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Abstract. In this paper, we introduce an innovative and systematic technique to study delay differential equations via polyno-
mials. First, we review an intrinsic relation between delay differential equations and polynomials. From this relation, we obtain
long time behaviors of the solutions to delay differential equations via asymptotic analysis of the corresponding polynomials.
Moreover, we derive asymptotic formulas and upper bounds for the intrinsic growth rate of delay differential equations, as well
as a Gronwall-type inequality for delay differential inequalities.
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1. Introduction

Delay differential equations arise from various mathematical models in the areas of engineering and
science (cf. [7,14,20,24]). In the context of dynamical systems with time delay, we are interested in
finding the conditions when a certain equilibrium is asymptotically stable, and the conditions when
a periodic solution bifurcates from the equilibrium. These stability and bifurcation problems can be
transformed to asymptotic analysis of linear delay differential equations. For instance, the dynamical
behavior of a monotone system can be determined by the spectral radius of an abstract monodromy
operator generated from its linearized system (cf. [27, Theorem 2.3.4]). In general, it is difficult to find
an explicit formula of the spectral radius in terms of model parameters (see [11] for example). In order
to obtain qualitative and more decent information about the delay differential equations, it is important
to derive asymptotic formulas and upper bounds for the intrinsic growth rate which characterizes long
time behavior of the solution.

Various techniques have been developed in asymptotic analysis of integrals [23], ordinary differen-
tial equations [16], recurrence relations/difference equations [22], and partial differential equations [6].
However, not much is known about the asymptotic formulas of solutions to delay differential equations.
The main objective of this paper is to develop an innovative and unified technique in asymptotic anal-
ysis of delay differential equations. This technique is quite different from the Krein–Rutman theorem
and theory of monotone dynamical systems where only qualitative results can be obtained (see [27,
Theorem 2.3.4] for example). Our method is based on an intrinsic relation between delay differential
equations and polynomials, as well as some classical techniques in asymptotic analysis. To illustrate our
idea, we consider the following nonlinear delay differential equation

u′(t) = f
(
t,u(t),u(t− 1)

)
, t � 0. (1.1)
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Here, for convenience, we have normalized the time delay to be 1. Linearizing the above equation at a
certain equilibrium gives

u′(t) = f1(t)u(t) + f2(t)u(t− 1),

where f1 and f2 correspond to the partial derivatives of f at the equilibrium. Upon a transformation

u(t) → u(t) exp

{∫ t

0
f1(s) ds

}
,

we obtain following linear delay differential equation

u′(t) = a(t)u(t− 1), t � 0. (1.2)

We will show that this equation can be solved successively and its solution has an intrinsic relation with
polynomials. Therefore, the asymptotic formula of solution to the linear differential equation follows
from asymptotic formula of the corresponding polynomials. Especially, we are able to derive an explicit
formula for the intrinsic growth rate of the delay differential equation. Note that the intrinsic growth rate
of linearized equation (1.2) determines the stability of the equilibrium and locations of bifurcation points
for the nonlinear equation (1.1). Thus, our systematic method can be applied in stability and bifurcation
analysis of nonlinear delay differential equations.

The rest of this paper is organized as follows. In Sections 2, we focus on linear delay differential equa-
tions with constant or periodic coefficients. We obtain asymptotic behaviors and intrinsic growth rates
of the solutions to linear delay differential equations. In Section 3, we use two examples to illustrate the
applications of our innovative method in stability and bifurcation analysis of nonlinear delay differen-
tial equations. In Section 4, we derive a Gronwall-type inequality for delay differential inequality. This
inequality enables us to find a sharp upper bound for the intrinsic growth rate and thus to obtain a suf-
ficient condition for the stability of equilibrium for nonlinear delay differential equations with periodic
coefficients. In Section 5, we conclude our paper with discussions on several open problems.

2. Linear delay differential equations

In this section, we study the linear delay differential equation (1.2) with constant initial value, say,
1, on the interval [−1, 0]. The nonlinear equations with general initial values will be investigated in the
next section. We will consider the cases when the coefficient a(t) is a constant and a periodic function,
respectively.

In the first part of this section, we focus on the autonomous case when the coefficient a(t) is a constant,
denoted by α. We have the following equation and will solve it in a successive manner.

u′(t) = αu(t− 1), t � 0, (2.1)

u(θ) = 1, θ ∈ [−1, 0]. (2.2)

It should be mentioned that the solution of the above equation can be easily obtained by Laplace transfor-
mation and has an explicit integral representation. However, the asymptotic analysis of the corresponding
integral expression is not trivial. Since we are mainly interested in the long time behavior of the solution,
we will find an equivalent expression of the solution given in terms of polynomials and the problem can
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be solved via asymptotic analysis of corresponding polynomials. First, we define a sequence of functions
as follows:

un(t) := u(n+ t), n = −1, 0, 1, 2, . . . .

It is readily seen that for n � 0,

u′n(t) = αun−1(t), t � 0,

un(0) = un−1(1).

Recall the initial condition u−1(t) = 1 for t ∈ [0, 1]. We obtain by induction that un(t) is a polynomial
of t with degree n+ 1 on the interval [0, 1]. Set

un(t) =
n+1∑
k=0

un,kt
k, n � −1, t ∈ [0, 1]. (2.3)

It follows that for n � 0,

un,k = αun−1,k−1/k, 1 � k � n,

un,0 =
n∑

k=0

un−1,k.

Therefore, we have

un,k =
αk

k!
un−k,0 (2.4)

and

un,0 =
n∑

k=0

αk

k!
un−1−k,0.

The initial condition for the above recurrence relation is u−1,0 = 1. By induction, we have for n � 0,

un,0 = Pn(α) :=
n∑

k=0

(n− k + 1)k
αk

k!
. (2.5)

To prove the above formula, we first observe that u0,0 = 1. So, we only need to verify that if the above
formula is true for all u0,0, . . . ,un−1,0, then it is also true for un,0. By induction, we have

un,0 −
αn

n!
=

n−1∑
k=0

αk

k!
un−1−k,0 =

n−1∑
k=0

αk

k!

n−1−k∑
j=0

(n− 1 − k − j + 1)j
αj

j!

=
n−1∑
k=0

n−1−k∑
j=0

(n− k − j)j
αj+k

j!k!
=

n−1∑
k=0

n−1∑
l=k

(n− l)l−k αl

(l − k)!k!
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=
n−1∑
l=0

(n− l)l
αl

l!

l∑
k=0

(n− l)−kl!
(l − k)!k!

=
n−1∑
l=0

(n− l)l
αl

l!

[
1 − 1/(n− l)

]l

=
n−1∑
l=0

(n− l + 1)l
αl

l!
.

This proves (2.5). Note that un,0 = un(0) = u(n). We also note that the polynomial Pn(α) in (2.5)
is called delayed exponential function in the literature; see [12,13]. Next, we investigate asymptotic
behavior of Pn(α) as n → ∞. Recall the definition of Lambert W-function Wp(x) as the principle
solution to the equation W eW = x; see [8, Section 4.13]. It is natural that Lambert W-function plays
an important role in the study of delay differential equations; see [9,26] and references therein. We have
the following theorem.

Theorem 2.1. As n → ∞, we have

Pn(α) ∼ e(n+1)Wp(α)

1 +Wp(α)
, α ∈ C \ (−∞,−e−1], (2.6)

and

Pn(α) ∼ e(n+1)W+
p (α)

1 +W+
p (α)

+
e(n+1)W−

p (α)

1 +W−
p (α)

, α ∈
(
−∞,−e−1

)
, (2.7)

where

W±
p (α) := lim

ε→0+
Wp(α± iε), α ∈

(
−∞,−e−1

)
.

Proof. Let us first consider the case when α > 0. For convenience, denote w = Wp(α). Then, we have
α = wew and

un,0 = Pn(α) :=
n∑

k=0

(n− k + 1)k
(wew)k

k!
.

If k/n = s and s is bounded away from 0 and 1, we obtain by Stirling’s formula

(n− k + 1)k
(wew)k

k!
= (n− ns+ 1)ns

(wew)ns

(ns)!

∼ nns(1 − s)nses/(1−s) (wew)ns√
2πns(ns/e)ns

=
es/(1−s)

√
2πns

exp
{
ns

[
w + logw + 1 + log(1 − s) − log s

]}
.
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Denote

ϕ(s) := s
[
w + logw + 1 + log(1 − s) − log s

]
.

We have

ϕ′(s) = w + logw − log

(
s

1 − s

)
− s

1 − s
,

ϕ′′(s) = −1
s
− 1

1 − s
− 1

(1 − s)2
< 0.

Hence, ϕ(s) attains its maximum at s0 = w/(1 + w). By trapezoidal rule and Laplace’s method [4,
Chapter 5], we obtain for any small δ > 0,

n−�nδ�∑
k=�nδ�

(n− k + 1)k
(wew)k

k!
∼ n

∫ 1−δ

δ
(n− ns+ 1)ns

(wew)ns

(ns)!
ds

∼ n
es0/(1−s0)

√
2πns0

exp
{
nϕ(s0)

}√ 2π

−nϕ′′(s0)
.

Here, δ > 0 is small such that δ < s0 < 1 − δ. The symbol �nδ� denotes the largest integer that is less
than or equal to nδ. Note that s0/(1 − s0) = w, ϕ(s0) = w and s0ϕ

′′(s0) = −(1 + w)2. It follows that

n−�nδ�∑
k=�nδ�

(n− k + 1)k
(wew)k

k!
∼ e(n+1)w

1 + w
, α > 0.

Next, we intend to show that the contribution of

�nδ�−1∑
k=0

(n− k + 1)k
(wew)k

k!
+

n∑
k=n−�nδ�+1

(n− k + 1)k
(wew)k

k!

in the sum expression of Pn(α) is negligible as n → ∞. For any 0 � k � �nδ� − 1, we estimate the
ratio

(n− k + 1)k(wew)k/k!

(n− �ns0� − k + 1)�ns0�+k(wew)�ns0�+k/(�ns0�+ k)!

=

(
n− k + 1

n− �ns0� − k + 1

)k[
wew

(
n− �ns0� − k + 1

)]−�ns0� (�ns0�+ k)!
k!

�
(

n+ 1
n− �ns0�+ 1

)�nδ�[
wew

(
n− �ns0� − �nδ�+ 1

)]−�ns0� (�ns0�+ �nδ�)!
(�nδ�)!
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� C

(
1

1 − s0

)nδ[
wewn(1 − s0 − δ)

]−ns0+1
√

2πn(s0 + δ)[n(s0 + δ)/e]n(s0+δ)√
2π/(nδ)(nδ/e)nδ

� Cn2(1 − s0)−nδ
[
wewn(1 − s0 − δ)

]−ns0e−ns0 (s0 + δ)n(s0+δ)δ−nδ

� Cn2enf (δ),

where C > 0 denotes a generic constant independent of n, and

f (δ) := −δ ln(1 − s0) − s0 ln
[
wew(1 − s0 − δ)

]
− s0 + (s0 + δ) ln(s0 + δ) − δ ln δ.

Since f (δ) → −w < 0 as δ → 0+, we obtain f (δ) < 0 for sufficiently small δ > 0. Thus,

�nδ�−1∑
k=0

(n− k + 1)k
(wew)k

k!

is exponentially small compared with

�nδ�−1∑
k=0

(
n− �ns0� − k + 1

)�ns0�+k (wew)�ns0�+k

(�ns0�+ k)!
=

�ns0�+�nδ�−1∑
k=�ns0�

(n− k + 1)k
(wew)k

k!
.

For any 0 � k � �nδ� − 1, we estimate the ratio

(k + 1)n−k(wew)n−k/(n− k)!

(n− �ns0�+ k + 1)�ns0�−k(wew)�ns0�−k/(�ns0� − k)!

=

(
k + 1

n− �ns0�+ k + 1

)n−k[
wew

(
n− �ns0�+ k + 1

)]n−�ns0� (�ns0� − k)!
(n− k)!

�
(

�nδ�
n− �ns0�+ �nδ�

)n−�nδ�+1[
wew

(
n− �ns0�+ �nδ�

)]n−�ns0� (�ns0� − �nδ�)!
(n− �nδ�)!

� C

(
δ

1 − s0 + δ

)n(1−δ)[
wewn(1 − s0 + δ)

]n−ns0+1
√

2πn(s0 − δ)[n(s0 − δ)/e]n(s0−δ)√
2π/[n(1 − δ)][n(1 − δ)/e]n(1−δ)

� Cn2

(
δ

1 − s0 + δ

)n(1−δ)[
wewn(1 − s0 + δ)

]n(1−s0) en(1−s0)(s0 − δ)n(s0−δ)

(1 − δ)n(1−δ)

� Cn2eng(δ),

where C > 0 denotes a generic constant independent of n, and

g(δ) := (1 − δ)
[
ln δ − ln(1 − s0 + δ)

]
+ (1 − s0)

[
w + lnw + ln(1 − s0 + δ) + 1

]
+ (s0 − δ) ln(s0 − δ) − (1 − δ) ln(1 − δ).
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Since g(δ) → −∞ as δ → 0+, we obtain g(δ) < 0 for sufficiently small δ > 0. Thus,

�nδ�−1∑
k=0

(k + 1)n−k (wew)n−k

(n− k)!
=

n∑
k=n−�nδ�+1

(n− k + 1)k
(wew)k

k!

is exponentially small compared with

�nδ�−1∑
k=0

(
n− �ns0�+ k + 1

)�ns0�−k (wew)�ns0�−k

(�ns0� − k)!
=

�ns0�∑
k=�ns0�−�nδ�+1

(n− k + 1)k
(wew)k

k!
.

Combining the above arguments, we have

Pn(α) ∼ e(n+1)w

1 + w
, α > 0.

By analytic continuation, the above formula is still valid for α ∈ C \ (−∞,−e−1]. Thus, (2.6) is proved.
Next, we investigate the asymptotic behavior of Pn(α) for α in the Stokes line (−∞,−e−1). Note that
Wp(α) has a branch cut on this line, and W±

p (α) = u± iv, where u = −v cot v and v is the positive root
of the equation

−ve−v cot v

sin v
= α.

The functions W±
p (α) can be analytically extended to a complex neighborhood of (−∞,−e−1). More-

over, given α ∈ (−∞,−e−1), we have 	[W+
p (α+ iδ)−W−

p (α+ iδ)] > 0 and 	[W+
p (α− iδ)−W−

p (α−
iδ)] < 0 for small δ > 0. This, together with (2.6) implies that

Pn(α) ∼ e(n+1)W+
p (α)

1 +W+
p (α)

+
e(n+1)W−

p (α)

1 +W−
p (α)

for any α near but not lying on the Stokes line (−∞,−e−1); noting that exp{(n+1)[W+
p (α)−W−

p (α)]}
is exponentially small for α below the Stokes line and exponentially large for α above the Stokes line.
By analytical continuation, the above formula is also valid on the Stokes line (−∞,−e−1). Thus, (2.7)
follows. �

As a numerical evidence of our formulas (2.6) and (2.7), we use the software Mathematica to compute
the exact and approximate values of Pn(α) with n = 10 and α varies in R; see Table 1.

Remark 2.2. The formula (2.7) can be also written as

Pn(α) ∼ 2e(n+1)u{(1 + u) cos[(n+ 1)v] + v sin[(n+ 1)v]}
(1 + u)2 + v2

, (2.8)
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Table 1

Numerical evidence of asymptotic formulas of Pn(α) in (2.6) and (2.7), where n = 10

α Exact value Approximate value Relative error

−2 1.122328042 1.122328010 2.9 × 10−8

−1.58 −0.927559 −0.927559 4.54311 × 10−9

−π/2 −0.9060366969 −0.9060367009 4.4 × 10−9

−1.57 −0.90414 −0.90414 4.38739 × 10−9

−1.5 −0.723344 −0.723344 3.53141 × 10−9

−1 0.02024112654 0.02024112651 1.8 × 10−9

−0.37 0.000304486 0.000304486 5.18091×10−13

−0.36 0.000720525 0.000726992 0.00897488
−0.2 0.0780117 0.0780117 5.92226×10−12

0.2 5.4849 5.4849 1.61932×10−16

1 326.7913170 326.7913170 5.0 × 10−11

where u = −v cot v and v is the positive root of the equation

−ve−v cot v

sin v
= α

with α < −e−1. Especially, if α = −π/2, then we have v = π/2, u = 0 and

Pn(−π/2) ∼

⎧⎪⎪⎨
⎪⎪⎩

π(−1)k

1 + (π/2)2
, n = 2k,

2(−1)k

1 + (π/2)2
, n = 2k − 1.

Remark 2.3. The relation between (2.6) and (2.7) is universal in asymptotics of polynomials in the
following sense. Assume that

Pn(z) ∼ Φ(n, z), z ∈ C \ S̄0,

where S0 is the union of one-dimensional (open) branch cuts/Stokes lines of Φ(n, z) with S̄0 being its
closure. We can obtain the asymptotic formula of Pn(z) on S0 as follows. Denote by Φ±(n,x) the one-
sided limits of Φ(n, z) on S0. If Φ±(n,x) can be analytically extended in a neighborhood of S0 and
Φ+(n, z) dominates on the + side of S0, whereas Φ−(n, z) dominates on the − side of S0, we then have

Pn(x) ∼ Φ+(n,x) + Φ−(n,x), x ∈ S0.

Examples of polynomials having this property include classical ones such as Legendre polynomials [21,
Section 2], Hermite polynomials [21, Section 3]; multiple orthogonal polynomials from higher-order
three-term recurrences [1, Section 7]; and the polynomials arising from birth and death processes such
as Chen–Ismail polynomials [5, Section 2], Berg–Letessier–Valent polynomials [5, Section 3], Conrad–
Flajolet polynomials [5, Sections 4, 5].
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Now, we are ready to study the asymptotic behavior of u(t) as t → ∞. First, it follows from (2.3),
(2.4) and (2.5) that

un(t) =
n∑

k=0

n−k∑
i=0

(n− k − i+ 1)i
αi

i!
αk

k!
tk +

(αt)n+1

(n+ 1)!

=
n∑

k=0

n∑
j=k

(n− j + 1)j−k αj

(j − k)!k!
tk +

(αt)n+1

(n+ 1)!

=
n∑

j=0

j∑
k=0

(n− j + 1)j−k αj

(j − k)!k!
tk +

(αt)n+1

(n+ 1)!
=

n∑
j=0

(n− j + 1 + t)j
αj

j!
+

(αt)n+1

(n+ 1)!
.

By a similar argument as that in the proof of Theorem 2.1, we obtain the asymptotic formulas of u(t) in
the following theorem.

Theorem 2.4. As t → ∞, we have

u(t) ∼ e(1+t)Wp(α)

1 +Wp(α)
, α ∈ C \

(
−∞,−e−1

]
, (2.9)

and

u(t) ∼ e(1+t)W+
p (α)

1 +W+
p (α)

+
e(1+t)W−

p (α)

1 +W−
p (α)

, α ∈
(
−∞,−e−1

)
, (2.10)

where

W±
p (α) := lim

ε→0+
Wp(α± iε), α ∈

(
−∞,−e−1

)
.

Especially, the intrinsic growth rate of the solution to (2.1) with real α is given by

lim sup
t→∞

log |u(t)|
t

= W (α) :=

{
Wp(α), α > −e−1,
	
{
W+

p (α)
}

, α < −e−1.
(2.11)

Proof. The proof is similar to that of Theorem 2.1. Here, we note that for k/n = s bounded away from
0 and 1, we have as n → ∞,

(n− k + 1 + t)k
(wew)k

k!
= (n− ns+ 1 + t)ns

(wew)ns

(ns)!

∼ nns(1 − s)nses(1+t)/(1−s) (wew)ns√
2πns(ns/e)ns

=
es(1+t)/(1−s)

√
2πns

exp
{
ns

[
w + logw + 1 + log(1 − s) − log s

]}
.
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Furthermore, the last term in the expression of un(t) is always small:

(αt)n+1

(n+ 1)!
∼ 1√

2π(n+ 1)

(
αte
n+ 1

)n+1

.

Therefore, we have as n → ∞,

un(t) ∼ e(n+1+t)Wp(α)

1 +Wp(α)
, α ∈ C \

(
−∞,−e−1

]
,

and

un(t) ∼ e(n+1+t)W+
p (α)

1 +W+
p (α)

+
e(n+1+t)W−

p (α)

1 +W−
p (α)

, α ∈
(
−∞,−e−1

)
,

where

W±
p (α) := lim

ε→0+
Wp(α± iε), α ∈

(
−∞,−e−1

)
.

Since u(t+n) = un(t), we obtain (2.9) and (2.10). Finally, noting that W+
p (α) and W−

p (α) are complex
conjugates if α < −e−1, (2.11) follows from (2.9) and (2.10). �

Remark 2.5. The formula (2.10) can be also written as

u(t) ∼ 2e(1+t)u{(1 + u) cos[(1 + t)v] + v sin[(1 + t)v]}
(1 + u)2 + v2

, (2.12)

where u = −v cot v and v is the positive root of the equation

−ve−v cot v

sin v
= α

with α < −e−1. Especially, if α = −π/2, then we have v = π/2, u = 0 and the solution eventually
approaches a periodic solution with period 4:

u(t) ∼ 2 sin[(1 + t)π/2 + arctan(2/π)]√
1 + (π/2)2

, t → ∞.

In the second part of this section, we consider the case when the coefficient a(t) is a periodic function
with period T = 1/m, where m is a positive integer. Since the time delay has been normalized to be
1, this assumption means that the time delay is an integer multiplication of the period of the coefficient.
We study the following delay differential equation

u′(t) = a(t)u(t− 1), t � 0, (2.13)

u(θ) = 1, θ ∈ [−1, 0]. (2.14)
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Note that any integer multiplication of the period is still a period of a(t). Especially, we have a(t+ 1) =
a(t). For convenience, we denote by ā the average of a(t) over a period:

ā :=
∫ 1

0
a(t) dt.

Similar to the autonomous case, we will solve Eq. (2.13) successively. First, we define a sequence of
functions as follows:

un(t) := u(n+ t), n = −1, 0, 1, 2, . . . .

It is readily seen that for n � 0,

u′n(t) = a(t)un−1(t), t � 0,

un(0) = un−1(1).

For t ∈ [0, 1], we introduce the functions Mn(t) as follows:

M0(t) = 1,

Mn(t) =
∫ t

0
a(s)Mn−1(s) ds, n = 1, 2, . . . .

Recall the initial condition u−1(t) = 1 for t ∈ [0, 1]. It follows by induction that

un(t) =
n+1∑
k=0

un−k(0)Mk(t).

Furthermore, since Mk(1) = āk/k!, we obtain

un+1(0) = un(1) =
n+1∑
k=0

un−k(0)
āk

k!
.

The initial condition for the above recurrence relation is u−1(0) = 1. By induction, we have for n � 0,

un(0) = Pn(ā) :=
n∑

k=0

(n− k + 1)k
āk

k!
. (2.15)

The following theorem will be useful in determining the asymptotic stability of nonlinear delay differ-
ential equations with periodic coefficients.

Theorem 2.6. If a(t + 1) = a(t) and a(t) > 0 for all t � 0, then the solution of (2.13) with initial
condition (2.14) is exponentially growing and

u(n) = un(0) ∼ e(n+1)Wp(ā)

1 +Wp(ā)
, n → ∞, (2.16)



94 X.-S. Wang / Asymptotics of delay differential equations via polynomials

where ā is the average of a(t) over a period. Especially, the exponential growth rate of the solution is
given by

lim
t→∞

logu(t)
t

= Wp(ā). (2.17)

Proof. Applying (2.6) to (2.15) gives (2.16). Since u(t) is an increasing function, we have u(n) �
u(t) � u(n + 1) for n � t � n + 1. The formula (2.17) now follows from (2.16) and the squeeze
theorem. �

3. Nonlinear delay differential equations

In this section, we will use two examples to illustrate how our asymptotic results of linear delay
differential equations can be applied in stability and bifurcation analysis of nonlinear delay differential
equations.

Example 1 (Stability and bifurcation analysis of autonomous delay differential equations). Let us con-
sider the following general delay differential equation generated from population dynamics:

N ′(t) = −μN (t) + e−δτ b
(
N (t− τ )

)
, (3.1)

where N (t) denotes the matured population, μ is the death rate for the matured population, b is a general
birth function with b(0) = 0 and b′(0) > 0, τ stands for the time delay for maturation, and δ counts for the
death rate during maturation. The above model has been studied extensively in previous literature; see [2,
3,10] and references therein. Here, we intend to reproduce the well-known stability results of the above
equation using our Theorem 2.4. Assume that the initial population is nonnegative and nontrivial on the
interval [−τ , 0]. It can be shown that the solution N (t) > 0 for all t > τ ; see [18, Proposition 2.3]. We
have the following result about the intrinsic growth rate of the matured population and stability results.

Proposition 3.1. For any nonnegative and nontrivial initial conditions, the intrinsic growth rate of the
delay differential equation (3.1) at the trivial equilibrium is given by

lim
t→∞

logN (t)
t

=
Wp[τeμτ−δτ b′(0)]

τ
− μ.

Especially, the trivial equilibrium of (3.1) is locally asymptotically unstable (stable) if

e−δτ b′(0) > (<)μ.

Moreover, if b(N ) � b′(0)N for any N > 0 and e−δτ b′(0) < μ, then the trivial equilibrium is globally
asymptotically stable.

Proof. We linearize Eq. (3.1) about the trivial equilibrium to obtain

N ′(t) = −μN (t) + e−δτ b′(0)N (t− τ ).
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Denote u(t) := eμtN (t) and introduce a new time scale s := t/τ . It follows that

du
ds

(τs) = αu
[
τ (s− 1)

]
,

where

α := τeμτ−δτ b′(0) > 0.

Upon a shift of s by 1, we may assume the initial values are positive. Thus, there exist two positive
constants m and M such that m < u(τθ) < M for all θ ∈ [−1, 0]. From (2.11), comparison principle
and squeeze theorem, we obtain

lim
s→∞

logu(τs)
s

= Wp

[
τeμτ−δτ b′(0)

]
.

Since s = t/τ and u(t) = eμtN (t), it is readily seen that

lim
t→∞

logN (t)
t

=
Wp[τeμτ−δτ b′(0)]

τ
− μ.

Recall that Lambert W-function Wp(α) is the solution of the equation W eW = α and it is an increasing
function on the positive real line. If e−δτ b′(0) > μ, then

Wp

[
τeμτ−δτ b′(0)

]
> Wp

(
μτeμτ

)
= μτ

and the intrinsic growth rate is positive, which implies that the trivial equilibrium is locally asymptoti-
cally unstable. On the other hand, if e−δτ b′(0) < μ, then

Wp

[
τeμτ−δτ b′(0)

]
< Wp

(
μτeμτ

)
= μτ

and the intrinsic growth rate is negative, which implies that the trivial equilibrium is locally asymp-
totically stable. Moreover, if b(N ) � b′(0)N for any N > 0 and e−δτ b′(0) < μ, then the nonlinear
delay differential equation (3.1) is dominated by its linearized equation about the trivial equilibrium,
and thus a comparison principle [18, Proposition 1.1] yields global asymptotic stability of the trivial
equilibrium. �

Remark 3.2. Note that if b′(0) > 0, then the local asymptotic stability of trivial equilibrium for the
delay differential equation (3.1) can be also obtained via the theory of monotone dynamical systems; see
[19, Chapter 5]. We also note that the formula of the intrinsic growth rate coincides with the principal
eigenvalue of the characteristic equation λ = −μ+ e−δτ b′(0)e−λτ .

Let us now further assume Eq. (3.1) possesses a positive equilibrium, denoted by N∗. We linearize
(3.1) about N∗ and obtain

N ′(t) = −μN (t) + e−δτ b′
(
N∗)N (t− τ ). (3.2)
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Note that b′(N∗) may be negative and the comparison principle for monotone dynamical system does
not apply. We are interested in the solution of (3.2) with constant initial condition

N (θ) = 1, θ ∈ [−τ , 0]. (3.3)

Proposition 3.3. Let N (t) be the solution of (3.2) with initial condition (3.3). If α := τeμτ−δτ b′(N∗) >
−e−1, then as t → ∞,

N (t) ∼ e(t+1)Wp(α)/τ−μt

1 +Wp(α)
.

If α := τeμτ−δτ b′(N∗) < −e−1, then as t → ∞,

N (t) ∼ e(t+1)W+
p (α)/τ−μt

1 +W+
p (α)

+
e(t+1)W−

p (α)/τ−μt

1 +W−
p (α)

.

The intrinsic growth rate is given by

lim sup
t→∞

log |N (t)|
t

=
W (α)
τ

− μ =

{
Wp(α)/τ − μ, α > −e−1,
	
{
W+

p (α)
}
/τ − μ, α < −e−1.

Moreover, if α := τeμτ−δτ b′(N∗) < −e−1 and

	
[
W+

p (α)
]
= μτ ,

then N (t) will approach a periodic solution with period 2πτ/
[W+
p (α)].

Proof. Set u(t) := eμτN (t) and introduce a new time scale s = t/τ . The results now follow from
Theorem 2.3 and a similar argument as in the proof of Proposition 3.1. �

Remark 3.4. Recall that for α := τeμτ−δτ b′(N∗) < −e−1, we have W+
p (α) = u+iv with u = −v cot v

and v is the positive root of the equation

−ve−v cot v

sin v
= τeμτ−δτ b′

(
N∗).

The bifurcation condition is the same as −v cot v = μτ . A simple calculation yields

v = τ

√[
e−δτ b′

(
N∗)]2 − μ2, cos v =

μ

e−δτ b′(N∗)
.

This coincides with the formula [17, (3.8)] when the birth function b(N ) takes the special form as in the
Nicholson’s blowflies equation studied in [17].
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Example 2 (Stability analysis of non-autonomous delay differential equations). We study the following
delay differential equation with periodic coefficients

N ′(t) = −μ(t)N (t) + e−δτ b
(
t,N (t− τ )

)
, (3.4)

where μ(t + T ) = μ(t) � 0 and b(t + T ,N ) = b(t,N ) � 0 for all t � 0 and N � 0. Furthermore, we
assume b(t, 0) = 0, ∂Nb(t, 0) > 0 and the period T = τ/m for some positive integer m. If the initial
values are nonnegative and nontrivial on [−τ , 0], then the solution will be positive for all t > τ ; see
[18, Proposition 2.3]. Similar to the autonomous case, we obtain the following results about the intrinsic
growth rate of the equation and stability criterion of trivial equilibrium.

Proposition 3.5. Let μ̄ and b̄ be the average of μ(t) and ∂N (t, 0) over a period, respectively. Given any
nonnegative and nontrivial initial conditions, the intrinsic growth rate of the delay differential equation
(3.4) at the trivial equilibrium is given by

Wp[τeμ̄τ−δτ b̄]
τ

− μ̄.

Especially, the trivial equilibrium of (3.4) is locally asymptotically unstable (stable) if

e−δτ b̄ > (<)μ̄.

Moreover, if b(t,N ) � ∂Nb(t, 0)N for any N > 0 and e−δτ̄ b̄ < μ̄, then the trivial equilibrium is globally
asymptotically stable.

Proof. We linearize Eq. (3.4) about the trivial equilibrium to obtain

N ′(t) = −μ(t)N (t) + e−δτ∂Nb(t, 0)N (t− τ ).

Next, we denote u(t) := N (t) exp{
∫ t

0 μ(r) dr} and introduce a new time scale s := t/τ . It follows that

du
ds

(τs) = a(s)u
[
τ (s− 1)

]
,

where

a(s) := τeμ̄τ−δτ∂Nb(τs, 0).

Especially, a(s+ 1) = a(s) and the average of a(s) over a period is given by

ā =

∫ 1

0
a(r) dr = τeμ̄τ−δτ b̄.

Without loss of generality, we may assume that the initial values are positive. Especially, there exist two
positive constants m and M such that m < u(τθ) < M for all θ ∈ [−1, 0]. On account of (2.17),
comparison principle and squeeze theorem, the intrinsic growth rate of u(τs) is

lim
s→∞

logu(τs)
s

= Wp

[
τeμ̄τ−δτ b̄

]
.
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Note that

lim
t→∞

1
t

∫ t

0
μ(r) dr = μ̄.

It follows from u(t) := N (t) exp{
∫ t

0 μ(r) dr} and s := t/τ that

lim
t→∞

logN (t)
t

=
Wp[τeμ̄τ−δτ b̄]

τ
− μ̄.

The local asymptotic stability results of trivial equilibrium follows from the formula of intrinsic growth
rate and monotonicity of Lambert W-function on the positive real line. Furthermore, if b(t,N ) �
∂Nb(t, 0)N for any N > 0 and e−δτ̄ b′(0) < μ̄, then the global asymptotic stability of trivial equilibrium
follows from a comparison principle for monotone dynamical systems; see [18, Proposition 1.1]. �

Remark 3.6. The local stability of trivial equilibrium was also obtained in [25, Proposition 2.1] using
Krein–Rutman theorem and spectral properties of bounded linear operators. However, our formula of
intrinsic growth rate seems to be new.

4. Gronwall-type inequality

In this section, we will derive a Gronwall-type inequality for the delay differential inequality with
periodic coefficient:

u′(t) � a(t)u(t− 1), t � 0, (4.1)

where a(t) � 0 for t � 0, and u(t) � 0 for t ∈ [−1,∞). We assume that a(t + T ) = a(t) for t � 0,
where T > 0 is the period of a(t). Remark that T may not be divided by the delay 1, so Theorem 2.6
does not apply. Denote the average of a(t) by

ā :=
1
T

∫ T

0
a(t) dt.

First, we note that

u(t) � u(0) +
∫ t

0
a(s)u(s− 1) ds

� u(0) +
∫ 0

−1
a(s+ 1)u(s) ds+

∫ t−1

0
a(s+ 1)u(s) ds

� u(0) +
∫ 0

−1
a(s+ 1)u(s) ds+

∫ t

0
a(s+ 1)u(s) ds.

It follows from Gronwall’s inequality that

u(t) � Meāt,
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where M > 0 is a constant independent of t. The above inequality gives an upper bound for the intrinsic
growth rate of u(t):

lim
t→0

logu(t)
t

� ā.

In the following theorem, we will give a sharper upper bound of the intrinsic growth rate.

Theorem 4.1. Assume u(t) � 0 satisfies the delay differential inequality (4.1) with periodic coefficient
a(t) � 0. Let a− � 0 and a+ > 0 be the minimum and maximum of a(t), respectively. Then we have

u(t) � M exp
{
Wp(a+)t

}
,

and

u(t) � M exp

{
āt

exp[Wp(a−)]

}
,

where M > 0 is a constant independent of t. Especially,

lim
t→0

logu(t)
t

� min

{
Wp(a+),

ā

exp[Wp(a−)]

}
.

Proof. First, we note that

u(t) � a+u(t− 1).

By comparison principle, it follows from (2.9) that

u(t) � M exp
{
Wp(a+)t

}
,

where M > 0 denotes a large constant independent of t. Next, we define

v(t) := u(t)e−w−t,

where w− := Wp(a−). It follows that

v′(t) � a(t)e−w−v(t− 1) − w−v(t).

Integrating from 0 to t yields

v(t) � v(0) +
∫ t

0
a(s)e−w−v(s− 1) ds−

∫ t

0
w−v(s) ds

� v(0) +
∫ 0

−1
a(s+ 1)e−w−v(s) ds+

∫ t

0

[
a(s+ 1)e−w− − w−

]
v(s) ds.
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An application of Gronwall’s inequality gives

v(t) � M exp
{[

āe−w− − w−
]
t
}

,

where M > 0 denotes a generic constant. Thus,

u(t) � M exp

{
āt

ew−

}
.

Finally, the upper bound of intrinsic growth rate comes from the two inequalities for u(t). �

Remark 4.2. If a(t) = α is a constant, then the upper bound is Wp(α), which is sharper than the one
obtained directly from the Gronwall’s inequality; noting that Wp(α) < α for all α > 0. If a(t) vanishes
at some time, then a− = 0 and the upper bound becomes the minimum of Wp(a+) and ā.

As a corollary of our Gronwall-type inequality, we obtain a sufficient condition for the stability of
trivial equilibrium for the following nonlinear delay differential equation:

N ′(t) = −μ(t)N (t) + e−δτ b
(
t,N (t− τ )

)
, (4.2)

where μ(t + T ) = μ(t) � 0 and b(t + T ,N ) = b(t,N ) � 0 for all t � 0 and N � 0. Furthermore, we
assume b(t, 0) = 0, ∂Nb(t, 0) > 0. Here, we do not assume the period is an integer multiplication of the
delay. For simplicity, we denote

β+ := max
t∈[0,T ]

∂Nb(t, 0),

β− := min
t∈[0,T ]

∂Nb(t, 0),

β̄ :=
1
T

∫ T

0
∂Nb(t, 0) dt

and

μ+ := max
t∈[0,T ]

1
τ

∫ t+τ

t
μ(s) ds,

μ̄ :=
1
T

∫ T

0
μ(t) dt.

Corollary 4.3. The trivial equilibrium of (4.2) is locally asymptotically stable if

min

{
Wp

[
β+τe(μ+−δ)τ

]
,

β̄τe(μ+−δ)τ

exp[Wp(β−τe(μ+−δ)τ )]

}
< μ̄τ.
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Proof. Define

u(t) := N (t) exp

{∫ t

0
μ(s) ds

}
.

It follows that

u′(t) = exp

{
−δτ +

∫ t

t−τ
μ(s) ds

}
∂Nb(t, 0)u(t− τ )

� exp
{

(μ+ − δ)τ
}
∂Nb(t, 0)u(t− τ ).

Next, we introduce a new time scale s = t/τ to obtain

du
ds

(τs) � a(s)u
(
τ (s− 1)

)
,

where

a(s) = τ exp
{

(μ+ − δ)τ
}
∂Nb(τs, 0).

From Theorem 4.1, we obtain the upper bound of the intrinsic growth rate for u(τs) as follows.

lim
s→∞

logu(τs)
s

� min

{
Wp

[
β+τe(μ+−δ)τ

]
,

β̄τe(μ+−δ)τ

exp[Wp(β−τe(μ+−δ)τ )]

}
.

Since

lim
t→∞

logN (t)
t

= lim
s→∞

logu(τs)
τs

− μ̄,

the desired result follows. �

5. Conclusions and open problems

We make use of an intrinsic relation between delay differential equations and polynomials to find
asymptotic behaviors of solutions to the delay differential equations. Moreover, we obtain asymptotic
formulas and upper bounds for the intrinsic growth rate, as well as a Gronwall-type inequality. Our
innovative method provides a systematic framework in stability and bifurcation analysis of nonlinear
delay differential equations.

Note that we use a single delay differential equation with one discrete delay to illustrate our new idea.
It would be interesting to explore our technique to more general cases where multiple discrete delays
or multiple species/groups are taken into consideration. There are plenty of work on delay differential
system using the method of characteristic equations; see [2,10,15] for example. Here, we propose a
new technique in studying the linearized delay differential systems about an equilibrium, namely, we
transform the linearized delay differential systems into linear recurrence relations/difference equations.
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The main challenge would be the asymptotic analysis of the solutions to corresponding recurrence rela-
tions/difference equations. We will investigate this problem in our future work.

The polynomial Pn(α) defined in (2.5) worths further investigations. For instance, one may be inter-
ested in finding an integral representation of Pn(α) and studying its asymptotic behavior using steepest-
descent method. It is also possible to derive asymptotic formulas of Pn(α) via the differential-difference
equation: P ′

n(α) = nPn−1(α)−αP ′
n−1(α). Another interesting open problem is the uniform asymptotic

analysis of the polynomial Pn(α) for α in a neighborhood of the turning point −e−1. We conjecture that
the Airy function (or other special functions) should be used in the uniform asymptotic formula.
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