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Abstract. Using the steepest descent method for oscillatory Riemann–Hilbert problems introduced by Deift and Zhou [Ann.
Math. 137 (1993), 295–368], we derive asymptotic formulas for the Meixner polynomials in two regions of the complex plane
separated by the boundary of a rectangle. The asymptotic formula on the boundary of the rectangle is obtained by taking limits
from either inside or outside. Our results agree with the ones obtained earlier for z on the positive real line by using the steepest
descent method for integrals [Constr. Approx. 14 (1998), 113–150].
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1. Introduction

In this paper, we investigate the asymptotic behavior of the Meixner polynomials. These polynomi-
als have many applications in statistical physics. For instance, they are used in the study of the shape
fluctuations in a certain two-dimensional random growth model; see [10] and the references therein.

For β > 0 and 0 < c < 1, the Meixner polynomials are given by

mn(z; β, c) = (β)n · 2F1
(

−n, −z; β; 1 − c−1). (1.1)

They satisfy the discrete orthogonality relation

∞∑
k=0

mn(k; β, c)mp(k; β, c)
ck(β)k

k!
= (1 − c)−βc−nn!(β)nδnp. (1.2)

This notation is adopted in [7], Section 10.24, and also in [8].
Using probabilistic arguments, Maejima and Van Assche [11] have given an asymptotic formula for

mn(nα; β, c) when α < 0 and β is a positive integer. Their result is in terms of elementary functions. By
using the steepest descent method for integrals, Jin and Wong [8] have derived two infinite asymptotic
expansions for mn(nα; β, c); one holds uniformly for 0 < ε � α � 1+ ε, and the other holds uniformly
for 1 − ε � α � M < ∞. Both expansions involve the parabolic cylinder function and its derivative.

In view of Gauss’s contiguous relations for hypergeometric functions [1], Section 15.2, and the
connection formula [8] mn(−x − β; β, c−1) = cnmn(x; β, c), we may restrict our study to the case
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1 � β < 2 and 0 < c < 1. Fixing 0 < c < 1 and 1 � β < 2, we intend to investigate the large-n
behavior of mn(nz − β/2; β, c) for z in the whole complex plane, including neighborhood of the origin
and regions extending to infinity. Our approach is based on the steepest descent method for oscillatory
Riemann–Hilbert problems, first introduced by Deift and Zhou [6] for nonlinear partial differential equa-
tions, later developed in [5] for orthogonal polynomials with respect to exponential weights, and further
extended in [2,3] to a general class of discrete orthogonal polynomials.

A direct application of the method in [2,3] would, however, only give local asymptotics. For instance,
in the case of Meixner polynomials, one would have to divide the complex plane into at least six regions
(one near the origin, two near the two turning points and three in between, including an unbounded one),
and give correspondingly six different asymptotic formulas. To reduce the number of these regions, we
shall make some modifications to the method in [2,3]. Our approach is motivated by the previous work
in [4,13,15,17,18], and the main idea is to extend, as large as possible, the two regions of validity of
the two asymptotic formulas near the two turning points. There have already been several examples
in which we only need two regions with appropriate asymptotic formulas to cover the entire plane;
the Hermite polynomial [17] is one of such examples. However, for discrete orthogonal polynomials,
there might be cuts starting from the finite endpoints of the intervals of orthogonality. For instance, in
the case of Krawtchouk polynomials considered in [4], there are two cuts (− ∞, 0] and [1, ∞) where
no asymptotic formulas are given. In the present paper, we shall give two asymptotic formulas for the
Meixner polynomial mn(nz − β/2; β, c), one valid inside a rectangle with two vertical boundary lines
passing through z = 0 and z = 1, and the other valid outside the rectangle. Both formulas can be
extended slightly beyond the boundary of the rectangle, and they are asymptotically equal to each other
in the overlapping region. The material in this paper is arranged as follows. In Section 2, we use a
standard method to relate the Meixner polynomials to a Riemann–Hilbert problem for a matrix-valued
function. The motivation and details of this standard procedure can be found in [2,3] and the reference
given there. In Section 3, we introduce some auxiliary functions which will be used in Section 4 for the
construction of our parametrix. In Section 4, we also prove that this parametrix is asymptotically equal
to the solution of the Riemann–Hilbert problem formulated in Section 2. In Section 5, we state our main
result and make the remark that our formulas agree with the ones already existing in the literature.

2. Standard formulation of Riemann–Hilbert problem

From (1.1), we note that the leading coefficient of mn(z; β, c) is (1 − c−1)n. Thus, the monic Meixner
polynomials are given by

πn(z) :=
(

1 − 1
c

)−n

mn(z; β, c). (2.1)

For convenience, in (2.1) we have suppressed the dependence of πn(z) on c and β. Furthermore, through-
out the paper we shall fix the parameters c ∈ (0, 1) and β ∈ [1, 2). The orthogonality property of πn(z)
can be easily derived from (1.2), and we have

∞∑
k=0

πn(k)πp(k)w(k) = δnp/γ
2
n, (2.2)
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where

γ2
n =

(1 − c)2n+βc−n

Γ(n + β)Γ(n + 1)
(2.3)

and

w(z) :=
Γ(z + β)
Γ(z + 1)

cz. (2.4)

Let P (z) be the 2 × 2 matrix defined by

P (z) =
(

P11(z) P12(z)
P21(z) P22(z)

)
:=

(
πn(z)

∑∞
k=0

πn(k)w(k)
z−k

γ2
n−1πn−1(z)

∑∞
k=0

γ2
n−1πn−1(k)w(k)

z−k

)
. (2.5)

A proof of the following result can be found in [3], Section 1.5.1. The only difference is that their N
should be replaced by ∞.

Proposition 2.1. The matrix-valued function P (z) defined in (2.5) is the unique solution of the following
interpolation problem:

(P1) P (z) is analytic in C \ N;
(P2) at each z = k ∈ N, the first column of P (z) is analytic and the second column of P (z) has a

simple pole with residue

Res
z=k

P (z) = lim
z→k

P (z)
(

0 w(z)
0 0

)
=

(
0 w(k)P11(k)
0 w(k)P21(k)

)
; (2.6)

(P3) for z bounded away from N, P (z)
(

z−n

0
0

zn

)
= I + O(|z| −1) as z → ∞.

Let X denote the set defined by

X := {Xk}∞
k=0, where Xk :=

k + β/2
n

, (2.7)

cf. [3,4,13]. The Xk’s are called nodes. For the sake of simplicity, we put

B(z) :=
n−1∏
j=0

(z − Xj). (2.8)

Our first transformation is given by

Q(z) := n−nσ3P (nz − β/2)B(z)−σ3

=
(

n−n 0
0 nn

)
P (nz − β/2)

(
B(z)−1 0

0 B(z)

)
, (2.9)
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where σ3 :=
(

1
0

0
−1

)
is a Pauli matrix. In this paper, we shall also make use of another Pauli matrix,

namely σ1 :=
(

0 1
1 0

)
; see Section 4.

Proposition 2.2. The matrix-valued function Q(z) defined in (2.9) is the unique solution of the following
interpolation problem:

(Q1) Q(z) is analytic in C \ X;
(Q2) at each node Xk with k ∈ N and k � n, the first column of Q(z) is analytic and the second

column of Q(z) has a simple pole with residue

Res
z=Xk

Q(z) = lim
z→Xk

Q(z)
(

0 w(nz − β/2)B(z)2

0 0

)
; (2.10)

at each node Xk with k ∈ N and k < n, the second column of Q(z) is analytic and the first
column of Q(z) has a simple pole with residue

Res
z=Xk

Q(z) = lim
z→Xk

Q(z)
(

0 0
(z−Xk)2

w(nz−β/2)B(z)2 0

)
; (2.11)

(Q3) for z bounded away from X, Q(z) = I + O(|z| −1) as z → ∞.

Proof. This is obvious from Proposition 2.1 and the definition of Q(z) in (2.9). �

The purpose of our next transformation is to remove the poles in the interpolation problem for Q(z)
(cf. [3], Section 4.2). Let δ > 0 be a sufficiently small number. We define (see Fig. 1)

R(z) := Q(z)
(

1 0
−Δ±(z) 1

)
(2.12a)

for Re z ∈ (0, 1) and ± Im z ∈ (0, δ), and

R(z) := Q(z)
(

1 − ∇±(z)
0 1

)
(2.12b)

Fig. 1. The transformation Q → R and the oriented contour ΣR.
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for Re z ∈ (1, ∞) and ± Im z ∈ (0, δ), and

R(z) := Q(z) (2.12c)

for Re z /∈ [0, ∞) or Im z /∈ [−δ, δ], where

∇±(z) :=
nπw(nz − β/2)B(z)2

e∓iπ(nz−β/2) sin(nπz − βπ/2)
, (2.13)

Δ±(z) :=
e±iπ(nz−β/2) sin(nπz − βπ/2)

nπw(nz − β/2)B(z)2
. (2.14)

Lemma 2.3. For each k ∈ N, the singularity of R(z) at the node Xk = k+β/2
n is removable, that is,

Resz=Xk
R(z) = 0.

Proof. For any k ∈ N with k � n, we have Xk = k+β/2
n > 1 since 1 � β < 2. From (2.13), it is

evident that the residue of ∇±(z) at z = Xk is Resz=Xk
∇±(z) = w(nXk − β/2)B(Xk)2. From (2.10),

we also note that the residue of Q12(z) at z = Xk is Q11(Xk) multiplied by w(nXk − β/2)B(Xk)2.
Thus, it follows from (2.12b) that the residue of R12(z) = Q12(z) − ∇±(z)Q11(z) at z = Xk is zero.
Similarly, one can show that Resz=Xk

R22(z) = 0. Since R11(z) = Q11(z) and R21(z) = Q21(z), and
since Q11(z) and Q21(z) are analytic by Proposition 2.2, the residues of R11(z) and R21(z) at Xk are
zero. For any k ∈ N with k < n, we have Xk = k+β/2

n < 1 since 1 � β < 2. From (2.8), (2.11) and
(2.14), we observe that

Res
z=Xk

Δ±(z) =
1

w(nXk − β/2)

n−1∏
j=0
j �=k

(Xk − Xj)−2,

Res
z=Xk

Q11(z) =
Q12(Xk)

w(nXk − β/2)

n−1∏
j=0
j �=k

(Xk − Xj)−2.

Thus, the residue of R11(z) = Q11(z) − Δ±(z)Q12(z) at z = Xk is zero. Similarly, one can prove that
the residue of R21(z) at z = Xk is also zero. Since R12(z) = Q12(z) and R22(z) = Q22(z), and since
Q12(z) and Q22(z) are analytic by Proposition 2.2, the residues of R12(z) and R22(z) at Xk are zero. This
completes the proof of the lemma. �

From the definition in (2.12a) and Lemma 2.3, the jump conditions of R(z) given in the follow propo-
sition are easily verified.

Proposition 2.4. Let ΣR be the oriented contour shown in Fig. 1. Denote by R+(z) and R−(z), respec-
tively, the limiting values of R(z) on ΣR taken from the left and from the right of the contour. The jump
matrix JR(z) := R−(z)−1R+(z) has the following explicit expressions. For Re z = 1 and Im z ∈ (−δ, δ),
we have

JR(z) =
(

1 − Δ±(z)∇±(z) ∇±(z)
−Δ±(z) 1

)
. (2.15)
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On the positive real line, we have

JR(x) =
(

1 0
Δ−(x) − Δ+(x) 1

)
(2.16a)

for x ∈ (0, 1), and

JR(x) =
(

1 ∇−(x) − ∇+(x)
0 1

)
(2.16b)

for x ∈ (1, ∞). Furthermore, we have

JR(z) =
(

1 0
Δ±(z) 1

)
(2.17a)

for z = i Im z with Im z ∈ (−δ, δ) and z = Re z ± iδ with Re z ∈ (0, 1), and

JR(z) =
(

1 ∇±(z)
0 1

)
(2.17b)

for z = Re z ± iδ with Re z ∈ (1, ∞).

For simplicity, we define

θ(z) := nπz − βπ/2, (2.18)

v(z) := −z log c, (2.19)

C := 2iπc−β/2nβ , (2.20)

W (z) :=
(nz)1−βΓ(nz + β/2)

Γ(nz + 1 − β/2)
. (2.21)

In view of (2.4) and the above notations, the functions defined in (2.13) and (2.14) become

∇± =
Czβ−1WB2

2i sin θe∓iθ+nv
and Δ± =

2i sin θe±iθ+nv

Czβ−1WB2
. (2.22)

It is easy to see that

Δ± ∇± = e±2iθ

for z ∈ C±. Also,

∇− − ∇+ = −Cxβ−1e−nvWB2

for z = x ∈ (1, ∞), and

Δ− − Δ+ =
4 sin2 θ

Cxβ−1e−nvWB2

for z = x ∈ (0, 1).
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Proposition 2.5. The matrix-valued function R(z) defined in (2.12) is the unique solution of the follow-
ing Riemann–Hilbert problem:

(R1) R(z) is analytic in C \ ΣR;
(R2) for z ∈ ΣR, R+(z) = R−(z)JR(z), where the jump matrix JR(z) is given in Proposition 2.4;
(R3) for z ∈ C \ ΣR, R(z) = I + O(|z| −1) as z → ∞.

Proof. It follows readily from Proposition 2.2 and the definition of R(z) in (2.12). �

3. Some auxiliary functions

To construct our parametrix, we should introduce some auxiliary functions. First, define the two con-
stants

a :=
1 − √

c

1 +
√

c
and b :=

1 +
√

c

1 − √
c
. (3.1)

These constants are the two turning points for the Meixner polynomials; see [8], formula (2.6). Let

φ(z) := z log

√
bz − 1 +

√
az − 1√

bz − 1 −
√

az − 1
− log

√
z − a +

√
z − b√

z − a −
√

z − b
(3.2a)

for z ∈ C \ (− ∞, b] and

φ̃(z) := z log

√
1 − az +

√
1 − bz√

1 − az −
√

1 − bz
− log

√
b − z +

√
a − z√

b − z −
√

a − z
(3.2b)

for z ∈ C \ (− ∞, 0] ∪ [a, ∞). These two functions are analogues of the φ-function and φ̃-function
in [18]. It is clear from the definitions that

φ̃(z) = φ(z) ± iπ(1 − z) (3.3)

for z ∈ C±. As z → ∞, we have

φ(z) = z log

√
b +

√
a√

b − √
a

− log z + log
b − a

4
− 1 + O

(
1
z

)
.

Here we have used the fact that ab = 1. Put

l := 2 log
b − a

4
− 2, (3.4)

and recall the definition of v(z) in (2.19). Since (
√

b+
√

a)/(
√

b − √
a) = 1/

√
c by (3.1), it follows from

the above two equations that

−φ(z) + v(z)/2 + l/2 = log z + O
(

1
z

)
(3.5)
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as z → ∞. For convenience, we define

F (z) :=
[

3
2
nφ(z)

]2/3

and F̃ (z) :=
[

− 3
2
nφ̃(z)

]2/3

. (3.6)

Note by (3.2) that φ(b) = 0 and

φ′(z) = log

√
bz − 1 +

√
az − 1√

bz − 1 −
√

az − 1
= log

√
1 − bz +

√
1 − az√

1 − bz −
√

1 − az
. (3.7)

Using (3.3), it is readily seen that φ̃(a) = 0 and φ̃(0) = 1
2 log c. The mapping properties of the functions

φ(z) and φ̃(z) are illustrated in Fig. 2. From this figure and the definitions (3.2a), (3.2b) and (3.6), we
have the following proposition.

Proposition 3.1. For z ∈ C \ [a, b], we have

± arg F (z) ∈ (−π, π) and arg F̃ (z) ∈ (−π, π). (3.8)

For Re z ∈ (a, b) and ± Im z ∈ [0, δ], we have

± arg F (z) ∈ (π/3, π] and ∓ arg F̃ (z) ∈ (π/3, π]. (3.9)

For x � 0 and δ sufficient small, we have

Re φ(x ± iδ) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ(x), x � b,

−2δ arctan

√
1 − ax

bx − 1
, a < x < b,

φ̃(x) − πδ, 0 � x � a.

(3.10)

Proof. It is easy to prove (3.8) and (3.9) by using (3.2a), (3.2b), (3.6) and Fig. 2. For small δ > 0, we
have from a two-term Taylor expansion

Re φ(x ± iδ) ∼ Re φ±(x) ∓ δ Im φ′
±(x).

Note by (3.7) that

Im φ′
±(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x � b,

±2 arctan

√
1 − ax

bx − 1
, a < x < b,

±π, 0 � x � a.

Moreover, (3.2a), (3.2b) and (3.3) imply

Re φ±(x) =

⎧⎨⎩
φ(x), x � b,
0, a < x < b,
φ̃(x), 0 � x � a.

Thus, (3.10) follows from the above three equations. �
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Fig. 2. The z-plane under the mappings φ(z) and φ̃(z).
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Define

N (z) :=

⎛⎝ (z−1)(1−β)/2((
√

z−a+
√

z−b)/2)β

(z−a)1/4(z−b)1/4
−i(z−1)(β−1)/2((

√
z−a−

√
z−b)/2)β

(z−a)1/4(z−b)1/4

i(z−1)(1−β)/2((
√

z−a−
√

z−b)/2)2−β

(z−a)1/4(z−b)1/4
(z−1)(β−1)/2((

√
z−a+

√
z−b)/2)2−β

(z−a)1/4(z−b)1/4

⎞⎠ . (3.11)

It is easy to verify that N (z) is analytic in C \ [a, b] and

N+(x) = N−(x)
(

0 − |x − 1|β−1

|x − 1|1−β 0

)
, x ∈ (a, b). (3.12)

The matrix N (z) is analogous to the matrix N (z) in [5,15]. Now we introduce the Airy parametrix which
is also similar to the one in [5,15]. For z ∈ C±, define

A(z) :=
(

Ai(z) −i Bi(z)
i Ai′(z) Bi′(z)

) (
1 ∓1/2
0 1/2

)
. (3.13)

It is clear that

A+(x) = A−(x)
(

1 −1
0 1

)
(3.14)

on the real line. For convenience, set ω = e2πi/3. Note that (cf. [1], formula (10.4.9))

2ω Ai(ωz) = − Ai(z) + i Bi(z) and 2ω2 Ai
(
ω2z

)
= − Ai(z) − i Bi(z).

We obtain from (3.13)

A(z) =

⎧⎪⎪⎨⎪⎪⎩
(

Ai(z) ω2 Ai(ω2z)
i Ai′(z) iω Ai′(ω2z)

)
, z ∈ C+,(

Ai(z) −ω Ai(ωz)
i Ai′(z) −iω2 Ai′(ωz)

)
, z ∈ C−.

(3.15)

Furthermore, in view of (cf. [1], formula (10.4.7))

Ai(z) + ω Ai(ωz) + ω2 Ai
(
ω2z

)
= 0,

we have

A(z)
(

1 0
±1 1

)
=

⎧⎪⎪⎨⎪⎪⎩
( −ω Ai(ωz) ω2 Ai(ω2z)

−iω2 Ai′(ωz) iω Ai′(ω2z)

)
, z ∈ C+,( −ω2 Ai(ω2z) −ω Ai(ωz)

−iω Ai′(ω2z) −iω2 Ai′(ωz)

)
, z ∈ C−.

(3.16)

Recall the asymptotic expansions of the Airy function and its derivative (cf. [12], p. 392, or [16], p. 47)

Ai(z) ∼ z−1/4

2
√

π
e−(2/3)z3/2

∞∑
s=0

(−1)sus

((2/3)z3/2)s
, Ai′(z) ∼ − z1/4

2
√

π
e−(2/3)z3/2

∞∑
s=0

(−1)svs

((2/3)z3/2)s
(3.17)



X.-S. Wang and R. Wong / Global asymptotics of the Meixner polynomials 221

as z → ∞ with | arg z| < π, where us, vs are constants with u0 = v0 = 1. For arg z ∈ (−π, 0], we have
arg(ωz) ∈ (−π/3, 2π/3]. Thus, by using (3.17) we obtain as z → ∞ with arg z ∈ (−π, 0],

−ω Ai(ωz) ∼ −ω(ωz)−1/4

2
√

π
e−(2/3)(ωz)3/2 ∼ −iz−1/4

2
√

π
e(2/3)z3/2

,

−iω2 Ai′(ωz) ∼ iω2(ωz)1/4

2
√

π
e−(2/3)(ωz)3/2 ∼ z1/4

2
√

π
e(2/3)z3/2

.

For arg z ∈ [0, π), we have arg(ω2z) ∈ [4π/3, 7π/3). Here, we cannot use (3.17) with z replaced by
ω2z. However, since ω2z = ω−1z and arg(ω−1z) ∈ [−2π/3, π/3), we can use (3.17) with z replaced by
ω−1z and obtain, as z → ∞ with arg z ∈ [0, π),

ω2 Ai
(
ω2z

)
= ω2 Ai

(
ω−1z

)
∼ ω2(ω−1z)−1/4

2
√

π
e−(2/3)(ω−1z)3/2 ∼ −iz−1/4

2
√

π
e(2/3)z3/2

,

iω Ai′(ω2z
)

= iω Ai′(ω−1z
)

∼ −iω(ω−1z)1/4

2
√

π
e−(2/3)(ω−1z)3/2 ∼ z1/4

2
√

π
e(2/3)z3/2

.

Applying (3.17) and the above four formulas to (3.15) gives

A(z) =
z−σ3/4

2
√

π

(
1 −i

−i 1

) (
I + O

(
|z| −3/2))e−(2/3)z3/2σ3 (3.18)

as z → ∞ with arg z ∈ (−π, π). For arg z ∈ (π/3, π], we have arg(w−2z) ∈ (−π, −π/3] and
arg(w−1z) ∈ (−π/3, π/3]. Thus, by using (3.17) we obtain as z → ∞ with arg z ∈ (π/3, π]

−ω Ai(ωz) = −ω Ai
(
ω−2z

)
∼ −ω

(
ω−2z

)−1/4

2
√

π
e−(2/3)(ω−2z)3/2 ∼ z−1/4

2
√

π
e−(2/3)z3/2

,

−iω2 Ai′(ωz) = −iω2 Ai′(ω−2z
)

∼ iω2(ω−2z)1/4

2
√

π
e−(2/3)(ω−2z)3/2 ∼ −iz1/4

2
√

π
e−(2/3)z3/2

and

ω2 Ai
(
ω2z

)
= ω2 Ai

(
ω−1z

)
∼ ω2(ω−1z)−1/4

2
√

π
e−(2/3)(ω−1z)3/2 ∼ −iz−1/4

2
√

π
e(2/3)z3/2

,

iω Ai′(ω2z
)

= iω Ai′(ω−1z
)

∼ −iω(ω−1z)1/4

2
√

π
e−(2/3)(ω−1z)3/2 ∼ z1/4

2
√

π
e(2/3)z3/2

.

For arg z ∈ [−π, −π/3), we have arg(ω2z) ∈ [π/3, π) and arg(ωz) ∈ [−π/3, π/3). Thus, as z → ∞
with arg z ∈ [−π, −π/3), we obtain from (3.17) that

−ω2 Ai
(
ω2z

)
∼ −ω2(ω2z)−1/4

2
√

π
e−(2/3)(ω2z)3/2 ∼ z−1/4

2
√

π
e−(2/3)z3/2

,

−iω Ai′(ω2z
)

∼ iω(ω2z)1/4

2
√

π
e−(2/3)(ω2z)3/2 ∼ −iz1/4

2
√

π
e−(2/3)z3/2
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and

−ω Ai(ωz) ∼ −ω(ωz)−1/4

2
√

π
e−(2/3)(ωz)3/2 ∼ −iz−1/4

2
√

π
e(2/3)z3/2

,

−iω2 Ai′(ωz) ∼ iω2(ωz)1/4

2
√

π
e−(2/3)(ωz)3/2 ∼ z1/4

2
√

π
e(2/3)z3/2

.

Applying the last eight formulas to (3.16) gives

A(z)
(

1 0
±1 1

)
=

z−σ3/4

2
√

π

(
1 −i

−i 1

) (
I + O

(
|z| −3/2))e−(2/3)z3/2σ3 (3.19)

as z → ∞ with | arg z| ∈ (π/3, π]. Here the sign ± means plus sign when z is in the upper half plane,
and minus sign when z is in the lower half plane. Finally, we introduce a crucial function which enables
us to obtain global asymptotic formulas without any cut in the complex plane; see a statement in the
second last paragraph of Section 1. For z not on the imaginary line, we define

D(z) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
enzΓ(nz − β/2 + 1)√

2π(nz)nz+(1−β)/2
, Re z > 0,

√
2π(−nz)−nz+(β−1)/2

e−nzΓ(−nz + β/2)
, Re z < 0.

(3.20)

The jump of D(z) on the imaginary line is given by

JD(z) := D−(z)−1D+(z) = ∓2i sin π(nz − β/2)e±iπ(nz−β/2) = 1 − e±2iπ(nz−β/2), (3.21)

where D+(z) (D−(z)) is the limiting value of D(z) taken from the left (right) of the imaginary axis. It
will be seen in the proof of Lemma 4.1 that the usage of D(z) is to cancel the jump 1 − e±2iπ(nz−β/2)

across the imaginary axis. The explicit formula of D(z) is obtained by solving a one-dimensional
Riemann–Hilbert problem and calculating a Cauchy integral. As n → ∞, applying Stirling’s formula
(cf. [1], formula (6.1.40)) to (3.20), we have

D(z) = 1 + O(1/n) (3.22)

uniformly for z bounded away from the origin.

4. Construction of parametrix

For Re z /∈ [0, 1] or Im z /∈ [−δ, δ], we define

R̃(z) :=
√

π
[
Cenl]σ3/2

N (z)(z − 1)((β−1)/2)σ3

(
1 i
i 1

)
F (z)σ3/4A(F )

[
D(z)2env(z)

Czβ−1B(z)2

]σ3/2

. (4.1a)
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For Re z ∈ (0, 1) and Im z ∈ (−δ, δ), we define

R̃(z) := (−1)n+1 √
π

[
Cenl]σ3/2

N (z)(1 − z)((β−1)/2)σ3

(
1 i
i 1

)
F̃ (z)−σ3/4σ1A(F̃ )σ1

×
[

4 sin2 θ(z)D(z)2env(z)

Czβ−1B(z)2

]σ3/2

. (4.1b)

Note that R̃(z) has jumps across the negative real axis and the imaginary axis; they are caused by the
functions zβ−1 and D(z), respectively. Our parametrix R̃(z) is analogous to that in [4], formula (4.54).
The main difference is that the parametrix here has a factor involving the auxiliary function D(z) defined
in (3.20). This factor will make our asymptotic formulas valid in much bigger regions, one of which
includes the cut (− ∞, 0]. As z → ∞, a combination of (3.5), (3.6) and (3.18) gives

√
π

(
1 i
i 1

)
F (z)σ3/4A(F ) = e−nφσ3

[
I + O

(
1
z

)]
= e(−nv/2−nl/2)σ3znσ3

[
I + O

(
1
z

)]
.

Furthermore, it is easily seen from the definitions (2.8), (3.11) and (3.20) that we have respectively
B(z) ∼ zn, N (z) ∼ I and D(z) ∼ 1 as z → ∞. Thus we obtain from (4.1a) and the above formula
that

R̃(z) =
[
Cenl]σ3/2

z((β−1)/2)σ3

[
I + O

(
1
z

)]
e(−nv/2−nl/2)σ3znσ3

[
env

Czβ−1z2n

]σ3/2

= I + O
(

1
z

)
(4.2)

as z → ∞. Define

K(z) :=
(
Cenl)−σ3/2

R(z)R̃(z)−1(Cenl)σ3/2
. (4.3)

It is clear from (4.2) and Proposition 2.5 that

K(z) = I + O
(

1
z

)
(4.4)

as z → ∞. Let ΣK denote the oriented contour consisting of ΣR in Fig. 1, the negative real axis, and
the two infinite lines from z = ±iδ to z = ±i∞ on the imaginary axis. The jump matrix of K(z) is
given by

JK(z) := K−(z)−1K+(z) =
(
Cenl)−σ3/2

R̃−(z)JR(z)R̃+(z)−1(Cenl)σ3/2
. (4.5)

Lemma 4.1. JK(z) = I + O(1/n) and K(z) = I + O(1/n) as n → ∞.

Proof. In view of the structure of the contour ΣK , we divide our discussion into eight cases and consider
each case separately.
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Case I. For Re z = 1 and ± Im z ∈ [0, δ], we have from (2.15) and (2.22) that

JR(z) =

(
1 − e±2iθ Czβ−1B2W

2i sin θe∓iθ+nv

−2i sin θe±iθ+nv

Czβ−1B2W
1

)
.

This together with (4.1a), (4.1b) and (4.5) gives

JK(z) = N (z)(z − 1)((β−1))/2σ3

[(
1 i
i 1

)
)F (z)σ3/4A(F )

] (
1−e±2iθ

2 sin θ −iD2W e±iθ

−ie±iθ

D2W
2 sin θ

)

×
[(

1 i
i 1

)
F̃ (z)−σ3/4σ1A(F̃ )σ1

]−1

(1 − z)((1−β)/2)σ3N (z)−1(−1)n+1. (4.6)

On account of (3.6), we obtain from (3.19) that as n → ∞,(
1 i
i 1

)
F (z)σ3/4A(F ) =

[
I + O

(
1
n

)]
e−nφσ3

√
π

(
1 0

∓1 1

)
and [(

1 i
i 1

)
F̃ (z)−σ3/4σ1A(F̃ )σ1

]−1

=
√

π

(
1 ∓1
0 1

)
enφ̃σ3

[
I + O

(
1
n

)]
.

From (2.18) and (3.3) we have

enφ̃ = (−1)nenφ∓iθ∓iπβ/2.

As n → ∞, applying Stirling’s formula (cf. [1], formula (6.1.40)) to (2.21) yields

W (z) = 1 + O(1/n) (4.7)

uniformly for z bounded away from the negative real axis. Applying the last four equations and (3.22)
to (4.6) gives

JK(z) = N (z)(z − 1)((β−1)/2)σ3

(
1 ±(1 − D2W )e−2nφ̃∓iπβ

∓(1 − D−2W −1)e2nφ 1 − e±2iθ(2 − D2W − D−2W −1)

)

× (z − 1)((1−β)/2)σ3N (z)−1
[
I + O

(
1
n

)]

= I + O
(

1
n

)
.

Here we have used the fact that in the present case, Re φ(z) � 0 and Re φ̃(z) � 0; see Fig. 2.
Case II. For z = x ∈ [1, ∞), we have from (2.16) and (2.22)

JR(x) =
(

1 −Cxβ−1B2W e−nv

0 1

)
.
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This together with (3.14), (4.1a), (4.1b) and (4.5) gives

JK(x) =
[
N (x)(x − 1)((β−1)/2)σ3

(
1 i
i 1

)
F (x)σ3/4A−(F )

] (
1 1 − D2W
0 1

)

×
[
N (x)(x − 1)((β−1)/2)σ3

(
1 i
i 1

)
F (x)σ3/4A−(F )

]−1

. (4.8)

Note that the matrices N (z) and F (z)σ3/4 are both discontinuous across the interval [1, b). But a com-
bination of them makes the jumps vanish. Observe from Fig. 2 and (3.6) that arg φ±(x) = ±3π/2 and
arg F±(x) = ±π for x ∈ [1, b). Thus, we have F+(x)σ3/4 = F−(x)σ3/4eiπσ3/2. It then follows from
(3.12) that the matrix

N (z)(z − 1)((β−1)/2)σ3

(
1 i
i 1

)
F (z)σ3/4

has no jump on the interval [1, b). Applying (3.22) and (4.7) to (4.8) gives JK(x) = I + O(1/n).
Case III. For z = x ∈ [0, 1], we can proceed in a similar manner as in Case II and obtain JK(x) =

I + O(1/n).
Case IV. For z = Re z ± iδ with Re z ∈ (1, ∞), we have from (2.17b) and (2.22)

JR(z) =
(

1 Czβ−1B2W
2i sin θe∓iθ+nv

0 1

)
.

This together with (4.1a), (4.1b) and (4.5) gives

JK(z) = N (z)(z − 1)((β−1)/2)σ3

[(
1 i
i 1

)
F (z)σ3/4A(F )enφσ3

] (
1 D2W e−2nφ±2iθ

2i sin θe±iθ

0 1

)

×
[(

1 i
i 1

)
F (z)σ3/4A(F )enφσ3

]−1

(z − 1)((1−β)/2)σ3N (z)−1. (4.9)

Note from (3.8) that in this case, we have arg F (z) ∈ (−π, π). Thus, coupling (3.6) and (3.18), we obtain(
1 i
i 1

)
F (z)σ3/4A(F )enφσ3 =

1√
π

[
I + O

(
1
n

)]
.

Applying this to (4.9) yields

JK(z)=I + O
(

1
n

)
.

Here we have used the facts that ∓2i sin θe±iθ = 1 − e±2iθ ∼ 1 as n → ∞ and Re(−nφ ± iθ) =
−n(Re φ + πδ) < 0; see (2.18) and (3.10).

Case V. For z = x ± iδ with x ∈ (0, 1), we have from (2.17a) and (2.22)

JR(z) =
(

1 0
2i sin θe±iθ+nv

Czβ−1B2W
1

)
.
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This together with (4.1a), (4.1b) and (4.5) gives

JK(z) = (−1)n+1N (z)(1 − z)((β−1)/2)σ3

×
[(

1 i
i 1

)
F̃ (z)−σ3/4σ1A(F̃ )σ1

] (
2 sin θ 0

iD−2W −1e±iθ (2 sin θ)−1

)

×
[(

1 i
i 1

)
F (z)σ3/4A(F )

]−1

(z − 1)((1−β)/2)σ3N (z)−1. (4.10)

Note from (3.8) that in this case, arg F (z) ∈ (−π, π) and arg F̃ (z) ∈ (−π, π). Thus, we obtain from
(3.6) and (3.18)

(
1 i
i 1

)
F̃ (z)−σ3/4σ1A(F̃ )σ1 =

[
I + O

(
1
n

)]
e−nφ̃σ3

√
π

and [(
1 i
i 1

)
F (z)σ3/4A(F )

]−1

=
√

πenφσ3

[
I + O

(
1
n

)]
.

Applying the last two equations to (4.10) yields

JK(z) = N (z)(z − 1)((β−1)/2)σ3

(
2(−1)n+1 sin θenφ−nφ̃±iπ(1−β)/2 0

i(−1)n+1D−2W −1enφ+nφ̃±iθ∓iπ(1−β)/2 enφ̃−nφ∓iπ(1−β)/2

2(−1)n+1 sin θ

)

× (z − 1)((1−β)/2)σ3N (z)−1
[
I + O

(
1
n

)]
.

Using (2.18), (3.2a), (3.2b), (3.3) and (3.10), one can show that

Re{nφ + nφ̃ ± iθ} = Re{2nφ} < 0

and

2(−1)n+1 sin θenφ−nφ̃±iπ(1−β)/2 = ∓2i sin θe±iθ = 1 − e±2iθ ∼ 1.

Thus, we again have

Jk(z) = I + O
(

1
n

)
, as n → ∞.

Case VI. For z = ±iy with y ∈ (0, δ), we have from (2.17) and (2.22)

JR(z) =
(

1 0
2i sin θe±iθ+nv

Czβ−1B2W
1

)
.
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This together with (4.1a), (4.1b) and (4.5) gives

JK(z) = (−1)n+1N (z)(1 − z)((β−1)/2)σ3

[(
1 i
i 1

)
F̃ (z)−σ3/4σ1A(F̃ )σ1

] ( 2D− sin θ
D+

0
ie±iθ

D+D−W
D+

2D− sin θ

)

×
[(

1 i
i 1

)
F (z)σ3/4A(F )

]−1

(z − 1)((1−β)/2)σ3N (z)−1. (4.11)

Note from (3.8) that in this case, arg F (z) ∈ (−π, π) and arg F̃ (z) ∈ (−π, π). Thus, as in Case IV we
have from (3.6) and (3.18)

(
1 i
i 1

)
F̃ (z)−σ3/4σ1A(F̃ )σ1 =

[
I + O

(
1
n

)]
e−nφ̃σ3

√
π

and [(
1 i
i 1

)
F (z)σ3/4A(F )

]−1

=
√

πenφσ3

[
I + O

(
1
n

)]
.

Applying the above two equations to (4.11) yields

JK(z) = N (z)(z − 1)((β−1)/2)σ3

⎛⎝ 2(−1)n+1 sin θ

JDenφ̃−nφ∓iπ(1−β)/2
0

O(e2n Re φ) JDenφ̃−nφ∓iπ(1−β)/2

2(−1)n+1 sin θ

⎞⎠
× (z − 1)((1−β)/2)σ3N (z)−1

[
I + O

(
1
n

)]
.

Here we have used (2.21), (3.20) and the asymptotic formula for Γ(x ± iy) as y → +∞. Since

2(−1)n+1 sin θenφ−nφ̃±iπ(1−β)/2 = 1 − e±2iθ = JD

and Re φ(z) < 0, as before we again have JK(z) = I + O(1/n) as n → ∞. As mentioned in a statement
following (3.21), the usage of D(z) defined in (3.20) is to cancel the jump 1 − e±2iθ = 1 − e±2iπ(nz−β/2).
Without this function, the jump matrix JK(z) is not asymptotically equal to the identity matrix in this
case.

Case VII. For Re z = 0 and | Im z| � δ, we have JR(z) = I; see Fig. 1. Thus, (4.1a), (4.1b) and (4.5)
imply

JK(z) =
[
N (z)(z − 1)((β−1)/2)σ3

(
1 i
i 1

)
F (z)σ3/4A(F )

]
J −σ3

D

×
[
N (z)(z − 1)((β−1)/2)σ3

(
1 i
i 1

)
F (z)σ3/4A(F )

]−1

. (4.12)

Note that by (3.21), JD = 1 − e±2iπ(nz−β/2) is exponentially small for | Im z| � δ. From (4.12), it again
follows that JK = I + O(1/n) in this case.
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Case VIII. For z = x ∈ (− ∞, 0), we have JR(x) = I . Thus, (4.1a), (4.1b) and (4.5) imply

JK(z) = N (x)(1 − x)((β−1)/2)σ3e(iπ(1−β)/2)σ3

[(
1 i
i 1

)
F−(x)σ3/4A(F−)enφ−σ3

]
eiπ(β−1)σ3

×
[(

1 i
i 1

)
F+(x)σ3/4A(F+)enφ+σ3

]−1

(1 − x)((1−β)/2)σ3e(iπ(1−β)/2)σ3N (x)−1. (4.13)

Here we have used the fact that en(φ+−φ− ) = e2niπ = 1 for x < 0; see (3.2). Note from (3.8) that
arg F± ∈ (−π, π) in this case. Hence, we obtain from (3.6) and (3.18)(

1 i
i 1

)
F±(x)σ3/4A(F±)enφ±σ3 =

1√
π

[
I + O

(
1
n

)]
.

Applying the last equation to (4.13) yields

JK(z) = N (x)(1 − x)((β−1)/2)σ3e(iπ(1−β)/2)σ3eiπ(β−1)σ3

× e(iπ(1−β)/2)σ3 (1 − x)((1−β)/2)σ3N (x)−1
[
I + O

(
1
n

)]
= I + O

(
1
n

)
.

In conclusion, we have shown that JK(z) = I + O(1/n) on the contour of K(z). It is not difficult
to verify that the multiplicative cyclic condition (3.30) in [14] holds for the jump matrix JK(z). An
application of Theorem 3.8 in [14] then gives K(z) = I + O(1/n) as n → ∞. �

Combining Lemma 4.1 with (2.5), (2.8), (2.9), (2.12a)–(2.12c) and (4.3), we obtain

πn(nz − β/2) = nnB(z)R̃11(z)
[
I + O

(
1
n

)]
(4.14a)

for Re z /∈ [0, 1] or Im z /∈ [−δ, δ], and

πn(nz − β/2) = nnB(z)
[
R̃11(z) + Δ±(z)R̃12(z)

][
I + O

(
1
n

)]
(4.14b)

for Re z ∈ (0, 1) and Im z ∈ (0, ±δ).

5. Main results

Theorem 5.1. As n → ∞, we have

πn(nz − β/2)

= nn√
πD(z)env(z)/2+nl/2

{
((

√
z − a +

√
z − b)/2)β + ((

√
z − a −

√
z − b)/2)β

z(β−1)/2(z − a)1/4(z − b)1/4F (z)−1/4
Ai(F )

− ((
√

z − a +
√

z − b)/2)β − ((
√

z − a −
√

z − b)/2)β

z(β−1)/2(z − a)1/4(z − b)1/4F (z)1/4
Ai′(F )

}[
1 + O

(
1
n

)]
(5.1)
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for Re z /∈ [0, 1] or Im z /∈ [−δ, δ], and

πn(nz − β/2)

= (−n)n
√

πD(z)env(z)/2+nl/2

×
{

((
√

b − z +
√

a − z)/2)β + ((
√

b − z −
√

a − z)/2)β

z(β−1)/2(b − z)1/4(a − z)1/4F̃ (z)−1/4

[
cos θ Ai(F̃ ) − sin θ Bi(F̃ )

]
+

((
√

b − z +
√

a − z)/2)β − ((
√

b − z −
√

a − z)/2)β

z(β−1)/2(b − z)1/4(a − z)1/4F̃ (z)1/4

[
cos θ Ai′(F̃ ) − sin θ Bi′(F̃ )

]}

×
[
I + O

(
1
n

)]
(5.2)

for Re z ∈ (0, 1) and Im z ∈ (−δ, δ), where the constant l is given in (3.4) and the functions v(z), F (z)
and D(z) are respectively given in (2.19), (3.6) and (3.20). The asymptotic formula on the boundary of
the two regions can be obtained by taking limits from either side.

Proof. From (3.11), (3.13), (4.1a), (4.1b) and (4.14a), it is easy to obtain (5.1). We now prove (5.2).
Define

Q̃(z) := R̃(z)
(

1 0
Δ±(z) 1

)
. (5.3)

From (4.14b), we have

πn(nz − β/2) = nnB(z)Q̃11(z)
[
I + O

(
1
n

)]
. (5.4)

Thus, we only need to calculate Q̃11(z). First, we observe from (2.22), (4.1a), (4.1b) and (5.3) that

Q̃(z) = (−1)n+1 √
π

[
Cenl]σ3/2

N (z)(1 − z)((β−1)/2)σ3

(
1 i
i 1

)
F̃ (z)−σ3/4σ1A(F̃ )σ1

×
(

1 0
ie±iθ(z)

2D2(z)W (z) sin θ(z) 1

) [
4 sin2 θ(z)D(z)2env(z)

Czβ−1B(z)2

]σ3/2

.

Second, (3.11) gives

N (z)(1 − z)((β−1)/2)σ3

(
1 i
i 1

)

=

⎛⎝ ((
√

b−z+
√

a−z)/2)β −((
√

b−z−
√

a−z)/2)β

(b−z)1/4(a−z)1/4
((

√
b−z+

√
a−z)/2)β+((

√
b−z−

√
a−z)/2)β

−i(b−z)1/4(a−z)1/4

((
√

b−z+
√

a−z)/2)2−β −((
√

b−z−
√

a−z)/2)2−β

−i(b−z)1/4(a−z)1/4
((

√
b−z+

√
a−z)/2)2−β+((

√
b−z−

√
a−z)/2)2−β

(b−z)1/4(a−z)1/4

⎞⎠ .
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Finally, (3.13) implies

σ1A(F̃ )σ1

(
1 0

ie±iθ

2D2W sin θ
1

)
(2 sin θ)σ3

=
(

Bi′(F̃ ) i Ai′(F̃ )
−i Bi(F̃ ) Ai(F̃ )

) (
1/2 0

±1/2 1

) (
2 sin θ 0

iD−2W −1e±iθ (2 sin θ)−1

)

=

(
sin θ Bi′(F̃ ) − [cos θ + (D−2W −1 − 1)e±iθ] Ai′(F̃ ) i Ai′ (F̃ )

2 sin θ

−i{sin θ Bi(F̃ ) − [cos θ + (D−2W −1 − 1)e±iθ] Ai(F̃ )} Ai(F̃ )
2 sin θ

)
.

Applying the last three equations to (5.4) gives

πn(nz − β/2)

= (−n)n
√

πD(z)env(z)/2+nl/2
{

((
√

b − z +
√

a − z)/2)β + ((
√

b − z −
√

a − z)/2)β

z(β−1)/2(b − z)1/4(a − z)1/4F̃ (z)−1/4

×
[
cos θ Ai(F̃ ) − sin θ Bi(F̃ ) + e±iθ(D−2W −1 − 1

)
Ai(F̃ )

]
+

((
√

b − z +
√

a − z)/2)β − ((
√

b − z −
√

a − z)/2)β

z(β−1)/2(b − z)1/4(a − z)1/4F̃ (z)1/4

×
[
cos θ Ai′(F̃ ) − sin θ Bi′(F̃ ) + e±iθ(D−2W −1 − 1

)
Ai′(F̃ )

]}[
I + O

(
1
n

)]
.

On account of (3.2), (3.6) and (3.17), Ai(F̃ ) and Ai′(F̃ ) are exponentially small when z approaches the
origin; by (3.22) and (4.7), we also have D−2W −1 − 1 = O(1/n) for z 
= 0. Since we can always neglect
the terms (D−2W −1 − 1) Ai(F̃ ) and (D−2W −1 − 1) Ai′(F̃ ), formula (5.2) is proved. �

To justify that the asymptotic formula on the curve separating the two regions can be obtain by taking
limits from either side, we just note that the regions of validity of both formulas (5.1) and (5.2) can be
slightly extended beyond their boundaries, and that in the overlapping region these two formulas are
asymptotically equal.

Remark 5.2. We would like to mention that our results coincide with those obtained in [8,9]. The for-
mulas (6.9) in [8] and (2.35) in [9] are asymptotically equal to (5.1) in the present paper, while the
formulas (6.27) in [8] and (4.19) in [9] are asymptotically equal to (5.2).
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