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Abstract. An asymptotic formula is derived for the sum

Ln(1|g) =Y falk)g ¥

k=0

as n — oo, where fn (k) and gn (k) are functions defined on nonnegative integers and 0 < ¢ < 1. This formula is a discrete
analogue of Laplace’s approximation for integrals. Corresponding results are also provided for the more general sum

In(zlg) =Y falk)g 2"

k=0

which is typically an nth order polynomial. The results obtained are then used to give asymptotic formulas for the ¢~ !_Hermite
polynomial hn(x|q), the Stieltjes—Wigert polynomial Sy (z; ¢) and the g-Laguerre polynomial Ly (z; q).

Keywords: Laplace’s approximation, g-Airy function, ¢~ '-Hermite polynomial, Stieltjes—Wigert polynomial, g-Laguerre
polynomial

1. Introduction

Let ¢(x) and h(x) be two real-valued continuous functions defined in the finite interval o < = < S.
Assume that A(z) has a single minimum in the interval, namely at * = «, and that the infimum of
h(x) in any closed sub-interval not containing « is greater than h(c). Furthermore, assume that " (x) is
continuous, h'(«v) = 0 and h”(«) > 0. Then, Laplace’s approximation states that the integral

s
I\ = / d(x)e M@ g (1.1)

has the asymptotic formula

-~ Y m :
I(N) ~ ¢(a)e [ VL (a)} (1.2)

as A — +oo; see [1, p. 39] or [6, p. 57].
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Now, put A = n? and make the change of variable © = o + (8 — a)t so that the integral in (1.1)
becomes

I(n?) = (B — a)p(a)e /0 1 F(t)e ™90 dt, (1.3)

where f(t) := ¢(x)/d() and g(t) := h(z) — h(c). If we set q := e~k := nt, fo(k) := %f(%) and
gn(k) = nzg(%), then the integral in (1.3) can be written as

1 n
/0 F(t)e ™90 dp = /O Fo(k)gon® dk. (1.4)

A discrete form of the last integral is the finite sum

L(|g) ==Y fu(k)g®™®, (1.5)
k=0

and the purpose of this paper is to investigate the behavior of the sum I,,(1|¢) and its more general form

Li(zlq) =" falk)g?®2F (1.6)
k=0

as n — oo. The results obtained will be used to give asymptotic formulas for the ¢~ !-Hermite polyno-
mial h,(z|q), the Stieltjes—Wigert polynomial S, (x; ¢) and the ¢-Laguerre polynomial L (x;q). These
formulas will then be compared with those provided recently by Ismail and Zhang [4]. As will be shown,
our formulas are simpler and our error estimates are sharper.

2. Behavior of I,,(1|q)

We first consider the sum I,,(1|g) given in (1.5). As we shall see, its asymptotic behavior is given in
terms of the ¢-Theta function defined by

Ou2):= > ¢k 0<qg<1; 2.1)

k=—o00

see [5, p. 463]. Note that ©,(1) is a continuous function of g € (0, 1), since the infinite sum ) 7> ¢
converges uniformly for ¢ in any compact subset of (0, 1).

Theorem 1. Assume that the following conditions hold:

(1) fn(0) =1,9,(0) = 0;
(ii) there exists a constant M > 0 such that | f, (k)| < M for 0 < k < n;
(iii) for any § € (0, 1) there exist a constant A5 > 0 and a positive integer N(8) such that g,(k) >
Asn? forallnd < k < nandn > N(6);
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(iv) for some fixed co > 0 and for any small € > 0, there exist §(c) > 0 and N(¢) € N such that
| fn(k) — 1| < € and |gn(k) — cok?| < ek?, whenever 0 < k < nd(e) and n > N(g).

Then, we have
i 1
In(lg) i= >~ fa()g* ™ ~ 5[0 +1]  asn — oo, (2.2)
k=0
where q := .

Proof. For any small £ > 0, we choose 0 := d(¢) and N (¢) as in (iv). Split the sum 7,,(1|g) into two so
that ,,(1|q) = I} + I3, where

[nd]

=) fuk)g™® and L= Y fulkg®.

k=0 k=|nd]+1
Simple estimation gives

[nd]

I < 31+ e)gH o
k=0

and

]
2
I} > Y (1 —e)g" @t
k=0

from which we obtain

1+¢

L-e LB + 1].

[Oo+=(D) + 1] < lim I} < lim I} <

2 n—oo n— o0
By conditions (ii) and (iii), we also have
n 2 2
GI< Y Mg" <nMgv.
k=|nd|+1
Thus, lim,, . I3 = 0 and

1—¢ . — 1+¢
7[@(1«20-&-5(1) + l] < lim In(lfq) < lim In(lfq) < 7[
n—00 2

2 n—oo

O eo-(1) + 1].

Since ¢ is arbitrary, the desired result (2.2) follows. O
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3. Behavior of 7,,(z|q)

In order to give applications to g-orthogonal polynomials, we need consider the sum (1.6)

Ln(zlq) =Y fulk)g™® 2",

k=0

where, as before, ¢ € (0, 1), f,, and g, are real-valued functions defined on N, and z is a complex
variable.

Theorem 2. Assume that the following conditions hold:

(i) there is a numberl € (0, 1) such that lim,, .~ fr(|nl]) = 1 and lim,, o g,(|nl]) = 0;
(ii) there exists a constant M > 0 such that | f,,(k)| < M for 0 < k < n;
(iii) for any 0 < & < I, there exist As > 0 and N(6) € N such that g,(k) > n’>A;s for all k €
[0,n(l — &)U [n( + J),n] and n > N(J);
(iv) for any small ¢ > 0, there exist 6(¢) > 0 and N(¢) € N such that |f (k) — 1| < € and
lgn(k) — bp(k — [nl|) — co(k — [nl])?| < e(k — [nl])* for n(l — 6()) < k < n(l + 6(¢)) and
n > N(e), where sup,, |b,| < L.

Then, we have
L,(2|g) = 2" [O4(w,) + o(1)]  asn — oo, 3.1)
forall z € Tg := {z € C: R™' < |z| < R}, where § = ¢ and w,, = ¢*" 2

Remark 1. Condition (i) in Theorem 2 can always be satisfied, if we consider, instead of I,,(z|q), the
sum

T 1 n g n(k) —gn(|n
In(z]q) = i)’ ) T )—Z o r=gn(ni]),

Condition (iv) in the theorem is the discrete analogue of the conditions that f,, is continuous and g, is
twice continuously differentiable at k = |nl| with g/,(|nl]) = b, and g//(|nl]) = 2¢,.

Before proving Theorem 2, let us first establish the following stronger result.

Theorem 3. Assume that the conditions (i), (i1) and (iii) in Theorem 2 hold. If condition (iv) in that
theorem is strengthened to

(iv") for any small 6 > 0, there exist a function 1,,(8) with lim,,_, o, 1,(6) = 0 and a positive integer
N(O) such that | f,,(k)— 1| < n,(8) and | gn(k) — bp(k— |nl]) — co(k — [nl)?| < 0 (8)(k—|nl])?
forall kinn(l —0) < k < n(l + ) and all n > N (),

then the error v, == z —lnil n(z]q) — Oz(wy,) in the approximation (3.1) satisfies

[7n| < C(0a(8) + ¢ 3170 qeom*d*(1-0)) 3.2)
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for sufficiently large n, where C is a constant depending on q, M, R, L, and c¢y. Furthermore, the estimate
is uniform for z in the annulus Ty given in Theorem 2.

Proof. Clearly,

n—|nl| 00
rn= Y falk+ [nl])gon kN g cotbn ok
k=—|nl| k=—o00

We write the first sum as

—|nd]—1 [nd] n—|nl]

PR DL ND D

k=—|nl] k=—|nd] k=[nd|+1

and the second sum as

—|né|—1 [nd] SS)

2ot 2+ )

k=—oco  k=—[nd] k=[nd|+1
Thus,
T'n =Il +I2+I3+I4+IS+I6,

where

n—|nl|

L= 3 falk+ [nl])gon®tmhzt,
k=|nd]+1
L= — i gFatkb k.
k=|nd|+1
—[nd]—1

L= Y falk+ [n])gon®HnDzk,
k=—|nl|

—|nd]—1
I =— Z qkzcoJrkank’
k=—00
[nd] ,
Is = Z fn (k: + LnlJ) [qgn(kﬂnlj) _ qk Co+kbn}zk
k=—|nd]

and

[nd]

Is= > [fa(k+ [nl]) — 1]gFcotkbn k.
k=—|nd]
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For sufficiently large n, we have

n—|nl]
|Il‘ < Z quzAng < anTLzA(;RTL < qnzA(g(l—(s)’
k=|nd|+1

o0

|Iz\ < Z qmzco+(Ln5j+1)2007(m+|_n6j+1)LRm+|_n6J+1
m=0
2
< q(L"5J+1) CO*(LMJH)LRLMJH@(!CO (qiLR)
< qcon252(1—6)

since |b,| < L. Similarly, we get

—|nd]—1
ILI< Y M@"M R <nMgv AR < g A0
k=—|nl]

and

0
2 2
|I4‘ < Z qm co+(|nd |+1) co+(men6J71)LR7m+Ln5j+l
m=—o0
2
< gL Pa—(nal+ DL glndl+ig . (o~LR)
< qc0n252(176)

for large enough n.
We next estimate s and Ig. It is evident that

[nd]
Is = Z fn (k: + LnlJ) [qgn(kJanlj)szcofkbn . l]qk%ﬁkbnzg
k=—|nd]

By the mean-value theorem, we have
[nd]

15| < M|Inglpa(d) Y. kg @k etk
k=—|nd]

k

where we have made use of condition (iv'). Since elkl > %kz and 7,(6) — 0 asn — oo, the last
inequality gives

|I5] < 4M |10 |1 (9)O 02 (g " R)
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for sufficiently large n. In the same manner, it follows that

[nd]
Il < sup [fulk+[nl]) —1] 37 gForhnzl
|k|< |nd] k=—|nd|
< 200(8)Bye0 (¢ FR).
The desired result (3.2) is obtained by a combination of the estimates for [, ...,Is. O

Proof of Theorem 2. Here we need to show that r,, — 0 as n — oo. This can be done as follows:
Let 0 < € < ¢/2, and choose 0 = d(¢) as in condition (iv). We estimate [}, I,, I3 and I as before,
and they all tend to zero as n — oo. As for I5 and Ig, we also proceed as in Theorem 4, and obtain

[n3]
15| <eM|Ing] > kPem=Fghiathbo| |k
k=—|nd]

<4eM|Ing|O 2 (eq *R)
and
16| < 260400 (¢ "R).

Thus, H,HOOM < Ceg, where C' is independent of €. Since ¢ is arbitrary, the desired result (3.1)
follows. O

4. A generalization

In the previous section, we have always assumed that the function (sequence) f,,(k) behaves like a
constant as n — oo. An example of such is given by (¢" %1, ¢), == [/ (1 — ¢**"), which tends
to 1 uniformly for & € [nd,n — nd] as n — oo, where J is any number in (0, %). However, there are
functions f, (k) whose limits, as n — oo, are bounded functions of k. For example, the g-binomial
coefficient

n (4 Dn
=2 4.1
L@L (@ D@ Dn—k @D
where
n—I1
(@@= [[(1 —ad"), a€C, (4.2)
k=0

is asymptotically equal to Hf;ol(l — ¢~ as n — oo, for k € [0, n — nd]. In such cases, we will use,
instead of the g-Theta function given in (2.1), the more general function defined by

Dy(2) = Z aquzzk. (4.3)
k=0
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The infinite sum on the right converges uniformly for z in any compact subsets of C, as long as the
coefficients a, are bounded. When a;, = (—1)* /(q; @)k the function (4.3) becomes the g-Airy function

A=Y (__l)k g2 (4.4)
o (@ Dk

cf. [3].

Theorem 4. For some ay, with |ay| < K and ¢y > 0, we assume

() gn(0) =0,
(i) there is a constant M > 0 such that | f, (k)| < M for0 < k < n,
(iii) for any & € (0, 1), there exist As > 0 and N(8) € N such that |g,(k)| > n*As fornd <k <n
and n > N(6),
(iv) forany e > 0, there exist 5(¢) > 0 and N(g) € N such that | f,,(k) — ai| < € and |gn(k) — cok?| <
ek? for 0 < k < ndandn > N(e).

Then we have
In(2]q) = Pg(2) + o(1) 4.5)
uniformly for z € Dp := {z € C: |z| < R}, where § = q.
Moreover, if condition (iv) is replaced by

(iv") for any 6 > 0, there exist functions 1,(6) with lim,,_, o 1,(0) = 0 and positive integer N () such
that | fn(k) — ax| < nn(8) and |gn(k) — cok?| < (K> for 0 < k < nd and n > N(6),

then the error ry, := I,(z|q) — @a(z) in the approximation (4.5) satisfies

[Pl < C(a(@) + 4070 4 g0 0) (4.6)

for sufficiently large n and uniformly for z € Dpg, where C' is a constant depending on q, M, R, K
and cy.

Proof. Without loss of generality, we may assume that ¢y = 1, for otherwise we can replace g, (k) by
gn(k) := gn(k)/co and g by q := ¢*. The assumptions are then satisfied by g, (k) with ¢y = 1.
We now proceed as in the proof of Theorem 3. Write

n o0

2

rn = fal)g P2 =" a2
k=0 k=0

=0+ L+ 1;+ 1,

where

L= > falk)g 2",

k=|nd]+1
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o0

2
I, = Z arq” 2,
k=|nd]+1

[nd ]
L= fa®)[g"® — ¢
k=0
and
Lnd] ,
L= [falk) — ar]q" 2.

k=0

It is clear that for sufficiently large n, we have

n
2 2 2
|Il‘ < M Z qn AL;Rk‘ < ann A(;RTL < qn As(1-9)

k=|nd|+1
and
e )
LIKK Y " R* < qul2+(L"5J+l)2Rl+Ln6J+1
k=[nd]+1 1=0
< KqMI+? plndltig (Ry < g 009,
Since

g7 ® — ¢ < | Ing||gn(k) — K |q~lom®I—R1+E?

n(k
<lingl sup [T yfpeges
o<kg|ns|l K
for 0 < k < [nd], we also have
n(k
|I;] <2M|Ing| sup g (2 ) _ I‘qu/z(eR).
o<kg|ns|l K

Similarly, one gets

|I4‘ < osup ’fn(k) - ak|9q(R)
0<k<|nd]

The required results (4.5) and (4.6) now follow from conditions (iv) and (iv’), respectively. O
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5. Applications

In this section, we shall apply our theorems to the ¢~ '-Hermite polynomials A, (x|q), the Stieltjes—
Wigert polynomials S,,(x; q) and the g-Laguerre polynomials LS (x; ¢). These polynomials are defined

by

n

hn(sinh§|q) — Z {TL} qu_nk(_l)k e(n—Zk)E’ (5.1)
pard RAP
" n >
Sn(x;q) = K =)k 5.2
(3 ) (q;q)n];)[k]qq (—x) (5.2)
and
N @ Pn & [n] Waar (—2)F
Loz q) = A 53
w(#0) (4 Dn kz_% k1! (@t Q) 6

see [2] and [3].
To derive Plancherel-Rotach asymptotic formulas for these polynomials, we shall rescale the variables
as was done in [4]. Thus, for the ¢~!-Hermite polynomials, we set

sinh&, == = (¢ "u — q”tu_l) (5.4)

N —

with v # 0 and ¢ > 0. For the Stieltjes—Wigert polynomials and the g-Laguerre polynomials, we set
Tp(t,u) := ¢ ™u withuw # 0 and t > 1. After rescaling, we get

: n_—n ~[n n2t—
hp(sinh &,|q) = u"q th[k:} qk2(—u2q @t 1))k, (5.5)
k=0 q

W' N EnT g2 ek
Sn(Tn(t,u);q) = —F—— ¢ (—u'g" (5.6)

( ) (¢ Dn ,;0 klq ( )

and
a (—ug®)"q" ) & atl4n—k N k1 n@-2—ayk

L(zn(t,u);q) = —————— > (g ;q)k{k} ¢" (—u'q )" (5.7)

(@ Dn = g

Corollary 1. Let &, be defined as in (5.4). Fort > 1/2, we have

hy(sinh &, |q) = unq—nzt{Aq(u—2qn(2t—l)) + O(qn(1—5))}’ (5.8)
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where 0 < & < 1 is any small number. Furthermore, this asymptotic formula holds uniformly for
u~' € D := {2z € C: |z| < R} with R > 0 being any large real number. On the other hand, for
0 <t <1/2 we have

: _ (=D —2 2m—n(1-2%) nd—é)
hp(sinh &, |q) = P {O4(—u""q ) +0(q )} (5.9

where | = %(1 —2t),m := |nl] and 6 > 0 is any small number. The O-term in (5.9) is uniform with
respecttou € Tp := {2z € C: R7! < |z| < R} with R > 0 being any large real number.

Proof. When t > 1/2, we apply Theorem 4 to (5.5) with

Nk
e L R 1 RN SR )
(4 D k1,
1 qn(1—6)
co=1, = , As = 6%, ()= ———.
° (¢ Do ’ O = e — 0

We only need to verify that |f,(k) — ax| < 1,() for 0 < k < nd and sufficiently large n. The
other conditions in Theorem 4 are easily seen to hold. For any positive integers m and k, we have
q"™ (@™ @k < ¢™, and hence

1= (@™ r=q¢"+(1-¢"[1= ("9, ] <d"+1-(¢""9q),_,

qm _ qurk qm
1—g¢q 1—g¢q
Letting & — oo yields 1 — (¢"™; @)oo < % Thus,
1 — (qn—k+1;q)k qn—k—H qn(l—ﬁ)
fa(k) —ai| = < < = 1 (9) (5.1D
[Fn | (@ Dr I—@or S T-@ e ™

for 0 < k£ < nd. The asymptotic formula (5.8) now follows from (4.5) with @(2) replaced by A,(2);
see the statement following (4.3).
When 0 < t < 1/2, we apply Theorem 3 with

I= % m=nl|,  falk) = (¢ Do {Z} . ga(k) = K = 2nlk +m@2nl —m),
q
z=-u?, =1 M=1, bp=2(m—nl), L=2,
n(l—0)
Ay =818,  md) = 2‘11 -

To verify condition (ii) in Theorem 2 (which is also assumed in Theorem 3), we choose N(8) = |2/6?].
Then it is readily seen that for k € [0,n(l — 0)] U [n(l + §) — 1,n] and n > N(J), we have

gn(k) = (k — nl)®> — (m — nl)?> > (nd — 1> — 1 > n?5*(1 — §) = n’As. (5.12)
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To show that condition (iv’) in Theorem 3 also holds, we first note that (1—a)(1—b) > 0for0 < a,b < 1,
andhencel —a+1—b>1—aband

|faB) = 1] =1 - (""59) (" " hq) <1 (" 59)  + 1= (¢" 1 q),.
Using the inequality following (5.10), we obtain
k+1 qn—k-‘rl 2qn(l—6)

q _
[k = 1] <+ < = me®) (5.13)

for k € [n(l — 0),n(l + 9)], since [ < 1/2. Next, we observe that

gn(k) = k* = 2nlk + m@2nl — m) = k> — m? — 2nl(k — m)
= (k —m)k +m —2nl) = 2(k — m)(m — nl) + (k — m)*.

With ¢ = 1,m = |nl| and b,, = 2(m — nl), the last equation becomes

gn(k) = (k — [nl))by + co(k — |nl])*, (5.14)
thus establishing condition (iv’). Formula (5.9) now follows from (3.1) and (3.2). O

Remark 2. Comparing Corollary 1 above with Theorem 2.1 in [4], our results have two advantages.
First, when ¢ > 1/2, our estimate for the error is O(¢"' =) for any § > 0, while the error estimate in [4]
is O(q”/ 2). Second, when 0 < t < 1 /2, we give a single formula (5.9), whereas it takes two formulas in
[4] to cover this case, one when ¢ is rational and the other when ¢ is irrational. Here, probably it should
also be pointed out that the reason why the error estimate in [4, Eq. (25)] is only O(logn/n) when ¢ is
irrational is because of the fact that Qq(ql/”) — 64(1) = O(logn/n).

In a similar manner, we will now apply Theorem 3 and Theorem 4 to (5.6) and (5.7) to obtain asymp-
totic formulas for the Stieltjes—Wigert polynomials and the g-Laguerre polynomials.

Corollary 2. Let z,,(t,u) :== ¢ ™ uwithu # 0and t > 1. Whent > 2, we have

_on,nA(1—t)
Sy (xn(t,u);q) = %{Aq(u_lq”(t_m) +0(q"=9)} (5.15)

uniformly for u=!' € Dg := {z € C: |z| < R}, where § > 0 is any small number and R > 0 is any
large real number. When 1 < t < 2, we have

B (_u)n—mqn2(1 —t)—m[nQR—t)—m]

Sh (Sﬂn(t, u); Q) =

(@ D@ Q) [By(—u™'¢m ") 1 0(g"=D)),  (5.16)

where | := %(2 —t),m := |nl| and 6 > 0 is any small number. This asymptotic formula holds uniformly
foru € Tg := {2z € C: R7! < |2| < R}, where R > 0 is any large real number.
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Proof. Fort > 2, we apply Theorem 4 to (5.6) with

(—1)k
(@ Or

k= Jn(k) = (—1)k {Z] > gn(k) = kz, z = u_lq"(t—Z)’
q

1 n(1—9)

T (@ Do

g
(; Dol — @)

A(S = 527 nn(5) =

co =1,

For 1 <t < 2, we apply Theorem 3 to (5.6) with

I=1-2 m=lnll b =@ m  gu(B) = K — 2nlk + mQ@nl — m),
q
z2=—u"l, co=1, M =1, b, = 2(m — nl), L=2,
n(l—9)
A=00-0),  ne= T
—q

The arguments for verifying the conditions in Theorems 3 and 4 are the same as those used in the proof
of Corollary 1. O

Corollary 3. Assume that o is real and o > —1. Let x,,(t,u) := ¢ ™ u withu # 0 and t > 1. When
t > 2, we have

(_uqa)nqnz(l—zi)

(@ Dn

L (2, (t, u); q) = Ag(u™'g"=27) 4 O(g" ")} (5.17)

uniformly foru™' € Dg := {z € C: |z| < R}, where R > 0 is any large real number. When 1 <t < 2,
we have

(_uqa)nfmqnz(lft)fm[n(th)fm] I -
Ly (zn(t;w); q) = O (—u m-n@-t—ay L (=)
(@nlt):q) (% On(¢; Do {€a(=u"a ) +0lg )}(5 o

wherel == 1 — %, m := |nl| and 6 > 0 is any small number. The asymptotic formula holds uniformly
foru e Tg := {2z € C: R7! < |2| < R}, where R > 0 is any large real number.

Proof. For ¢t > 2, we apply Theorem 4 to (5.7) with

o= EO° fn(k)z(—l)k(q“+1+”_k;q)k[n] L g =R
(4 Dk klq
_ oy 1 2qn(1—6)
z=u gt co =1, M = , As = 62, n(0)= ——— .
1 0 (¢: Do ’ g (¢; Dol — @)

Simple calculation gives

1 — (@ % (@ F s o)

(@ Dk

‘fn(k) - ak| =
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As in Corollary 1, by using the inequality 1 —a+1—b > 1 —abfor 0 < a,b < 1, we obtain

1= (@@ k) + 1 — (" ks g

n k) — <
[ ) = a (@ Dk

Since @ > —1, it follows from (5.10) that
a+1+n—k n—k+1 n—k
q +4q < 2q _
(I — (g Dk (1 = (g Dk

Since (¢; Qr = (¢; @)oo, for 0 < k < nd we have

‘fn(k') - CLk| <

| 2419 5

(k) = ap| < ————— = (0.

1] =l < G G~ ™

When 1 <t < 2, we apply Theorem 3 to (5.7) with

1
l=1-35t,  m=|nl],  fak)= (@ Doo (¢* T ), [n] ;
q

gn(k) = k> — 2nlk +m@Q2nl — m), z=—u"lq7%,

co=1, M =1, b, = 2(m — nl), L=2,

n(l—o)
A5 =21 —=08), ) =4

l1—q

The verification of condition (iv’) in Theorem 3 proceeds along the same lines as that given in Corollary
1. In particular, since

}fn(k‘) _ 1| -1 (qa+1+n—k;;q)k<qn—k+1;q)k(qk+l;q)oo

andl —a+1—-b+1—c>1—ab+1—c>1—abcfora,bandc € (0, 1), the right-hand side of the
last equality is less than or equal to

1= (T rg), +1— (" g +1— (" 5q)

and we have by (5.10)

qa+l+n—k +qn—k+] +qk+l - 3qn(l—6)

= Tin (0)

for k € [n(l — §),n(l +9)]. O

When ¢ < 1, asymptotic formulas of the Stieltjes—Wigert polynomials and the g-Laguerre polynomials
can be obtained by applying Theorems 3 and 4 to the two sums

1 zn:[n

Sp(x;q) = ——
(#:4) (@ Dn Lk

} 4" (—=¢"u)", (5.19)
q
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k +ak

6% . ’Q)n |: :| —nt k
L (z; , 5.20
a0 = <q Dn kzo @ g Y 20

where again x = q_N”tu; see (5.2) and (5.3).
Indeed, let —t =t — 2 and u = ! in (5.19). Then this equation becomes

n

1 [n} K2 n{t-2)~—1\k
q —q u .
(q;q)n,;) klq ( )

When ¢ > 2 (i.e., t < 0), we have by the argument used for Corollary 2

Snl30) = (q;lq)n {4,(@'q"?) +0(q"' =)}
1
N Aq(ug™™) +0("*™7)}, 5.21
(q;q)n{ a(ug™) + 0™} (5.21)

where § is any small number; see (5.15). This result holds uniformly for v = u~! € D = {z €
C: |z| < R} with R > 0 being any large real number.
When 1 <t <2(.e.,0 <t < 1),again by the argument used for Corollary 2 we obtain

(_a)_ﬁ@q—%ln@—g_%] ~—1 _2m—n@2—1t) i
Sn o) = e, (—u m—n + 0 n(l—9)
(75 9) (@ Dn(¢: Do Ol ! ) (q !

(_u)ﬁzq—ﬁz(nt—ﬁz)

(@ Dn(q: Do (4 (—ug™ ) +-0(4" )}, (5.22)

where | = 1 — i

uniformly for u™

m = Lnﬂ and 0 > 0 is any small number; see (5.16). This formula holds
=u€Tgp={z€C:R'<|z| <R}, where R is any large real number.

_l\)

Remark 3. Note that when ¢ < 0, u~!¢™*~? is unbounded. Hence, Theorem 4 can not be applied to the
representation of S,,(x; ¢) in (5.6) with z = u~!¢™*=2_ However, if we use the alternative representation
of S,,(x;q) given in (5.19), Theorem 4 becomes applicable since ug~ " is now uniformly bounded for
large n. Also note that as in the proof of Corollary 1, (5.13) is needed in the proof of Corollary 2 for the
case | <t <2 If0O<t<1,thenl:=1-1t/2¢€ (%, 1) and hence (5.13) fails to hold. There are two
approaches to resolve this matter. The first approach is to choose 7,,(6) = 2q”(1*l*5) /(1 — q), instead of
() = 2q”(l_5) /(1 — q) as was done in the proof of Corollary 2. With the new choice of 7,,(6), (5.13)
continues to hold, and we have approximation (5.16) with the error estimate replaced by O(¢"' ~/=9).
The second approach is to use the representation of S, (z; ¢) in (5.19), and by applying Theorem 3 we
get the approximation (5.22). A careful calculation shows that these two approximations are exactly the
same. In view of the symmetry of S,,(x; ¢) at ¢t = 1, it is preferable to use the representation of Sy, (x; q)
in (5.6) when ¢ > 1, and the representation of S,,(z; ¢) in (5.19) for ¢ < 1. Results corresponding to
(5.21) and (5.22) can be obtained for the ¢g-Laguerre polynomials.
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