, in particular the extended classical virus
ODE model with additional eclipse (or latent) infection compartment (Buonomo and
Vargas-De-León 2012). A more general approach that has been studied is to consider
a distributed delay according to a kernel, which we denote here by π(τ), describing
the probability density function for the age τ that a (surviving) infected cell becomes
productive (Shu et al. 2013). If P(τ ) is the survival rate during the eclipse phase,

then θ :=
∞∫
0
P(τ )π(τ)dτ is the probability of an infected cell becoming produc-

tive and f (τ ) = (P(τ )π(τ))/θ is the conditional probability density for the age
τ that a cell becomes productive. Note that this description of the eclipse phase
generalizes the age-structured model which considers the exponential distributions
π(τ) = γ (τ)e− ∫ τ

0 γ (s)ds and P(τ ) = e− ∫ τ
0 μ1(s)ds . Similarly, we can generalize the
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productively infected cell kinetics by assuming an arbitrary survival probability distri-
bution σ(a) with g(a) = (q(a)σ (a))/N corresponding to the conditional probability
of producing infectious virus arising a units of time after the cell becomes productively

infectedwhere N =
∞∫
0
q(a)σ (a)da is the burst size (average#of virus producedduring

infected cell life). For the age-structured model (3), we choose σ(a) = e− ∫ a
0 μ2(s)ds .

With these features in mind, we extend the delay differential system (2)–(6) as

S′(t) = λ − δS(t) − β(t)S(t)V (t), (8)

V ′(t) = θNp(t)

∞∫
0

∞∫
0

g(a) f (τ )β(t−a−τ)S(t−a−τ)V (t−a−τ)dτda − dV (t).

(9)

The integral equation (7) can then be generalized by writing (9) as follows:

V (t) = θN

∞∫
0

∞∫
0

∞∫
0

e−ds p(t − s)g(a) f (τ )

β(t − s − a − τ)S(t − s − a − τ)V (t − s − a − τ)dτdads. (10)

It is obvious that any PDE in the age-structured model can be converted into the
above DDE by setting

θ =
∞∫
0

γ (τ)e− ∫ τ
0 [γ (s)+μ1(s)]dsdτ, f (τ ) = 1

θ
γ (τ)e− ∫ τ

0 [γ (s)+μ1(s)]ds,

N =
∞∫
0

q(a)e− ∫ a
0 μ2(s)dsda, g(a) = 1

N
q(a)e− ∫ a

0 μ2(s)ds .

However, the above relation is not necessarily invertible in the sense that any DDE
(8), (9) can be converted into the PDE with age structure. Besides being more general,
the DDE formulation in terms of probability distributions, f (τ ) and g(a), has also
advantages in the spectral analysis to come in this paper. Furthermore, fromabiological
point of view, it is convenient to formulate the kinetics of themain phases of the infected
cell cycle as distributions which can be matched to experimental data.

Another generalization of model (1) was proposed in Wang and Dong (2018). Our
model differs from that in Wang and Dong (2018) in the sense that we incorporate
periodic antiviral treatment and our model system is nonautonomous. In general, it is
a challenge to compute the basic reproduction number and study the model dynamics
for periodic systems with time delays.
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The dynamics of (8), (9) (equivalently (10)) will be analyzed in what follows;
however, we also remark here that the system can be extendedwith respect tomodeling
reverse transcription (RT) in infected cells as described below.

Remark 1 A more detailed description of antiviral action with respect to infected cell
life can take into account that RT inhibitors act during the eclipse phase interfering
with RT transcriptase, a necessary step for viral replication. In “Appendix A”, we
extend the age-structured model by adding an extra compartment explicitly tracking
the process of RT during the eclipse phase of infected cell. In the special case that
RT occurs at a fixed time, r , after viral entry, then the delay differential equation for
the virus, V (t), reduces to (9) with β(t) shifted by r units of time, i.e., β(t + r).
In particular, all of the formulae we will derive in Sect. 4.2 concerning reproduction
number dependent on the periodic forcing hold in the extended model with the RT
delay r shifting the effective infection rate as β(t + r).

3 Threshold Analysis of Model

3.1 Boundedness

Throughout this paper, we assume that g(a) and f (τ ) are probability density functions
on R+ with exponentially decay rate at infinity.

(H) There exists α0 > 0 such that both g(t)eα0t → 0 and f (t)eα0t → 0 as t → ∞.
To study the model system with the infinite delay, we first introduce the weighted

continuous function space. For a given α ∈ (0, α0), we define Cα to be the subspace
of C(R−,R) such that φ(θ)eαθ is uniformly continuous on R− = (−∞, 0] and the
norm

‖φ‖α := sup
θ∈R−

|φ(θ)eαθ |

is finite. It is easily seen that Cα is a Banach space equipped with the norm ‖ · ‖α , and
system (8), (9) is well-posed in Cα × Cα .

Let C+
α be the nonnegative cone collecting all nonnegative functions in Cα . We

intend to show that if the initial profile is contained in the C+
α ×C+

α , so is the solution
for any t > 0. It can be proved by contradiction that S(t) ≥ 0. If t0 ≥ 0 is the infimum
of all t with S(t) < 0, then S(t0) = 0 and S′(t0) ≤ 0, which obviously contradict Eq.
(8). Actually, we have S(t) > 0 for all t > 0. Next, we integrate (9) to obtain

V (t) = e−dt V (0) + θN
∫ t

0

∫ ∞

0

∫ ∞

0
e−d(t−s) p(s)g(a) f (τ )

β(s − a − τ)S(s − a − τ)V (s − a − τ)dτdads,

from which nonnegativity of V (t) follows. If, further, V (0) > 0, it is easy to show
that V (t) > 0 for all t > 0.
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We also want to show that the solution of the model system with nonnegative initial
conditions is bounded above. From (8), we have S′(t) ≤ λ − δS(t). By comparison
principle, we obtain lim supt→∞ S(t) ≤ λ/δ. Furthermore, if S(t) ≤ λ/δ for some
t = t0, then S(t) ≤ λ/δ for all t ≥ t0. Define an auxiliary function

U (t) = θN
∫ ∞

t

∫ ∞

0

∫ ∞

0
e−d(t−s) p(s)g(a) f (τ )β(s − a − τ)

S(s − a − τ)V (s − a − τ)dadτds.

It is readily seen that U (t) ≥ 0 for all t ≥ 0, and

U ′(t) = −θNp(t)
∫ ∞

0

∫ ∞

0
g(a) f (τ )β(t − a − τ)

S(t − a − τ)V (t − a − τ)dadτ − dU (t).

Add this equation to (8) and (9) yields

S′(t) +U ′(t) + V ′(t) = λ − δS(t) − β(t)S(t)V (t) − dU (t) − dV (t).

By comparison principle, we have lim supt→∞[S(t) +U (t) + V (t)] ≤ λ/min{δ, d}.
Note that system (8), (9) is a nonautonomous with a periodic solution semiflow

U (t, s) on Cα × Cα satisfying U (t, t) = I , U (t, s)U (s, r) = U (t, r) and U (t +
T , s + T ) = U (t, s). To construct an equivalent autonomous semigroup, we use the
idea in Saperstone (1981) (see also Rebelo et al. 2014; Zhao and Hutson 1994) to
introduce the compact metric space

RT := R/TZ = {r ∈ R : r1 ∼ r2 ⇔ (r1 − r2)/T ∈ Z}

equipped with the distance d(r1, r2) = |e2iπr1/T −e2iπr2/T |. Define a semigroup�(t)
on X = Cα × Cα × RT as

�(t)(φ, r) = (U (t + r , r)φ, t + r), φ = (u, v) ∈ Cα × Cα, r ∈ RT .

�(t) is well-defined since

�(t)(φ, r + T ) = (U (t + r + T , r + T )φ, t + r + T ) = (U (t + r , r)φ, t + r)

= �(t)(φ, r).

It is also easy to verify that �(0) = I and

�(t)�(s)(φ, r) = (U (t + s + r , s + r)U (s + r , r)φ, t + s + r)

= (U (t + s + r , r)φ, t + s + r) = �(t + s)(φ, r).

The argument in the preceding paragraph indicates that �(t) is point dissipative.
Moreover, for any constant C > λ/min{δ, d}, the bounded region �C := {(u, v, r) ∈
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X : ‖u‖α ≤ C, ‖v‖α ≤ C} is absorbing in the sense that it contains all possible
attractors of �(t).

Finally, we show that the set of trajectories γ +(�C ) = ⋃
φ∈�C

γ +(φ) is also
bounded. To see this, we consider the auxiliary system with (8) replaced with

S′(t) = λ − δS(t). (11)

The differential equation for V (t) is still (9). Any initial condition (φ, r) in �C is
bounded by (S0, V0, r) with S0(θ) = V0(θ) = Ce−αθ for θ ∈ R−. Thus, by compar-
ison principle, U (t, r)φ ≤ U (t, r)(S0, V0). We can use a similar argument as in the
proof of point dissipativeness of �(t) to find a constant C̄ > 0 (which depends on C)
such that γ +(�C ) ⊂ �C̄ .

3.2 Basic Reproduction Number

Following Bacaër and Ouifki (2007), Bacaër and Abdurahman (2008), Bacaër and
Dads (2012), Zhao (2017a), we can define the reproduction number for the renewal
type Eq. (10) as the spectral radius of the next-generation operator, R0 = ρ(L), where

(Lφ)(t) = θN S̄

∞∫
0

∞∫
0

∞∫
0

e−ds p(t−s)g(a) f (τ )β(t−s−a−τ)φ(t−s−a−τ)dτdads,

(12)
acting on the space of continuous T−periodic functions onR, denoted as PT . For any
infinite sequence of continuous and uniformly bounded φn ∈ PT , we can show that
both Lφn and (Lφn)

′ are uniformly bounded (since g, f are probability distributions
and β(t), p(t) are periodic functions). By the Arzela–Ascoli theorem, L is a compact
operator onPT .Obviously, L is a positive operator on the coneof nonnegative functions
in PT . If p(t) > 0 and β(t) > 0 for all t ∈ R, then L is strongly positive and Krein–
Rutman theorem (Du 2006, Theorem 1.2) implies that R0 = ρ(L) is an eigenvalue of
the operator L with a corresponding positive eigenfunction u(t); that is,

R0u(t) = θN S̄

∞∫
0

∞∫
0

∞∫
0

e−ds p(t−s)g(a) f (τ )β(t−s−a−τ)u(t−s−a−τ)dτdads.

(13)
Observe that the definition of R0 in (13) involves an eigenvalue equation for an infinite-
dimensional operator. In Sect. 4.1, we investigate a formulation of R0 amenable to
analytical methods, and we will develop different numerical methods to compute R0
in Sect. 4.3.
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3.3 Extinction and Persistence of Infection

In the following theorem, we state that the basic reproduction number is the threshold
parameter for the model dynamics. First, we demonstrate that if R0 < 1, then the
disease-free equilibrium E0 = {S̄, 0} with S̄ = λ/δ is globally attractive in X .

Theorem 2 Assume (H). If R0 < 1, there exists α1 ∈ (0, α0) such that, for any α ∈
(0, α1), the disease-free equilibrium E0 = {S̄, 0} is globally attractive in C+

α × C+
α .

Proof Recall that PT is the Banach space of continuous T−periodic functions on R

equipped with the supremum norm.We introduce the following parametrized compact
operator on PT :

(Lμφ)(t) = θN S̄

∞∫
0

∞∫
0

∞∫
0

eμ(s+a+τ)−ds p(t − s)g(a) f (τ )

β(t − s − a − τ)φ(t − s − a − τ)dτdads, (14)

for all real μ < min{d, α0}. Obviously, ρ(L0) = ρ(L) = R0 < 1; see (12). More-
over, ρ(Lμ) is continuous (Degla 2008, Theorem 2.1) and increasing (Burlando 1991,
Theorem 1.1) in μ. Hence, there exists a small ν > 0 such that ρ(Lν) < 1. Krein–
Rutman theorem implies that the principal eigenfunction φ ∈ PT is positive. Let
ε = S̄/ρ(Lν) − S̄ > 0 and v(t) = e−νtφ(t). It follows that

v(t) = θN (S̄ + ε)

∞∫
0

∞∫
0

∞∫
0

e−ds p(t − s)g(a) f (τ )β(t − s − a − τ)

v(t − s − a − τ)dτdads.

Differentiating both sides gives a periodic renewal equation

v′(t) = −dv(t)+θN (S̄+ε)p(t)
∫ ∞

0

∫ ∞

0
β(t−a−τ)g(a) f (τ )v(t − a − τ)dadτ.

The above equation is also a perturbation of the linearization of (7). Now, we choose
α1 = min{ν/2, α0/2} and let {S(t), V (t)} be any solution of (8), (9) with the initial
condition in Cα × Cα , where α ∈ (0, α1). Since lim supt→∞ S(t) ≤ S̄, there exists
t0 > 0 such that S(t) < S̄ + ε for all t > t0. In view of 2α < ν, the functions V (t)eνt

and S(t)V (t)eνt are uniformly bounded for all t ∈ R−. Consequently, there exists
C > 0 such that Cv(t) ≥ V (t) and (S̄ + ε)Cv(t) ≥ S(t)V (t) for all t ≤ t0. Denote

F(t) = θN (S̄ + ε)p(t)
∫∫

τ+a≥t−t0
β(t − a − τ)g(a) f (τ )Cv(t − a − τ)dadτ.

It is easily seen that

Cv′(t) = −dCv(t) + θN (S̄ + ε)p(t)
∫∫

τ+a≤t−t0
β(t − a − τ)g(a)
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f (τ )Cv(t − a − τ)dadτ + F(t),

for t ≥ t0. On the other hand, from the choice of C we have

V ′(t) ≤ −dV (t) + θN (S̄ + ε)p(t)
∫∫

τ+a≤t−t0
β(t − a − τ)g(a) f (τ )

V (t − a − τ)dadτ + F(t)

for all t ≥ t0. By comparison principle, Cv(t) ≥ V (t) for all t ≥ t0. Especially,
V (t) → 0 as t → ∞. It then follows from (8) that S(t) → S̄ as t → ∞. �

Remark 3 Since the delay is not finite, the Poincaré map for the linearization of (7)
may not be compact on Cα . Thus, one cannot use a similar argument as in the proof
of Xu and Zhao (2005), Proposition 2.1, to find an upper solution which converges to
zero as t approaches infinity.

When R0 > 1, we prove in “Appendix B” the following theorem stating that system
(8), (9) is uniformly persistent.

Theorem 4 Assume (H) and α ∈ (0, α0). If R0 > 1, then there exists δ0 > 0 such
that for any initial condition (u0, v0) ∈ Cα × Cα with v0(0) > 0, the solution (S, V )

of (8), (9) satisfies lim inf t→∞ S(t) > δ0 and lim inf t→∞ V (t) > δ0.

4 Computing R0

4.1 Fourier Analysis

In a similar spirit to Bacaër (2007), we consider Fourier expansions of the T−periodic
functions u(t), p(t) and β(t):

u(t) =
∑
j∈Z

c je
i jωt ,

β(t)

〈β〉 =
∑
j∈Z

β je
i jωt ,

p(t)

〈p〉 =
∑
j∈Z

p je
i jωt , (15)

where ω = 2π
T , 〈β〉 := 1

T

T∫
0

β(t) dt and 〈p〉 := 1
T

T∫
0
p(t) dt . The eigenfunction u(t)

can also be normalized so that c0 = 〈c〉 = 1. Substituting (15) into (13), the eigenvalue
equation expands as follows:

R0

θN S̄〈β〉〈p〉
∑
j∈Z

c je
i jωt =

∑
m∈Z

∑
l∈Z

∑
n∈Z

βl pmcne
i(m+l+n)ωt

∫ ∞

0
e−dse−i(m+n+l)ωsds

∫ ∞

0
g(a)e−i(l+n)ωada

∫ ∞

0
f (τ )e−i(l+n)ωτdτ

=
∑
j∈Z

∑
k∈Z

∑
n∈Z

βk−n p j−kcne
i jωt Fk

d + i jω
,
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where in the last step we make changes of indices j = l + m + n and k = l + n, and
denote

Fk :=
∫ ∞

0
g(a)e−ikωada

∫ ∞

0
f (τ )e−ikωτdτ. (16)

We denote

γ = d

θN S̄〈β〉〈p〉 , Hj = d

d + i jω
. (17)

It is readily seen that

γ R0c j = Hj

∑
k∈Z

∑
n∈Z

Fkβk−n p j−kcn . (18)

Note that Fk is the product of characteristic functions corresponding to probability
distributions g and f evaluated at − kω and Hj is the characteristic function of the
exponential distribution evaluated at − jω. Also, recall the product of characteris-
tic functions is equal to the characteristic function of sum of independent random
variables with corresponding probability distributions. Thus, coefficients determining
the effect of periodicity on reproduction number are influenced by how the periodic
drug efficacies interact with the probability kernels describing delays in the replication
cycle.

4.2 Perturbation Analysis

Next, we consider the particular case where the drug efficacies are sinusoidal pertur-
bations from constant values, ei , given by ηi (t) in (4), along with a possible phase
difference between the distinct drug administrations. Then, it suffices to let

β(t)

〈β〉 = 1 + 2εα1 cosωt,
p(t)

〈p〉 = 1 + 2εα2 cos[ω(t − φ)], (19)

where αi = − ai
2(1−ei )

, and φ ∈ [0, T ) represents the phase difference between the
distinct antiviral drug efficacies, i.e., φ = (φ2 − φ1) mod T , where φ1 and φ2 are
the phases of two drug administrations. The phase difference inherently describes the
timing between dosages of the two drugs in the periodic schedule. It follows that the
Fourier coefficients for β(t) and p(t) are as follows:

β0 = p0 = 1, β1 = β−1 = εα1, p1 = εα2e
−iωφ, p−1 = εα2e

iωφ,

and β j = p j = 0 for | j | ≥ 2.
We assume ε > 0 is small and write γ R0 and c j as power series expansions in ε:

γ R0 =
∑
k≥0

ρ0kε
k, c j =

∑
k≥0

c jkε
k .
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Since β j = p j = 0 for | j | ≥ 2, we can simply write Eq. (18) as

γ R0c j = Hj [p−1Fj+1(β−1c j+2 + β0c j+1 + β1c j )

+ p0Fj (β−1c j+1 + β0c j + β1c j−1)

+ p1Fj−1(β−1c j + β0c j−1 + β1c j−2)]. (20)

By substituting these expansions into (20) and comparing the coefficients of εk (with
k = 0, 1, 2, 3) on both sides, we obtain

ρ00c j0 = Hj Fj c j0,

ρ01c j0 + ρ00c j1 = Hj [Fj+1α2e
iωφc j+1,0 + Fj (α1c j+1,0 + c j1 + α1c j−1,0)

+ Fj−1α2e
−iωφc j−1,0],

ρ02c j0 + ρ01c j1 + ρ00c j2 = Hj [Fj+1α2e
iωφ(α1c j+2,0 + c j+1,1 + α1c j0)

+ Fj (α1c j+1,1 + c j2 + α1c j−1,1) + Fj−1α2e
−iωφ(α1c j0 + c j−1,1 + α1c j−2,0)],

ρ03c j0 + ρ02c j1 + ρ01c j2 + ρ00c j3 = Hj [Fj+1α2e
iωφ(α1c j+2,1 + c j+1,2 + α1c j1)

+ Fj (α1c j+1,2 + c j3 + α1c j−1,2) + Fj−1α2e
−iωφ(α1c j1 + c j−1,2 + α1c j−2,1)].

From the normalization condition c0 = 1, we have c00 = 1 and c0k = 0 for k ≥ 1. It
then follows from the first equation (with j = 0,±1,±2, . . .) that ρ00 = H0F0 = 1
and c j0 = 0 for | j | ≥ 1. Substituting these into the second equation (with j = 0,±1)
yields ρ01 = 0 and

c11 = H1F1c11 + H1F1α1 + H1α2e
−iωφ,

c−1,1 = H−1α2e
iωφ + H−1F−1α1 + H−1F−1c−1,1. (21)

It is easy to obtain from the second equation that c j1 = 0 for | j | ≥ 2. Next, we set
j = 0 in the third equation to find

ρ02 = α2F1e
iωφ(c11 + α1) + α1c11 + α1c−1,1 + α2F−1e

−iωφ(α1 + c−1,1)

= α1α2(F1e
iωφ + F−1e

−iωφ) + c11(α2F1e
iωφ + α1) + c−1,1(α2F−1e

−iωφ+α1).

Note that H1 and H−1, and F1 and F−1 defined in (17) are conjugates. Thus, on account
of (21), we obtain

ρ02 = 2α1α2 f1 + 2(α2
1 + α2

2) f2, (22)

where

f1 = Re
F1eiωφ + H1e−iωφ

1 − H1F1
= A cos(ωφ) + B sin(ωφ)

|1 − H1F1|2 ,

f2 = Re
H1F1

1 − H1F1
= Re(H1F1) − |H1F1|2

|1 − H1F1|2 .
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Here, we recall that H1 = d
d+iω and F1 = ∫ ∞

0 g(a)e−iωada
∫ ∞
0 f (τ )e−iωτdτ , and,

for simplicity, we have denoted

A = (1 − |H1|2)Re(F1) + (1 − |F1|2)Re(H1),

B = −(1 − |H1|2) Im(F1) + (1 − |F1|2) Im(H1).

By choosing j = ±1 in the third equation, we further obtain c12 = c−1,2 = 0. Finally,
it is easy to calculate from the fourth equation with j = 0 that ρ03 = 0.

We summarize the above calculation in the following theorem displaying the effect
of sinusoidal drug efficacy perturbations on R0, alongwith the optimal phase difference
φ∗ between the two drugs.

Theorem 5 If β(t) and p(t) are small perturbations of constants as given in (19), then
the basic reproduction number has the asymptotic formula

R0 = θN S̄〈β〉〈p〉
d

(1 + ρ02ε
2 + O(ε4)),

where ρ02 is given as in (22). Furthermore, ρ02 is minimized at the phase difference

φ∗ = T

2
+ T

2π
arctan

B

A
mod T

if A ≥ 0, and

φ∗ = T

2π
arctan

B

A
mod T

if A < 0.

Note that ρ02 is the first coefficient in the expansion of R0 corresponding to ampli-
tude, ε, and therefore will control the effect of periodic perturbations on R0. In
particular, we are interested in the optimal phase difference φ∗ which will minimize
ρ02 and, in turn, minimize R0.

4.3 Numerical Computation

We first use finite difference method (Posny and Wang 2014) to compute R0, which
is the principal eigenvalue of the linear operator L in (12). By defining

K (t, s) = θN S̄e−dsβ(t − s)
∫∫

a+τ≤s
ed(a+τ)g(a) f (τ )p(t − s + a + τ)dadτ, (23)

we can rewrite (12) as (Lφ)(t) = ∫ ∞
0 K (t, s)φ(t−s)ds.Given a large integerM > 0,

we discretize the period [0, T ] as t0 ≤ t1 ≤ · · · tM , where t j = j�t with �t = T /M .
For j > M or j < 0, we still denote t j = j�t . The above linear operator can be
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approximated by a matrix of dimension n: (L̂φ̂) j = ∑M
k=1 L̂ jk φ̂k, where φ̂ is the

numerical approximation of φ(x) and

L̂ jk = �t
∞∑
l=0

K (t j , t j−k+lM ). (24)

Here, for convenience, we set K (t, s) = 0 if s < 0. The kernel K (t j , tm) in (23) can
be approximated via a standard quadrature formula:

K (t j , tm) ≈ θN S̄e−dtmβ(t j−m)�t2
∑

k+l≤m

wkl(m)edtk+l g(tk) f (tl)p(t j−m+k+l),

where the quadrature weights can be chosen as wkl(m) = 1 and w0l(m) = wk0(m) =
wkk(m) = 1/2 for 0 < k, l < m; and w00(m) = wm0(m) = wm0(m) = 1/6. To save
the computation cost, we use the following recurrence relation to calculate the kernel
function:

K (t j , tm) = e−d�t K (t j−1, tm−1) + θN S̄e−dtmβ(t j−m)∫∫
tm−1≤a+τ≤tm

ed(a+τ)g(a) f (τ )p(tm−1 + a + τ)dadτ,

where the double integral on the right-hand side can be approximated via a standard
quadrature formula. If the probability density functions g and f decay rapidly at
infinity, the kernel function K (t, s) in (23) also decays rapidly as s → ∞, and we
can truncate the series in (24) as a finite sum, say, at lm . In our simulation, we choose
lm = 5 and do not observe significant differences in the results with larger lm .

Another numerical method in the computation of R0 is based on the Fourier trans-
form of periodic functions and spectral decomposition of linear operator L in (12).
Let M > 0 be a large even integer. Set �t = T /M and t j = j�t for j ∈ N. We take
discrete Fourier transforms

u(t) ≈
M/2−1∑
j=−M/2

ũ je
i jwt , β(t) ≈

M/2−1∑
j=−M/2

β̃ je
i jwt , p(t) ≈

M/2−1∑
j=−M/2

p̃ je
i jwt ,

where the coefficients are given by discrete inverse Fourier transform:

ũ j = 1

M

M∑
k=1

u(tk)e
−i jwtk , β̃ j = 1

M

M∑
k=1

β(tk)e
−i jwtk , p̃ j = 1

M

M∑
k=1

p(tk)e
−i jwtk .

It is easily seen that ũ j , β̃ j , p̃ j can be extended as periodic sequence inNwith the same
period M . We use the above Fourier transforms to approximate the linear operator L
in (12) as a matrix L̃ of dimension M :
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Fig. 1 Comparison of spectral method and finite difference method (Colour figure online)

(L̃ũ) j =
∑

m+n+l= j
m,n,l∈[−M/2,M/2−1]

θN S̄
∫∫∫

a,τ,s≥0

e−ds+imw(t−s)+ilw(t−s−a−τ)+inw(t−s−a−τ)

p̃m β̃l ũng(a) f (τ )dadτds

= θN S̄

d + i jw

∑
k−n, j−k,n∈[−M/2,M/2−1]

Fk β̃k−n p̃ j−k ũn,

where ũ = (ũ−M/2, . . . , ũM/2−1)
T and Fk is given in (16).

To compare the two numerical methods, we consider a toy model:

θ = 1, N = 1, S̄ = 0.1, T = 2π, d = 1, g(a) = e−a, f (τ ) = e−τ ,

and β(t) = (t − T /2)2, p(t) = t(T − t) for t ∈ [0, T ]. It is observed from numer-
ical simulation (Fig. 1) that the spectral method is faster and more accurate than the
finite difference method. Notice that this is only a special case with specific data. A
theoretical analysis is required to justify the advantage of spectral method over finite
difference method. We leave this problem for future investigation.

4.4 Examples

In the subsection, we consider three examples: (i) bursting viral production model;
(ii) budding with constant delay and viral production rate; and (iii) gamma-distributed
intracellular and viral production.

Example 1 Bursting viral production model
Consider a simple case when the infected cells release all virus particles at a fixed
age τ0, namely γ (τ) = δ(τ − τ0) in the age-structured model, where δ(τ ) is the
Dirac delta mass centered at τ = 0. The viral production rate is also a delta function
q(a) = Nδ(a). It can be calculated that
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θ = e
−

τ0∫
0

μ1(a)da
, f (τ ) = δ(τ − τ0), g(a) = δ(a).

The corresponding delay differential system is

S′(t) = λ − δS(t) − β(t)S(t)V (t),

V ′(t) = θNp(t)β(t − τ0)S(t − τ0)V (t − τ0) − dV (t).

Upon assuming p(t), β(t) are of the small amplitude sinusoidal type (19), we can
utilize Theorem 5 to obtain the second-order effect on R0 from the amplitude param-
eter, ε, of the periodic drug efficacies. In particular, F1 = e−iωτ0 , which implies A =
(1 − |H1|2) cos(ωτ0) and B = (1 − |H1|2) sin(ωτ0). Note that arctan(B/A) = ωτ0
mod T if A ≥ 0, and arctan(B/A) = π + ωτ0 mod T if A < 0. Thus, the optimal
phase difference between the combination drug treatments with period T in the case
of bursting virus model with intracellular delay τ0 is φ∗ = T /2 + τ0 mod T . The
intuition for this result can be related to the previous work on the ODE virus model
(Browne and Pilyugin 2016), which argues that the maximal rates of viral production
and infection should be de-synchronized to antagonize the virus replication cycle.

Here we also bring to attention the recent work by Neagu et al. (2018), exploring
potential viral evolution of its intracellular delay in order to “resist” antiviral treatment
for a single drug with periodic efficacy. To find the critical delay from the virus
perspective in the case of single-drug treatment, consider the special case β(t) =
1 + 2ε cosωt and p(t) = 1. Then, it follows that the first term involving ε in the
expansion of R0(ε), the ε2 coefficient ρ02, can be written as:

ρ02= 2d [d cosωτ0 − ω sinωτ0 − d]

2d(d − d cosωτ0 + ω sinωτ0)+ω2 =
[
−1+ ω2/(2d)

d cosωτ0 − ω sinωτ0 − d

]−1

,

which achieves its maximum when d cosωτ0 − ω sinωτ0 = √
d2 + ω2. Thus, the

critical delay from the virus perspective can be calculated as τ ∗
0 = T −arctan(ω/d)/ω

mod T . At this critical value, ρ02 = 2d/(
√

ω2 + d2 − d). The result concurs with
simulation and informal arguments in Neagu et al. (2018) showing that the critical
intracellular delay for the virus is slightly less than drug dosing period, and when
ω/d is small, the offset is close to the (free) virus generation time (1/d). Note that an
objective function different from R0 was chosen in Neagu et al. (2018) and the offset
was estimated as 1/(2d).

Example 2 Budding with constant delay and viral production rate
Assume the infected cells mature at the age τ = τ0 and all mature-infected cells have
constant death rate and virus production rate; namely, in the age-structured model, we
have γ (τ) = δ(τ − τ0) as before, and μ2(a) = ν, and q(a) = νN . We then have

θ = e
−

τ0∫
0

μ1(a)da
, f (τ ) = δ(τ − τ0), g(a) = νe−νa .

123



   29 Page 18 of 29 C. J. Browne et al.

Denote the number of productively infected cells by I (t) =
∞∫
0
i(t, a) da, we arrive at

the delay differential system

S′(t) = λ − δS(t) − β(t)S(t)V (t),

I ′(t) = θβ(t − τ0)S(t − τ0)V (t − τ0) − ν I (t),

V ′(t) = νNp(t)I (t) − dV (t).

It is noted that the bursting case in Example 1 is the same as the limiting case of
budding here in Example 2 with ν → ∞. It is easily seen that F1 = νe−iωτ0/(ν + iω).
Recall that H1 = d/(d + iω). It is easily seen that

A = ω2

d2 + ω2 · ν[ν cos(ωτ0) − ω sin(ωτ0)]
ν2 + ω2 + ω2

ν2 + ω2 · d2

d2 + ω2 ,

B = ω2

d2 + ω2 · ν[ω cos(ωτ0) + ν sin(ωτ0)]
ν2 + ω2 + ω2

ν2 + ω2 · −dω

d2 + ω2 .

Consequently, the optimal phase shift of drug treatments is

φ∗ = T

2
+ T

2π
arctan

ν[ω cos(ωτ0) + ν sin(ωτ0)] − dω

ν[ν cos(ωτ0) − ω sin(ωτ0)] + d2
mod T

if A ≥ 0, and

φ∗ = T

2π
arctan

ν[ω cos(ωτ0) + ν sin(ωτ0)] − dω

ν[ν cos(ωτ0) − ω sin(ωτ0)] + d2
mod T

if A < 0. Especially, when τ0 = 0 (which corresponds to the ODE virus model), the
above formula reduces to φ∗ = T

2 + T
2π arctan ω(ν−d)

ν2+d2
mod T . This concurs with the

result of global minimization of R0 at φ∗ = T /2 obtained for bang–bang-type drug
efficacies in the case of equal infected cell and viral death rates, ν = d (Browne and
Pilyugin 2016).

In order to find the critical delay from the virus perspective in the case of single-drug
treatment, consider the special case β(t) = 1 + 2ε cosωt and p(t) = 1. We consider
ρ02 as a function of τ0:

ρ02 = 2dν
[−dν + (dν − ω2) cosωτ0 − (ωd + ων) sinωτ0

]
(dν − ω2 − dν cosωτ0)2 + (ωd + ων + dν sinωτ0)2

=
[
−1 + ω2(d2 + ω2 + ν2)/(2dν)

−dν + (dν − ω2) cosωτ0 − (ωd + ων) sinωτ0

]−1

,

which achieves its maximum when

(dν − ω2) cosωτ0 − (ωd + ων) sinωτ0 =
√

(dν − ω2)2 + (ωd + ων)2.
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Fig. 2 The basic reproduction number R0 as a function of the maturation delay τ0. The numeric values are
computed using both finite difference and spectral methods with sufficiently many mesh points such that
the graphs obtained from both methods are almost the same. In the subfigure, we set ν = 15 and choose
τ0 = 0.7 (blue dotted curve) and τ0 = 0.8 (red dashed curve), respectively, to calculate the viral population
along the time (Color figure online)

Thus, the critical delay can be calculated as:

τ ∗
0 = T − T

2π
arccos

dν − ω2√
(dν − ω2)2 + (ωd + ων)2

mod T .

We will use the following parameter values representative of HIV infection (Perel-
son and Nelson 1999) to conduct numerical simulations:

λ = 104, δ = 0.01, θ = 0.98, k = 8 × 10−7,

d = 13, τ0 = 2, T = 1, N = 300. (25)

For this example, we consider sinusoidal drug efficacies of form (4) with η1(t) =
0.945 − 2ε cos(ωt) and η2(t) = 0, where ε = 0.01 and ω = 2π . Now, we choose
different values of ν and vary τ0 to see how the time delay affects the basic reproduction
number, producing the T− periodic curves R0(φ) displayed in Fig. 2. Again note that
when ν → ∞, the model reduces to the one in Example 1. Observe that the amplitude
of R0(τ0) increases and the critical delay τ ∗

0 shifts closer to being synchronized with
the period T as ν → ∞.

Next we consider periodic combination drug therapy, setting ηi (t) = 0.765 −
2ε cos(ωt) with ε = 0.05, and consider the effect of varying phase difference φ

between drug efficacies, η1(t) and η2(t − φ), on R0. In Fig. 3a, we plot R0 as a
function of the phase shift φ with different values of ν for the case τ0 = 1.9283.
Note that this is the critical viral delay, τ ∗

0 , when ν → ∞ in the case of single-drug
therapy shown in Fig. 2). Notice that in the viral bursting case (ν → ∞), the phase
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(a) (b)

Fig. 3 The basic reproduction number R0 as a function of the phase shiftφ for a τ0 = 1.9283 and b τ0 = 1.6.
The numeric values are computed using both finite difference and spectral methods with sufficiently many
mesh points such that the graphs obtained from both methods are almost the same (Colour figure online)

difference φ substantially affects R0. In particular, if the P-inhibitor is introduced at
φ = 0.5, R0 reduces to below one, as opposed to either the single-drug (maximal R0)
or in-phase (φ = 0) scenario. Thus, if the virus optimizes its R0 under single-drug
therapy as discussed in Neagu et al. (2018), it is still possible to effectively antagonize
the virus with a correctly timed distinct antiviral drug. Also, observe in this case, as
we decrease ν, the amplitude of R0(φ) decreases. In Fig. 3b, we consider the case
τ0 = 1.6. The curves of R0(φ) change substantially from the prior case, showing
the sensitivity of R0 to both τ0 and φ. We observe from Fig. 3 that as ν increases,
both average and amplitude of R0 decrease, and the optimal φ∗ shifts to the left, even
though the reproduction number corresponding to the case with constant drug efficacy
(ε = 0) remains fixed.

Example 3 Gamma-distributed intracellular and viral production
Recent studies have shown for HIV the intracellular and viral production kernels may
be gamma-distributed (Beauchemin et al. 2017). Thus, we let

f (τ ) = τ k1−1e−τ/θ1

�(k1)θ
k1
1

, g(a) = ak2−1e−a/θ2

�(k2)θ
k2
2

.

For illustration, we consider the simple case when k1 = k2 = 1. Define

I (t) = θθ2

∫ ∞

0

∫ ∞

0
g(a) f (τ )β(t − a − τ)S(t − a − τ)V (t − a − τ)dτda

and E(t) = θ1
∫ ∞
0 f (τ )β(t−τ)S(t−τ)V (t−τ)dτ.Wetransform thedelaydifferential

system into an ordinary differential system:

S′(t) = λ − δS(t) − β(t)S(t)V (t),

E ′(t) = β(t)S(t)V (t) − E(t)/θ1,

I ′(t) = θE(t)/θ1 − I (t)/θ2,

V ′(t) = p(t)N I (t)/θ2 − dV (t). (26)
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This is equivalent to the age-structured PDE (3) with

γ (τ) = θ/θ1, μ1(τ ) = (1 − θ)/θ1, q(a) = N/θ2, μ2(a) = 1/θ2.

Similarly, for any positive integers k1 and k2, we can use linear chain trick (Smith
2011) to obtain a system of k1 + k2 + 2 ordinary differential equations. However, we
assume k1 and k2 are positive real numbers, and thus, the model system is in general
still of infinite dimension. It can be calculated that

F1 = (1 + iθ1ω)−k1(1 + iθ2ω)−k2 = |F1|e−i(ω1k1+ω2k2),

where |F1| = [1 + (θ1w)2]−k1/2[1 + (θ2ω)2]−k2/2, ω1 = arctan(θ1ω) and ω2 =
arctan(θ2ω). A further computation gives

A = ω2

d2 + ω2 · |F1| cos(ω1k1 + ω2k2) + (1 − |F1|2) · d2

d2 + ω2 ,

B = ω2

d2 + ω2 · |F1| sin(ω1k1 + ω2k2) + (1 − |F1|2) · −dω

d2 + ω2 .

Consequently, the optimal phase shift of drug treatments is

φ∗ = T

2
+ T

2π
arctan

ω2|F1| sin(ω1k1 + ω2k2) − dω(1 − |F1|2)
ω2|F1| cos(ω1k1 + ω2k2) + d2(1 − |F1|2) mod T

if A ≥ 0, and

φ∗ = T

2π
arctan

ω2|F1| sin(ω1k1 + ω2k2) − dω(1 − |F1|2)
ω2|F1| cos(ω1k1 + ω2k2) + d2(1 − |F1|2) mod T

if A < 0.
For numerical simulations in this example, we consider more realistic drug effica-

cies given by the impulsive exponential decay dose–response form (5) as inVaidya and
Rong (2017). The pharmacodynamic parameters chosen are consistent with antiviral
medications (RTIs and PIs) for HIV studied in Shen et al. (2008). For the RTI drug
class, we consider two different types, NRTIs and NNRTIs, which have different slope
parameters,m1, in (5). In particular, we takem1 = 1 or 2 in simulations, with the larger
m1 value increasing the drug efficacy. Figure 4a displays the periodic drug efficacies
utilized for the RTI, η1(t) (for the 2 different m1 values), and the P I , η2(t − φ). The
baseline HIV parameter values are kept as (25). Furthermore, we choose the gamma
distribution parameters in line with the recent experimental estimates obtained for SIV
parameters (Beauchemin et al. 2017). In particular,

k1 = 3.5, k2 = 12, θ1 = τ0/k1 = 0.57, θ2 = 1/(k2ν) = 0.12.

In Fig. 4b, we plot the basic reproduction number as a function of the phase difference
φ for m1 = 1 and 2. Next for the case where m1 = 2, in Fig. 4c, we also plot R0 for

123



   29 Page 22 of 29 C. J. Browne et al.

(a) (b)

(c) (d)

Fig. 4 a Impulsive exponential decay dose–response drug efficacies of RTI (blue or red) and PI (black). The
pharmacodynamic parameters used in simulations from formula (5) are m1 = 1 (red) or 2 (blue), m2 = 3,
and ri = 6 ln 2, Cmaxi /IC50i = 15 for i = 1, 2. b R0 as a function of phase difference φ for the cases
m1 = 1 (red) or 2 (blue). The gamma distribution parameters are k1 = 3.5, k2 = 12 and HIV parameters
are given in text. c R0 as a function of phase difference φ when m1 = 1 for gamma distribution parameters
k1 = k2 = 1 and k1 = 3.5, k2 = 12. d Simulations of time-dependent solutions displaying virus level
when k1 = k2 = 1 for in-phase (φ = 0) and out-of-phase (φ = 0.5) drug combination (Color figure online)

gamma distribution parameters k1 = 1, k2 = 1, θ1 = τ0/k1 = 2, θ2 = 1/(k2ν) = 1,
corresponding to the analogous ODE (26). Observe that the optimal phase shifts are
almost the same and the optimal values of basic reproduction number are nearly
identical. Thus, in terms of R0, the ODE can be a good approximation of the infinite-
dimensional equations corresponding to fitted parameters. The ODE case also has
the advantage of relative ease in conducting numerical simulations. Thus, we display
time-dependent solutions in Fig. 4d illustrating how the phase difference critically
affects the outcomes of viral persistence versus extinction corresponding to whether
R0 is greater or less than unity.

5 Discussion

In this paper, we studied within-host viral dynamics under general intracellular dis-
tributed delays and periodic combination antiretroviral therapy. Our formulation
extends previousmodels by inclusionof eclipse andviral production stages as probabil-
ity distributions, alongwith time-varying drug treatments. This allowsus to incorporate
recent experimentally derived gamma distribution parameters of HIV replication
(Beauchemin et al. 2017) and pharmacodynamic models of drug therapy. Further-
more, to the best of our knowledge, we provide the first rigorous analysis establishing
the basic reproduction number R0 as a global threshold determining extinction versus
persistence in an infinite-dimensional virusmodelwith intracellular delay and periodic
antiviral treatment. Although an explicit formula is not possible, we utilize Fourier
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analysis to provide an effective method of analytical and numerical approximation of
R0. In the proof of persistence theorem,we chose to construct an autonomous semiflow
as in Saperstone (1981). It is worth mentioning that one may use another approach by
considering the associated Poincaré (time-periodic) map (Zhao 2017b).

Motivated by previous results demonstrating large impacts on periodic viral dynam-
ics induced by varying intracellular delays (Neagu et al. 2018) or phase shifts in
combination drug therapy (Browne and Pilyugin 2012), we characterize how the tim-
ing of, both, viral replication cycle and combination antiviral regimen can critically
affect R0. Our analytical and numerical results show that a combination therapy can
effectively neutralize a virus by optimizing phase difference φ between two distinct
antivirals, even in the case that the virus adapts to a single drug through “synchroniz-
ing” its intracellular delay τ0 with dosing period, as in Neagu et al. (2018). The phase
difference φ between antiviral drug efficacies substantially affects R0 in simulations
with realistic pharmacokinetics and gamma-distributed viral production delays for
HIV (Fig. 4). Thus, consideration of pharmacodynamics and dosing regimen together
with viral replication kinetics may be important for the optimization of treatment.

There are several limitations to ourmodel (9), which can be further addressed. First,
as already mentioned in Remark 1, more detailed models of the viral replication cycle
can allow for the precisemode of action of specific antiviralmedications (e.g., RTIs). In
“Appendix A”, we show that assuming a fixed (discrete) intracellular delay for reverse
transcription (RT) simply shifts the action of an RTI by this delay duration in our
analyzedmodel (9); however,more general RT delay distributionswill require analysis
of the extended model. Additionally, although our model predicts the clearance of the
viruswhen R0 < 1, current treatment for HIV cannot eradicate the virus due to latently
infected cells which are not targeted by antiviral therapy. Recent studies have modeled
HIV persistence and the latent reservoir (Rong and Perelson 2009), which provides
motivation for extending ourmodel to include latency. Finally, drug resistancemaybe a
barrier to treatment success and will be studied in future research into the optimization
of antiviral therapies.
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A ExtendedModel with Reverse Transcription

We consider the following generalization of (3) with extra compartment explicitly
tracking the process of reverse transcription (RT) during the eclipse phase of infected
cell. Thus, the infected cells in the eclipse phase, j(t, τ ), are separated into two classes
j1(t, τ1) and j2(t, τ2) measuring infected cells τ1 units of time after cell infection,
before RT, and τ2 units of time after RT, respectively. Then, the eclipse phase-infected
cell equation in (3) is modified as follows:
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(
∂

∂t
+ ∂

∂τ1

)
j1(t, τ1) = −(ν1(τ1) + γ1(τ1)) j(t, τ1), j1(t, 0) = kS(t)V (t),

(
∂

∂t
+ ∂

∂τ

)
j2(t, τ ) = −(ν2(τ ) + γ2(τ )) j2(t, τ ),

j2(t, 0) = (1 − η1(t))

∞∫
0

γ1(τ1) j1(t, τ1)dτ1,

(
∂

∂t
+ ∂

∂a

)
i(t, a) = −μ(a)i(t, a), i(t, 0) =

∞∫
0

γ2(τ ) j2(t, τ )dτ.

In the special case that γ1(τ1) = δ(τ1 − r), then we have

j2(t, 0) = (1 − η1(t))e
− ∫ r

0 ν1(s)kS(t − r)V (t − r),

which implies that

j2(t, τ2) = k(1 − η1(t − τ2))e
− ∫ r

0 ν1(s)S(t − τ2 − r)V (t − τ2 − r)

e− ∫ τ2
0 (ν2(s)+γ2(s))ds

= k(1 − η1(t − τ + r))e− ∫ r
0 ν1(s)S(t − τ)V (t − τ)e− ∫ τ−r

0 (ν2(s)+γ2(s))ds,

where τ := τ2 + r . Consequently, the differential equation for V (t) becomes

V ′(t) = p(t)

∞∫
0

∞∫
0

q(a)e
−

a∫
0

μ(s)ds
γ2(τ )e

−
r∫
0

ν1(s)ds−
τ−r∫
0

(ν2(s)+γ2(s))ds
β(t − a − τ + r)

S(t − a − τ)V (t − a − τ)dτdτda − dV ,

which is the same as Eq. (9) with the effective infection rate (affected by the RT
inhibitor) shifted by r units of time, i.e., β̃(t) = β(t + r). The corresponding

relation between PDE and DDE is: P(τ ) = e
−

r∫
0

ν1(s)ds−
τ−r∫
0

ν2(s)ds
and π(τ) =

γ2(τ )e
−

τ−r∫
0

γ2(s)ds
, θ :=

∞∫
0
P(τ )π(τ)dτ , f (τ ) = (P(τ )π(τ))/θ , along with g(a) =

(q(a)σ (a))/N , N =
∞∫
0
q(a)σ (a)da where σ(a) = e

−
a∫
0

μ(s)ds
.

B Proof of Theorem 4

We proceed in the following steps.
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1. In Sect. 3.1, we have proved that �(t) is point dissipative and the trajectories of
any given bounded set are uniformly bounded.

2. We show that �(t) is asymptotically smooth.
Fix C > λ/min{δ, d}. It follows from Burton and Hutson (1989), Lemma 3.2 that
the set

BC := {u ∈ C+
α : sup

θ≤0
u(θ)eαθ/2 ≤ C}

is compact inC+
α .Weneed toprove that BC×BC×RT attracts all bounded invariant

set � in X = C+
α ×C+

α ×RT . Fix any (Sr , Vr , r) in �, we denote (St , Vt , t +r) =
�(t)(Sr , Vr , r) such that (S(t), V (t)) = (St (0), Vt (0)) satisfies system (8), (9) for
t > r with the initial condition (S(r + θ), V (r + θ)) = (Sr (θ), Vr (θ)) for θ ≤ 0.
Since the limit superior of S(t) is bounded above by λ/δ, we have S(t) < C for
all large t . Let t0 ≥ 0 be the largest t ≥ r such that S(t) ≥ C . If S(t) < C for all
t ≥ r , we set t0 = r . For t > t0, define

ut (θ) :=
{
St (θ), t0 − t ≤ θ ≤ 0,

S(t0)e−α(θ−t0+t)/2, θ ≤ t0 − t .

It is readily seen that ut ∈ BC . Now, we intend to show that ‖ut − St‖α → 0 as
t → ∞. For θ ∈ [t0 − t, 0], we have ut (θ) = St (θ). As t → ∞, we have

ut (θ)eαθ = S(t0)e
α(θ+t0−t)/2 ≤ Ceα(t0−t) → 0, θ ≤ t0 − t;

St (θ)eαθ ≤ S(t + θ)eα(t0−t) ≤ sup
r≤s≤t0

S(s)eα(t0−t) → 0, θ ∈ [r − t, t0 − t];

St (θ)eαθ = Sr (t − r + θ)eα(θ+t−r)e−α(t−r) ≤ ‖Sr‖αe
−α(t−r) → 0, θ ≤ r − t .

Therefore,

‖ut − St‖α = sup
θ≤t0−t

|ut (θ) − St (θ)|eαθ

≤ Ceα(t0−t) + max{ sup
r≤s≤t0

S(s)eα(t0−t), ‖Sr‖αe
−α(t−r)} → 0,

as t → ∞. Similarly, we define

vt (θ) :=
{
Vt (θ), t1 − t ≤ θ ≤ 0,

V (t1)e−α(θ−t1+t)/2, θ ≤ t1 − t,

where t1 is the largest t ≥ r such that V (t) ≥ C ; if V (t) < C for all t ≥ r , then
we set t1 = r . It can be shown that vt ∈ BC and ‖vt − Vt‖α → 0 as t → ∞.
Therefore, the compact set BC ×BC ×RT attracts all bounded invariant set� ∈ X ,
which proves asymptotic smoothness of system (8), (9).
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3. By Hale and Waltman (1989), Theorem 2.1, �(t) possesses a nonempty global
attractor in X . Denote X0 = {(u, v, r) ∈ X : v(0) > 0} and ∂X0 = X\X0 =
{(u, v, r) ∈ X : v(0) = 0}. Introduce a generalized distance function p : X → R+
as p(u, v, r) = v(0). It is readily seen that p−1(0) = ∂X0 and p−1(0,∞) = X0.
Furthermore, by comparison principle, p(�(t)x) > 0 for all x ∈ X0. Hence,
the condition (P) in Smith and Zhao (2001), Section 3 is verified; see also Zhao
(2017b), Definition 1.3.1.
We now prove that the basin of attraction for E0 × RT does not intersect
p−1(0,∞) = X0. Assume to the contrary that there exists (S0, V0, t0) ∈ X0
such that (S(t), V (t)) → (S̄, 0) as t → ∞, where (S(t), V (t)) = (St (0), Vt (0))
with (St , Vt ) = U (t, t0)(S0, V0). Since V (0) > 0, comparison principle shows
that V (t) > 0 for all t ≥ 0. For any μ, ν > 0, we introduce a parametrized
operator on PT :

(Lμ,νφ)(t) = θN S̄

∞∫
0

∞∫
0

∞∫
0

e−μ(s+a+τ)−(d+ν)s p(t − s)g(a) f (τ )β(t − s − a − τ)

φ(t − s − a − τ)dτdads.

Clearly, ρ(L0,0) = R0 > 1. It follows from continuity (Degla 2008, Theorem
2.1) and monotonicity (Burlando 1991, Theorem 1.1) of Lμ,ν on both μ and ν

that ρ(Lδ,δ) > 1 for some small δ > 0. Krein–Rutman theorem guarantees that
the principal eigenfunction φ of Lδ,δ is positive. Set ε = S̄ − S̄/ρ(Lδ,δ) > 0 and
v(t) = eδtφ(t). It is easily seen that

v(t) = θN (S̄ − ε)

∞∫
0

∞∫
0

∞∫
0

e−(d+δ)s p(t − s)g(a) f (τ )β(t − s − a − τ)

v(t − s − a − τ)dτdads.

Differentiating both sides gives a periodic renewal equation

v′(t) = −(d + δ)v(t) + θN (S̄ − ε)p(t)
∫ ∞

0

∫ ∞

0
β(t − a − τ)g(a) f (τ )

v(t − a − τ)dadτ.

Since S(t) → S̄ as t → ∞, there exists t0 > 0 such that S(t) > S̄ − ε for all
t > t0. Define

F(t) = θN (S̄ − ε)p(t)
∫∫

τ+a≥t−t0
β(t − a − τ)g(a) f (τ )v(t − a − τ)dadτ.

It is easy to show that F(t) → 0 as t → ∞. On the other hand, v(t) = eδtφ(t) →
∞ as t → ∞. There exists t1 > t0, such that F(t) < δv(t) for all t > t1.
Consequently, we obtain
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v′(t) ≤ −dv(t) + θN (S̄ − ε)p(t)
∫∫

τ+a≤t−t0
β(t − a − τ)g(a) f (τ )

v(t − a − τ)dadτ

for all t ≥ t1. On the other hand,

V ′(t) ≥ −dV (t) + θN (S̄ − ε)p(t)
∫∫

τ+a≤t−t0
β(t − a − τ)g(a) f (τ )

V (t − a − τ)dadτ

for all t ≥ t1. Let C = maxt∈[t0,t1][v(t)/V (t)]. It follows from comparison prin-
ciple that CV (t) ≥ v(t) for all t ≥ t0. This leads to a contradiction because v(t)
is unbounded but V (t) vanishes as t → ∞.

4. We demonstrate that E0 × RT is isolated and acyclic.
Obviously, E0 ×RT is isolated. If to the contrary E0 ×RT is cyclic, namely, there
exists a homoclinic orbit {S(t), V (t)} that connects E0 as t → ±∞. We claim that
V (t) = 0 for all t . Otherwise, if V (t0) > 0 for some t0 ∈ R, then by (9), V (t) > 0
for all t ≥ t0. A similar argument as in the previous step shows that V (t) cannot
converge to 0 at infinity. Hence, V (t) = 0 for all t , which reduces (8) to a single
ordinary equation and contradicts to the existence of homoclinic orbit.

5. All the conditions in Smith and Zhao (2001), Theorem 4.7 (see also Zhao 2017b,
Theorem 1.3.2) have been verified. Therefore, there exists δ0 > 0 such that
lim inf t→∞ p(�(t)x) > δ0 for any x ∈ X0. Let (S, V ) be the solution of (8),
(9) with the initial condition (u0, v0) ∈ Cα × Cα such that v0(0) > 0. Denote
St (θ) = S(t + θ) and Vt (θ) = V (t + θ) for all t ≥ 0 and θ ≤ 0. We then have
(u0, v0, 0) ∈ X0 and (St , Vt , t) = �(t)(u0, v0, 0). The persistent of �(t) with
respect to the distance function p implies that lim inf t→∞ V (t) > δ0. By choosing
δ0 > 0 sufficiently small (and still independent of initial condition), we also obtain
from (8) that lim inf t→∞ S(t) > δ0. This completes the proof.
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