
Adv Comput Math (2022) 48:16
https://doi.org/10.1007/s10444-022-09928-4

Awell-conditioned direct PinT algorithm
for first- and second-order evolutionary equations

Jun Liu1 ·Xiang-ShengWang2 ·Shu-Lin Wu3 ·Tao Zhou4

Received: 24 May 2021 / Accepted: 19 January 2022
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2022

Abstract
In this paper, we study a direct parallel-in-time (PinT) algorithm for first- and second-
order time-dependent differential equations. We use a second-order boundary value
method as the time integrator. Instead of solving the corresponding all-at-once sys-
tem iteratively, we diagonalize the time discretization matrix B, which yields a direct
parallel implementation across all time steps. A crucial issue of this methodology is
how the condition number (denoted by Cond2(V)) of the eigenvector matrix V of B

behaves as n grows, where n is the number of time steps. A large condition number
leads to large roundoff error in the diagonalization procedure, which could seriously
pollute the numerical accuracy. Based on a novel connection between the characteris-
tic equation and the Chebyshev polynomials, we present explicit formulas for V and
V −1, by which we prove that Cond2(V) = O(n2). This implies that the diagonal-
ization process is well-conditioned and the roundoff error only increases moderately
as n grows, and thus, compared to other direct PinT algorithms, a much larger n

can be used to yield satisfactory parallelism. A fast structure-exploiting algorithm is
also designed for computing the spectral diagonalization of B. Numerical results on
parallel machine are given to support our findings, where over 60 times speedup is
achieved with 256 cores.

Keywords Direct PinT algorithms · Diagonalization technique ·
Condition number · Wave-type equations

Mathematics Subject Classification (2010) 65M55 · 65M12 · 65M15 · 65Y05

Communicated by: Valeria Simoncini

� Shu-Lin Wu
wushulin84@hotmail.com

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-09928-4&domain=pdf
mailto: wushulin84@hotmail.com

 16 Page 2 of 29 Adv Comput Math (2022) 48:16

1 Introduction

For time evolutionary problems, parallelization in the time direction is an active
research topic in recent years. This is driven by the fact that in modern supercomputer
the number of cores (or threads) grows rapidly year by year, but in many cases one
observes that the space parallelization does not bring further speedup even with more
cores [20]. When such a saturation occurs, it is natural to ask whether the time direc-
tion can be used for further speedup or not. The answer is positive, at least for strongly
dissipative problems, for which the widely used parareal algorithm [35] and many
other variants (e.g., the MGRiT algorithm [19] and the PFASST algorithm[18]) work
very well. However, for wave propagation problems the performance of these repre-
sentative algorithms is unsatisfactory, because the convergence rate heavily depends
on the dissipativity (see [46, 48] for discussions). There are also many efforts toward
ameliorating the convergence behavior of the iterative PinT algorithms via improv-
ing the coarse grid correction [13, 15, 21, 40, 45], but as pointed out in [44] these
modified algorithms either need significant additional computation burden (leading
to further degradation of efficiency) or have very limited applicability.

Non-iterative (or direct) PinT algorithms are also proposed in recent years, for
which the parallelism depends on the number of time points only. Here, we are inter-
ested in the PinT algorithm based on the diagonalization technique, which was first
proposed in 2008 by Maday and Rønquist [37]. The idea can be described conve-
niently for linear ODE system with initial-value condition (the nonlinear case will be
addressed in Section 2):

u′(t) + Au(t) = g(t), (1.1)

where u(0) = u0 ∈ R
m is the initial condition, A ∈ R

m×m and g is a known term.
First, we discretize the temporal derivative by a finite difference scheme (e.g., the
backward-Euler method as described below) with a step size �t and uniform time
grid points tj = j�t, j = 0, 1, · · · , n. Here and hereafter n denotes the number of
time points. Different from solving these difference equations sequentially one after
another, we formulate them into an all-at-once fully discrete linear system

Mu := (B ⊗ Ix + It ⊗ A) u = b, (1.2)

where u = [uT
1, u

T
2, · · · , uT

n]T with uj ≈ u(tj), b contains the initial condition and
right-hand-side information, Ix ∈ R

m×m, It ∈ R
n×n are identity matrices and B ∈

R
n×n is the time discretization matrix. Then, assuming B is diagonalizable, i.e., B =

V DV −1 with D = diag(λ1, λ2, . . . , λn), we can factorize M as

M = (V ⊗ Ix)(D ⊗ Ix + It ⊗ A)(V −1 ⊗ Ix).

This leads to the following three-step procedure for directly solving (1.2):
⎧
⎪⎨

⎪⎩

g = (V −1 ⊗ Ix)b, step-(a),

(λj Ix + A)wj = gj , j = 1, 2, . . . , n, step-(b),

u = (V ⊗ Ix)w, step-(c),

(1.3)

where w = (wT
1 , w

T
2 , . . . , w

T
n)T and g = (gT

1 , g
T
2 , . . . , g

T
n)T. For the first and third

steps in (1.3), we only need to do matrix-vector (or matrix-matrix) multiplications

Adv Comput Math (2022) 48:16 Page 3 of 29 16

that are parallelizable. The major computational cost is to solve the n linear systems
in step-(b), but these linear systems are completely decoupled and therefore can be
solved in parallel by direct or iterative solvers.

The crucial question is how to efficiently and accurately diagonalize the time dis-
cretization matrix B. We mention that the matrix B from standard time discretization
may be not diagonalizable. For example, for the backward-Euler method using a
uniform step size �t the time discretization matrix B reads

B = 1

�t

⎡

⎢
⎢
⎢
⎣

1
−1 1

. . .
. . .
−1 1

⎤

⎥
⎥
⎥
⎦

, (1.4a)

and it is clear that B can not be diagonalized. (For other time integrators, e.g., the
multistep methods, B is a lower triangular Toeplitz matrix and can not be diagonal-
ized as well.) To get a diagonalizable B, the strategy in [37] is to use distinct step
sizes {�tj }nj=1, which leads to

B =

⎡

⎢
⎢
⎢
⎢
⎣

1
�t1− 1
�t2

1
�t2
. . .

. . .
− 1

�tn

1
�tn

⎤

⎥
⎥
⎥
⎥
⎦
. (1.4b)

Clearly, the matrix B in (1.4b) has n distinct eigenvalues, and therefore, it is diag-
onalizable. In practice, the condition number of the eigenvector matrix V may be
very large. This would be series problem, since a large condition number results in
large roundoff error in the implementation of step-(a) and step-(c) of (1.3) due to
floating point operations, which could seriously pollute the accuracy of the obtained
numerical solution. This issue was carefully justified by Gander et al. in [25] and in
particular

roundoff error = O(εCond2(V)), (1.5)

where ε is the machine precision. In [25], the authors considered the geometrically
increasing step sizes {�tj = �t1τ

n−j }nj=1 and with this choice an explicit diagonal-
ization of B can be written down, where τ > 1 is a parameter. However, it is very
difficult to make a good choice of τ : if τ gets closer to 1 the matrix B tends to be non-
diagonalizable and the condition number of the eigenvector matrix V becomes very
large; if τ is far greater than 1 the global discretization error will be an issue, because
the step sizes grows rapidly (exponentially) as n increases. To balance the roundoff
error and the discretization error, numerical results indicate that n can be only about
20∼25 (see the numerical results in Section 4.1), and therefore, the parallelism is
limited for a large n.

 16 Page 4 of 29 Adv Comput Math (2022) 48:16

Here, we remove this undesired restriction on n by using a hybrid time discretiza-
tion consisting of a centered finite difference scheme for the first (n − 1) time steps
and an implicit Euler method for the last step, that is

{
uj+1−uj−1

2�t
+ Auj = gj , j = 1, 2, . . . , n − 1,

un−un−1
�t

+ Aun = gn.
(1.6)

Such an implicit time discretization should not be used in a time-stepping fashion,
due to the serious stability problem. For (1.6), the all-at-once system in the form of
(1.2) is specified by

B = 1

�t

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1
2− 1

2 0 1
2

. . .
. . .

. . .
− 1

2 0 1
2−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎣

u0
2�t

+ g1
g2
...

gn

⎤

⎥
⎥
⎥
⎦

, u =

⎡

⎢
⎢
⎢
⎣

u1
u2
...

un

⎤

⎥
⎥
⎥
⎦

, (1.7)

where only the initial-value u0 is needed and all time steps are solved in one-shot
manner. We mention that there are other diagonalization-based PinT algorithms,
which use novel preconditioning tricks to handle the all-at-once system (1.2) and
perform well for large n; see, e.g., [11, 16, 26, 34, 36, 38, 42]. For example, in
[42] the author proposed a very efficient solution procedure based on matrix equa-
tion formulation that exploiting the extended and rational Krylov subspace projection
techniques for the spatial operator and the circulant-plus-low-rank structure for the
time discrete operator. These are however iterative algorithms and are not within the
scope of this paper.

The time discretization (1.6) is not new and according to our best knowledge it
was first proposed in 1985 by Axelsson and Verwer [3], where the authors stud-
ied this scheme with the aim of circumventing the well-known Dahlquist-barriers
between convergence and stability which arise in using (1.6) in a time-stepping mode.
In the general nonlinear case, they proved that the numerical solutions obtained
simultaneously are of uniform second-order accuracy (see Theorem 4 in [3]), even
though the last step is a first-order scheme. Numerical results in [3] indicate that the
time discretization (1.6) is suitable for stiff problems in both linear and nonlinear
cases. Besides (1.6), a very similar time discretization investigated by Fox in 1954
[22] and Fox and Mitchell in 1957 [23] appears much earlier, where instead of the
backward-Euler method the authors use the BDF2 method for the last step in (1.6):

3un − 4un−1 + un−2

2�t
+ Aun = gn.

For the time discretization (1.6), the all-at-once system was carefully justified by
Brugnano, Mazzia and Trigiante in 1993 [7], who focus on solving it iteratively
by constructing some effective preconditioner. The implementation of the precon-
ditioner in [7] relies on two operations: a block odd-even cyclic reduction of M
and a scaling procedure for the resulted matrix by its diagonal blocks. The block
cyclic reduction requires matrix-matrix multiplications concerning A and the scal-
ing requires to invert Ix + 4�t2A and Ix + 2�tA(Ix + �tA). In our opinion, both

Adv Comput Math (2022) 48:16 Page 5 of 29 16

operations are expensive if A arises from semi-discretizing a PDE in high dimen-
sion and/or with small mesh sizes. Nowadays, the hybrid time discretization (1.6) is
a famous example of the so-called boundary value methods (BVMs) [8], which are
widely used in scientific and engineering computing.

Inspired by the pioneering work by Maday and Rønquist [37], in this paper we try
to solve the all-at-once system (1.2) directly (instead of iteratively as in [7]) based
on diagonalizing the time discretization matrix B in (1.7) as B = V DV −1. By dis-
covering a novel connection between the characteristic equation and the Chebyshev
polynomials, we present explicit formulas for these three matrices V , V −1 and D.
With the given formulas of V and V −1, we prove that the condition number of V

satisfies Cond2(V) = O(n2) and this implies that the roundoff error arising from the
diagonalization procedure only increases moderately as n grows. Hence, compared
to the algorithm in [25], a much larger n can be used to yield satisfactory parallelism
in practice. We mention that the spectral decomposition algorithm developed in this
paper is much faster than the benchmarking algorithm implemented by MATLAB’s
eig function.

For second-order problems

u′′(t) + Au(t) = g, u(0) = u0, u
′(0) = ũ0, (1.8a)

we prove in Section 2.2 that the time discretization (1.6) leads to a similar all-at-once
system

(B2 ⊗ Ix + It ⊗ A)u = b, (1.8b)

where b is a suitable vector (see Lemma 2.1 for details). Thus, the same diagonal-
ization of B with squared eigenvalues, i.e., B2 = V D2V −1, can be directly reused
and the condition number of the eigenvector matrix is not effected. In other words,
there is no essential difference for our proposed algorithms between first-order and
second-order problems. For both the first-order and the second-order problems, we
would like to mention some related fast algorithms in time that may be integrated
with our proposed algorithm, such as space-time discretizations [1, 2], low-rank
approximations [33, 47], and domain decomposition [6].

The remainder of this paper is organized as follows. In Section 2 we introduce
the direct PinT algorithm for nonlinear problems. In Section 3 we show details of
the diagonalization of the time discretization matrix B in (1.7), which plays a central
role for both the linear and nonlinear cases. Some numerical results are given in
Section 4 and we conclude this paper in Section 5. The technical details for estimating
Cond2(V) are given in Appendix A and a fast algorithm with O(n2) complexity for
stably computing V −1 is described in Appendix B.

2 The PinT algorithm for nonlinear problems

In this section, we introduce the time discretization and the diagonalization-based
PinT algorithm for nonlinear problems. We will consider differential equations with
first- and second-order temporal derivatives separately.

 16 Page 6 of 29 Adv Comput Math (2022) 48:16

2.1 First-order problems

We first consider the following first-order problem

u′(t) + f (u(t)) = 0, u(0) = u0, (2.1)

where t ∈ (0, T), u(t) ∈ R
m and f : (0, T) × R

m → R
m. This is an ODE prob-

lem, but the algorithm described below is also directly applicable to semi-discretized
time-dependent PDEs. For example, (2.1) corresponds to the heat equation by letting
f (u) = Au with A ∈ R

m×m being the discrete matrix of the negative Laplacian −�

by any discretization (e.g., finite difference or finite element). Similarly, the second-
order problems considered in Section 2.2 corresponds to the wave equation upon
semi-discretization in space.

For (2.1), similar to (1.6) the time discretization scheme is
{

uj+1−uj−1
2�t

+ f (uj) = 0, j = 1, 2, . . . , n − 1,
un−un−1

�t
+ f (un) = 0,

(2.2)

where the last step is the first-order backward-Euler scheme. The all-at-once system
of (2.2) is

(B ⊗ Ix)u + F(u) = b, (2.3)

where F(u) = (f T(u1), f
T(u2), . . . , f

T(un))
T and b = (uT

0/(2�t), 0, . . . , 0)T.
Applying the standard Newton’s iteration to (2.3) leads to

(B ⊗ Ix + ∇F(uk))(uk+1 − uk) = b − ((B ⊗ Ix)u
k + F(uk)),

i.e.,

(B ⊗ Ix + ∇F(uk))uk+1 = b +
(
∇F(uk)uk − F(uk)

)
, (2.4)

where k ≥ 0 is the iteration index and ∇F(uk) = blkdiag(∇f (uk
1), . . . , ∇f (uk

n))

consists of the Jacobian matrix ∇f (uk
j) as the j th block. To make the diagonaliza-

tion technique still applicable, we have to replace (or approximate) all the blocks
{∇f (uk

j)} by a single matrix Ak . Following the interesting idea in [24], we consider

the following averaged Jacobian matrix1

Ak := 1

n

∑n

j=1
∇f (uk

j).

Then, we get a simple Kronecker-product approximation of ∇F(uk) as

∇F(uk) ≈ It ⊗ Ak .

By substituting this into (2.4), we arrive at the simplified Newton iteration (SNI):

(B ⊗ Ix + It ⊗ Ak)u
k+1 = b +

(
(It ⊗ Ak)u

k − F(uk)
)
. (2.5)

1An alternative way of deriving such an aggregated Jacobian matrix is to take the average of unknowns

instead: Ak = ∇f
(
1
n

∑n
j=1u

k
j

)
, which is omitted since it shows similar convergence performance in

numerical experiments.

Adv Comput Math (2022) 48:16 Page 7 of 29 16

Convergence of SNI is well-known; see, e.g., [17, Theorem 2.5] and [41]. The SNI
was also used as an inner iteration for the inexact Uzawa method [39] and the Krylov
subspace method [36].

With the same structure, the Jacobian system (2.5) in each SNI can also be solved
parallel in time. If B is diagonalized as B = V DV −1, we can solve uk+1 in (2.5) as

⎧
⎪⎨

⎪⎩

g = (V −1 ⊗ Ix)r
k, step-(a),

(λj Ix + Ak)wj = gj , j = 1, 2, . . . , n, step-(b),

uk+1 = (V ⊗ Ix)w, step-(c),

(2.6)

where rk = b + ((It ⊗ Ak − F(uk)
)
. In the linear case, i.e., f (u) = Au, we have

Ak = A and rk = b, and therefore, (2.6) reduces to (1.3). In the parallel experiments
in Section 4 (implemented with MPI and run by Slurm Workload Manager), n is
an integer multiple of the number of processors and the workload is quite evenly
distributed for each processor because the linear systems are of same size.

2.2 Second-order problems

We next consider the following second-order differential equation

u′′(t) + f (u(t)) = 0, u(0) = u0, u
′(0) = ũ0, t ∈ (0, T). (2.7)

For discretization we let v(t) = u′(t) and make an order-reduction by rewriting (2.7)
as

w′(t) :=
[
u(t)

v(t)

]′
=
[

v(t)

−f (u(t))

]

=: g(w), w′(0) :=
[
u(0)
v(0)

]

=
[
u0
ũ0

]

. (2.8)

Then, similar to (2.2), the same time discretization scheme leads to
{

wj+1−wj−1
2�t

+ g(wj) = 0, j = 1, 2, . . . , n − 1,
wn−wn−1

�t
+ g(wn) = 0.

(2.9)

Clearly, for (2.9) the all-at-once system is of the same form as in (2.3) and the diag-
onalization procedure (2.6) is directly applicable. However, one can imagine that the
storage requirement for the space variables doubles at each time point and this would
be undesirable if the second-order problem (2.7) arises from semi-discretizing a PDE
in high dimension and/or with small mesh sizes. We can avoid this by representing
the all-at-once systems for u = (u1, u2, . . . , un)

T only.

Lemma 2.1 [all-at-once system for u] The vector u = (uT
1, . . . , u

T
n)

T specified by
the time discretization (2.9) satisfies

(B2 ⊗ Ix)u + F(u) = b, (2.10)

where B is the matrix defined by (1.7) and b =
(

ũT
0

2�t
, − uT

0
4�t2

, 0, . . . , 0

)T

.

 16 Page 8 of 29 Adv Comput Math (2022) 48:16

Proof Since wj = (uT
j , v

T
j)T, from (2.9) we can represent {uj } and {vj } separately as

{
uj+1−uj−1

2�t
− vj = 0, j = 1, 2, . . . , n − 1,

un−un−1
�t

− vn = 0,
{

vj+1−vj−1
2�t

+ f (uj) = 0, j = 1, 2, . . . , n − 1,
vn−vn−1

�t
+ f (un) = 0.

Hence, with the matrix B given by (1.7) we have

(B ⊗ Ix)u − v = b1, (B ⊗ Ix)v + F(u) = b2, (2.11)

where v = (vT
1 , . . . , v

T
n)T, b1 = (

uT
0

2�t
, 0, . . . , 0)T and b2 = (

ũT
0

2�t
, 0, . . . , 0)T. From

the first equation in (2.11) we have v = (B ⊗ Ix)u − b1 and substituting this into the
second equation gives (B ⊗ Ix)

2u + F(u) = b2 + (B ⊗ Ix)b1. A routine calculation
yields b2 + (B ⊗ Ix)b1 = b and this together with (B ⊗ Ix)

2 = B2 ⊗ Ix gives the
desired result (2.10).

If f (u) = Au, we have F(u) = (f T(u1), . . . , f
T(un))

T = (It⊗A)u, and thus, the
all-at-once system (2.10) for u becomes (B2⊗Ix +It ⊗A)u = b, which gives (1.8b).
Clearly, B2 is diagonalizable as B2 = V D2V −1 given B = V DV −1. Based on this
relationship, it is clear that the above PinT algorithm (2.6) is also applicable to (2.11)
and the details are omitted. Hence, for the diagonalization-based PinT algorithm the
computational cost of second-order problems is the same as the first-order ones.

3 Diagonalization of the time discretizationmatrix B

For both the linear and nonlinear problems, it is clear that the diagonalization of
B = V DV −1 plays a central role in the PinT algorithm. In this section, we will prove
that the matrix B is indeed diagonalizable and also give explicit formulas for V and
V −1. By these formulas, we give an estimate of the 2-norm condition number of V ,
i.e., Cond2(V) = O(n2), which is critical to control the roundoff error in practical
computation (cf. (1.5)).

For notational simplicity, we consider the diagonalization of the re-scaled matrix
B = �tB. Clearly, by diagonalizing B = V �V −1 it holds

B = 1

�t
B = V

(
1

�t
�

)

V −1 = V DV −1.

Define two functions

Tn(x) = cos(n arccos x), Un(x) = sin[(n + 1) arccos x]/ sin(arccos x),

which are respectively the nth degree Chebyshev polynomials of the first and second
kind. In the following theorem we express the eigenvalues and eigenvectors of B
through the Chebyshev polynomials. Throughout this paper, i = √−1 denotes the
imaginary unit.

Adv Comput Math (2022) 48:16 Page 9 of 29 16

Theorem 3.1 The n eigenvalues of B are λj = ixj , with {xj }nj=1 being the n roots of

Un−1(x) − iTn(x) = 0. (3.1)

For each λj , the corresponding eigenvector pj = [pj,0, · · · , pj,n−1]T is given as

pj,k = ikUk(xj), k = 0, · · · , n − 1, (3.2)

where pj,0 = 1 is assumed for normalization.

Proof Let λ ∈ C be an eigenvalue of B and p = [p0, p1, · · · , pn−1]T �= 0 the
corresponding eigenvector. By definition we have Bp = λp, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λp0 = p1
2 ,

λp1 = −p0
2 + p2

2 ,

...

λpn−2 = −pn−3
2 + pn−1

2 ,

λpn−1 = −pn−2 + pn−1.

(3.3)

Obviously, p0 �= 0; otherwise, p1 = · · · = pn−1 = 0. Without loss of generality,
we may assume p0 = 1. Clearly, pk is a polynomial of λ with degree k. Moreover,
p1 = 2λ and the recursion

2λpk−1 = pk − pk−2, (3.4)

holds for k = 2, · · · , n − 1, and the last equation gives

(1 − λ)pn−1 = pn−2. (3.5)

Let λ = 1
2 (y − 1

y
) = i cos θ with y = ieiθ . The general solution of the difference

(3.4) is
pk = c1y

k + c2(−y)−k . (3.6)

Making use of the initial conditions p0 = 1 and p1 = 2λ = y − y−1, we have

c1 + c2 = 1, c1y − c2y
−1 = y − y−1,

which gives c1 = y

y+y−1 and c2 = y−1

y+y−1 . Therefore, with y = ieiθ we get

pk = yk+1 + (−1)ky−(k+1)

y + y−1
= ik sin[(k + 1)θ]

sin θ
, k = 0, · · · , n − 1. (3.7)

In view of λ = i cos θ , we rewrite (3.5) as

(1 − i cos θ)
in−1 sin(nθ)

sin θ
= in−2 sin[(n − 1)θ]

sin θ
,

which is equivalent to
sin(nθ)

sin θ
= i cos(nθ). (3.8)

This is a polynomial equation of λ = i cos θ with degree n because sin(nθ)/ sin θ =
Un−1(−iλ) and cos(nθ) = Tn(−iλ) are polynomials of λ with degrees n − 1 and n,
respectively.

 16 Page 10 of 29 Adv Comput Math (2022) 48:16

Denote λ = ix with x = cos θ (i.e., θ = arccos x). It follows from (3.7) and (3.8)
that

pk = ikUk(x), k = 0, 1, . . . , n − 1, (3.9)

and
Un−1(x) − iTn(x) = 0. (3.10)

The n roots x1, x2, · · · , xn of (3.10) give the n eigenvalues λj = ixj of B, and the
formula (3.9) evaluated at each xj then provides the corresponding eigenvector.

Based on the above Theorem 3.1, we can further prove that B is indeed diagonal-
izable, since its eigenvalues are all distinct.

Theorem 3.2 All n roots of Un−1(x)− iTn(x) = 0 are simple, complex with negative
imaginary parts, and have modulus less than 1 + 1/

√
2n. Moreover, if x is a root,

then so is −x̄.

Proof From (3.1), it is clear that Un−1(x) − iTn(x) = 0 has no real roots. Define
y = x +√

x2 − 1 for x ∈ C \ [−1, 1]. It holds x = 1
2 (y + 1

y
) and |y| > 1. Moreover,

Tn(x) = 1

2
(yn + y−n), Un−1(x) = yn − y−n

y − y−1
.

Thus, if Un−1(x)− iTn(x) = 0, we have (yn −y−n)/(yn +y−n) = (y −y−1)/(−2i),
which gives

y2n = −2i + y − y−1

−2i − y + y−1
= −y2 − 2iy − 1

y2 + 2iy − 1
= − (y − i)2

(y + i)2
. (3.11)

Since |y| > 1, the above equation implies that |y−i| > |y+i|, which gives Im y < 0.
Consequently,

Im x = Im y − Im y/|y|
2

< 0. (3.12)

Moreover, it follows from (3.11) that

|y|2n = |y − i|2
|y + i|2 ≤ (|y| + 1)2

(|y| − 1)2
.

Let y1 = |y| − 1 > 0. We have

2 + y1 ≥ y1(1 + y1)
n ≥ y1(1 + ny1) = y1 + ny2

1 ,

which implies y1 ≤ √
2/n. Thus, |x| <

|y|+1
2 ≤ 1 + 1√

2n
. If x is a root, then

Un−1(−x̄) = (−1)n−1Ūn−1(x) = (−1)n−1(−i)T̄n(x) = iTn(−x̄),

which implies that −x̄ is also a root. A simple application of Pythagorean theorem
yields

T 2
n (x) + (1 − x2)U2

n−1(x) = cos2(nθ) + sin2(nθ) = 1,

for x = cos θ ∈ (−1, 1). Since the left-hand side of the above equation is the sum of
two polynomials in x, we have for all complex x,

T 2
n (x) + (1 − x2)U2

n−1(x) = 1. (3.13)

Adv Comput Math (2022) 48:16 Page 11 of 29 16

Hence, if x is a root of Un−1(x)−iTn(x) = 0, it holds x2T 2
n (x) = 1. If x is a repeated

root, then
2xT 2

n (x) + 2x2Tn(x)T ′
n(x) = 0.

Since T ′
n(x) = nUn−1(x), we have

Tn(x) = −nxUn−1(x) = −inxTn(x),

which implies x = i/n and this contradicts to the fact that Im x < 0.

By Theorem 3.2, the eigenvectors of B are linearly independent and so B indeed
is diagonalizable. Denote the diagonalization of B by B = V �V −1 with � =
diag (λ1, · · · , λn) and

V = [p1, p2, · · · , pn] = diag
(
i0, i1, · · · , in−1

)

︸ ︷︷ ︸
:=I

⎡

⎢
⎣

U0(x1) · · · U0(xn)
... · · · ...

Un−1(x1) · · · Un−1(xn)

⎤

⎥
⎦

︸ ︷︷ ︸
:=Φ

= IΦ,

(3.14)
where {λj }nj=1 and {xj }n−1

j=0 are specified by Theorem 3.1. In (3.14), I is a uni-
tary matrix and Φ is a Vandermonde-like matrix [32] defined by the Chebyshev
orthogonal polynomials. Hence, it holds

Cond2(V) = Cond2(IΦ) = Cond2(Φ). (3.15)

The following theorem proves that Cond2(V) = O(n2), which implies that the
roundoff error from diagonalization procedure only increases moderately as n grows
(cf. (1.5)). Such a quadratic growth rate of Cond2(V) is crucial to achieve a
satisfactory parallelism in time.

Theorem 3.3 For n ≥ 8, it holds

Cond2(V) = O(n2). (3.16)

Proof From (3.15), the proof lies in proving Cond2(Φ) = O(n2) by using the
Christoffel-Darboux formula and some special properties of relevant orthogonal
polynomials. The details are quite technical and hence given in Appendix A for better
readability.

An interesting byproduct of Appendix A is the precise estimate of each individual
eigenvalue ofB, which allows us to accurately compute all n different complex eigen-
values by Newton’s method with O(n) complexity (see the following Section 4.2 for
details).

Remark 3.1 (fast algorithm for V −1) Making use of the special structure of Φ (cf.
(3.14)), in Appendix B we give a stable and fast algorithm with complexity O(n2)

to compute V −1. We believe that this algorithm is of independent interest since it
provides a very different idea for inverting the Vandermonde-like matrix, which is
a well-known ill-conditioned problem and a lot of research has been devoted to it,
such as [12, 27–29, 31, 43] to name a few. We present some numerical results in

 16 Page 12 of 29 Adv Comput Math (2022) 48:16

Section 4.2 to demonstrate the efficiency of the proposed algorithm. We remark
that some fast inversion algorithms in the literature may not be stable for our
Vandermonde-like matrix V , mainly due to its definition over complex nodes {xi}ni=1.
For example, we have tested the fast algorithm given in [27], which is very unsta-
ble and becomes inaccurate even with n ≥ 32. Based on our numerical experiments,
our proposed algorithm seems to be very stable and it shows O(n2) complexity, but
a comprehensive comparison with other fast inversion algorithms deserves further
investigation that is beyond our focus.

4 Numerical results

In this section, we present some numerical examples to illustrate the advantage
of the proposed PinT algorithm, with respect to numerical accuracy, stable spec-
tral decomposition and parallel efficiency. For the first two subsections, the results
are obtained by using MATLAB on a Dell Precision 5820 Tower Workstation with
Intel(R) Core(TM) i9-10900X CPU@3.70GHz CPU and 64GB RAM. For parallel
computation in Section 4.3, we use a parallel computer (SIUE Campus Cluster) with
10 CPU nodes connected via 25-Gigabit per second (Gbps) Ethernet network, where
each node is equipped with two AMD EPYC 7F52 16-Core Processors at 3.5GHz
base clock and 256GB RAM. For the complex-shift linear systems in step-(b) of
the direct PinT algorithm (1.3), we use the LU factorization-based solver provided
as PCLU preconditioner in PETSc [4, 5]. In parallel examples, let J (n, s) be the
measured CPU time (wall-clock) by using s cores for n time points. Following the
standard principles [10, 14], we measure the parallel speedup as

Speedup (Sp.) = J (n, 1)

J (n, s)
.

The strong and weak scaling efficiency with s cores are computed respectively as

Strong Efficiency (SE) = J (n, 1)

s × J (n, s)
, Weak Efficiency (WE) = J (2, 1)

J (2 × s, s)
.

We highlight that the measured parallel speedup and efficiency are affected by many
factors, such as the computer cluster network setting and how to implement the
parallel codes. Hence, our parallel results may largely underestimate the best possi-
ble speedup results with optimized codes, but they do clearly illustrate the practical
parallel efficiency of our proposed algorithm.

4.1 Accuracy comparison of two direct PinT algorithms

As mentioned in Section 1, the direct PinT algorithm based on the diagonalization
technique was carefully analyzed in [25], where the authors used the geometrically
increasing step sizes to the make the time discretization matrix B diagonalizable.
Compared to that algorithm, the most important advantage of our PinT algorithm lies
in the much weaker dependence of the roundoff error (due to diagonalization) on n.

Adv Comput Math (2022) 48:16 Page 13 of 29 16

The first set of numerical results are devoted to comparing such a dependence for
these two algorithms. To this end, we consider the following 1D wave equation

utt −uxx = 0, u(x, 0) = sin(2πx), u′(x, 0) = 0, (x, t) ∈ (−1, 1)× (0, T), (4.1)

with periodic boundary condition u(−1, t) = u(1, t). Applying the centered finite
difference method in space with a uniform mesh {xj = j�x}mj=1 gives a second-
order linear ODE system

u′′
h + Auh = 0, uh(0) = u0,h, u′

h(0) = 0, t ∈ (0, T), (4.2)

where

A = 1

�x2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 −1 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 −1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, u0,h =

⎡

⎢
⎢
⎢
⎣

sin(2πx1)

sin(2πx2)
...

sin(2πxm)

⎤

⎥
⎥
⎥
⎦

, �x = 2

m + 1
.

For (4.2), the diagonalization-based PinT algorithm in [25] is based on the Trape-
zoidal rule (TR) as time integrator, where the step sizes are fixed by �tj = �tnτ

j−n

for j = 1, 2, . . . , n with τ > 1 being a constant and �tn being given a priori1. For
reader’s convenience, we briefly explain some details of the algorithm in [25]. By
letting w = [uT

h, v
T
h]T ∈ R

2m, then we can rewrite (4.2) as

w′ +
[−Ix

A

]

︸ ︷︷ ︸
:=Q

w = 0, w(0) = w0 :=
[
u0,h
0

]

. (4.3)

Let

B1 =

⎡

⎢
⎢
⎢
⎢
⎣

1
�t1− 1
�t2

1
�t2

. . .
. . .

− 1
�tn

1
�tn

⎤

⎥
⎥
⎥
⎥
⎦

, B2 = 1

2

⎡

⎢
⎢
⎣

1
1 1
. . .

. . .
1 1

⎤

⎥
⎥
⎦ , b̃ =

⎡

⎢
⎢
⎢
⎣

w0
�t1

− Qw0
2

0
...
0

⎤

⎥
⎥
⎥
⎦

, w =

⎡

⎢
⎢
⎣

w1
w2
...

wn

⎤

⎥
⎥
⎦ .

(4.4)

Then, the all-at-once system of TR applied to (4.2) is

(B ⊗ Ix)w + (It ⊗ Q)w = b, B := B−1
2 B1, b := (B−1

2 ⊗ Ix)b̃. (4.5)

From [25] it holds B = V DV −1 with D = diag(2
�tj

), V = Ṽ D̃ and

Ṽ =

⎡

⎢
⎢
⎢
⎣

1
p1 1
p2 p1 1
...

. . .
. . .

. . .
pn−1 . . . p2 p1 1

⎤

⎥
⎥
⎥
⎦

, Ṽ −1=

⎡

⎢
⎢
⎢
⎣

1
q1 1
q2 q1 1
...

. . .
. . .

. . .
qn−1 . . . q2 q1 1

⎤

⎥
⎥
⎥
⎦

, D̃=diag

⎛

⎜
⎝

1
√

1+∑n−j

l=1 |pl |2

⎞

⎟
⎠ ,

1The step sizes in [25] are �tj = �t1τ
n−j with �t1 being given a priori. Here, to control the global

discretization error we first fix the last step size �tn and then specify the step sizes as �tj = �tnτ
j−n.

 16 Page 14 of 29 Adv Comput Math (2022) 48:16

5 10 15 20 25 30 35 40 45 50

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
0

10
5

10
10

10
15

10
20

Fig. 1 Left: the global error for the new algorithm studied in this paper, the algorithm in [25] and the time-
stepping TR using the variable step sizes. Right: comparison of the condition numbers of the eigenvector
matrix V for the two diagonalization-based algorithms

where pj = ∏j

l=1
1+τ l

1−τ l and qj = q−j
∏j

l=1
1+τ−l+2

1−τ−l . The diagonal matrix D̃ is used

to reduce the condition number of the eigenvector matrix V (if we simply use V = Ṽ

the condition number is larger). With the above given spectral factorization of B, we
can solve the all-at-once system (4.5) via the same diagonalization procedure (1.3).

Let�x = 1
64 ,�tn = 10−2 and τ = 1.15. We let n vary from 4 to 50 and for each n

we implement the diagonalization-based algorithm in [25] by using the variable step
sizes. Then, we calculate the length of the time interval2, i.e., T (τ, n) = ∑n

j=1 �tj
and implement the algorithm proposed in this paper by using a uniform step size
�t = T (τ, n)/n. Define the global error of numerical solution as

global error = max
j=1,2,...,n

‖uj,h − uref
j,h‖∞, (4.6)

where {uref
j,h} denotes the reference solution obtained by using the expm function in

MATLAB. That is wj = expm(−tjQ)w0 and uref
j,h = wj (1 : m). The sequence

{uj,h} is obtained via three ways: by the algorithm studied in this paper, by the
algorithm in [25] and by the sequential time-stepping TR using the variable step sizes.

In Fig. 1 on the left, we compare the global error for these three numerical solu-
tions and it is clear that for the algorithm in [25] the quantity n can not be large
and the error grows rapidly when n > 25. As denoted by the black solid line, the
error of the time-stepping TR does not change dramatically as n increases and this
is because for each n the last step size �tn (i.e., the largest step size) is fixed. For
the time-stepping TR, the global error is just the time discretization error. By com-
paring the dash-dot blue line (with marker “◦”) with the black solid line, we can see
how the roundoff error affects the global error: when n is small the roundoff error is
smaller than the time discretization error, and therefore, the influence of the roundoff
error is invisible, but when n is large (say n > 25) the roundoff error plays a domi-
nate role and blows up as n increases. From [25], we know that such a rapid increase
of the roundoff error is due to the very large condition number of V of the time

2Since �tj = �tnτ
j−n the length of time interval grows as n increases.

Adv Comput Math (2022) 48:16 Page 15 of 29 16

discretization matrix B in (4.5). Indeed, as we can see in Fig. 1 on the right, such
a condition number becomes very large as n grows. On the contrary, the condition
number for the new algorithm only moderately increases as n grows and it is much
smaller. Such a well-conditioned V can be used to explain the result in Fig. 1 on the
left for the new algorithm: the global error never blows up and in fact it continuously
decreases when n ≥ 6. (The small condition number implies that the roundoff error
is much smaller, and thus, the global error is dominated by the time discretization
error.) The decreasing of the global error can be explained as follows. The step size

�t = 1

n

∑n

j=1
�tnτ

j−n = �tn
1 − τ−n

n(1 − τ−1)
≈ 0.0766

n
(if n ≥ 40)

decreases as n grows, and thus, the time discretization error decreases accordingly.
This error plot in the left of Fig. 1 is not suitable for verifying the second-order of
accuracy of our scheme, since the time step size �t is not small. Such a second-order
accuracy will be verified in Table 4.2-4.4.

4.2 Fast spectral decomposition of B

The spectral decomposition of the time discretization matrix B = V DV −1 is impor-
tant in our PinT algorithm. The eigenvalue λj can be computed by Newton’s method
as described below. Based on Theorem 3.1 (cf. Equation 3.8), it holds λj = i cos(θj),
where θj is the j th root of

ρ(θ) := sin(nθ) − i cos(nθ) sin θ = 0.

Applying Newton’s iteration to the nonlinear equation ρ(θ) = 0 of single variable θ

leads to

θ
(l+1)
j = θ

(l)
j − ρ(θ

(l)
j)

ρ′(θ(l)
j)

, l = 0, 1, 2, · · · . (4.7)

Such a Newton method runs n loops for the n eigenvalues λj ’s. The maximal iteration
number over all the n eigenvalues is almost constant, and therefore, the complexity
of Newton’s iteration (4.7) for computing all the eigenvalues is of O(n), which is
significantly faster than the standard QR algorithm withO(n3) complexity as used by
MATLAB’s highly optimized built-in function eig. However, it is rather difficult to
choose the n initial guesses {θ(0)

j }nj=1. If these initial guesses are not properly chosen,

the n iterates {θ(l)
j }nj=1 converge to ñ different values with ñ < n, i.e., not all the

eigenvalues are found1. By Lemma A.1 in Appendix A, we suggest using

θ
(0)
j = 1

2

(
jπ

n
+ jπ

n + 1

)

+ i

n
, j = 1, 2, · · · , n,

by which the iterates of (4.7) converge to the n different eigenvalues correctly.
For V −1, we also proposed a fast algorithm with complexity O(n2) in

Appendix B, which is of independent interest in the area of numerical methods for

1From Theorem 3.2 all the n eigenvalues of B are different

 16 Page 16 of 29 Adv Comput Math (2022) 48:16

Vandermonde-like matrices. The advantage of explicitly constructing the inverse
matrix V −1 is to increase the parallel efficiency of step-(a) by reducing communi-
cation cost. Let B = VeigDeigV

−1
eig and B = VfastDfastV

−1
fast be the spectral

decomposition of B by the eig function and our fast algorithm (implemented with
MATLAB), respectively. Define the maximal relative differences

ηfast := ‖Deig − Dfast‖F

‖Deig‖F

,

and

ωeig := ‖B − VeigDeigV
−1
eig‖F

‖B‖F

, ωfast := ‖B − VfastDfastV
−1
fast‖F

‖B‖F

.

(For ηfast the eigenvalues are sorted in the same order.) In Table 1, we show CPU
time (in seconds) for the spectral decomposition using the eig function in MATLAB
and our fast algorithm. The combined CPU time is estimated by the timing functions
tic/toc in MATLAB. Besides, we also show the computational time for the eig
function (for computing Veig and �eig) and the mrdivide (i.e., “/”) function (for
computing DeigV

−1
eig with the syntax Deig/Veig) in MATLAB and our proposed

fast spectral decomposition algorithm, where the column “Iter” denotes the number
of Newton iterations required to reach the tolerance tol = 10−10. The CPU time of
our fast algorithm shows O(n2) growth, which is significantly less than that of the
eig function (with O(n3) growth). In particular, for n = 8192 we observed more
than 25 times speedup. The eigenvalues and eigenvectors computed by these two
methods are essentially the same, if we take into account the effects of roundoff and
discretization errors. In particular, our proposed fast algorithm for the computation
of V −1 involves solving the real pentadiagonal linear system (B.7) and n complex
tridiagonal sparse linear systems (B.8), which seems to deliver noticeable degraded
approximation accuracy (i.e., larger ωfast) mainly due to more roundoff errors.
Nevertheless, the achieved accuracy is sufficiently high in view of the second-order
accurate discretization errors in space and time.

Table 1 Comparison of eig+mrdivide solver and our fast spectral decomposition algorithm

MATLAB’s eig+mrdivide Our fast algorithm

n CPU ωeig Iter CPU ωfast ηfast

64 0.002 1.59e-14 7 0.004 3.61e-13 2.67e-15

128 0.011 7.77e-14 7 0.006 1.06e-12 2.77e-15

256 0.056 1.89e-13 8 0.019 1.10e-11 4.55e-15

512 0.277 9.69e-13 8 0.073 5.30e-11 8.89e-15

1024 1.107 3.85e-12 9 0.301 2.04e-10 2.63e-14

2048 6.741 1.01e-11 9 1.206 5.12e-10 1.25e-13

4096 60.257 4.02e-11 10 5.054 6.75e-09 5.16e-13

8192 606.045 2.25e-10 10 23.402 2.85e-08 4.07e-13

Adv Comput Math (2022) 48:16 Page 17 of 29 16

4.3 Parallel experiments

In this subsection, we provide a series of parallel simulation results to validate the
speedup and parallel efficiency of our proposed direct PinT algorithm.

Example 1 In this example we consider a 2D heat equation with homogeneous
Dirichlet boundary condition defined on a square domain = (0, π)2:

⎧
⎪⎨

⎪⎩

ut (x, y, t) − �u(x, y, t) = r(x, y, t), in × (0, T),

u(x, y, t) = 0, on ∂ × (0, T),

u(x, y, 0) = u0(x, y), in ,

(4.8)

where u0(x, y) = sin(x) sin(y) and r(x, y, t) = sin(x) sin(y)e−t . The exact solution
of this problem is u(x, y, t) = sin(x) sin(y)e−t . Approximating � by a centered
finite difference scheme with a uniform mesh step size h in both x and y directions
gives the following ODE system:

u′
h(t) − �huh(t) = rh(t), uh(0) = u0,h,

where �h ∈ R
m×m is the 5-point stencil Laplacian matrix, uh, rh, u0,h denotes

the finite difference approximation to the corresponding u, r , u0 over the m interior
spatial grid points. In Table 2, we show the approximation errors (measured by the
∞-norm) and the strong and weak scaling results of our direct PinT solver, where
the spatial mesh size is h = 1

513 (i.e., m = 5122) and the number of cores ranges
from 1 to 256. The approximation errors in weak scaling results show a second-order
accuracy in time before dominated by the discretization errors in space. Both strong
and weak scaling efficiency are very promising up to 32 cores. But when the core
number s ≥ 64, we see an obvious drop of the parallel efficiency. This is mainly
due to the slow interconnection between the nodes (each node contains 32 cores).
Using a fast, low-latency interconnection (e.g., the InfiniBand networking based on
remote direct memory access technology) would greatly further improve the parallel

Table 2 Scaling and error results of example 1: a heat PDE (T = 2 with m = 5122)

Core# Strong scaling Weak scaling

s n Error CPU Sp. SE n Error CPU WE

1 512 2.23e-06 1318.8 1.0 100.0% 2 7.93e-02 5.4 100.0%

2 512 2.23e-06 667.8 2.0 98.7% 4 1.19e-02 5.4 100.0%

4 512 2.23e-06 346.4 3.8 95.2% 8 3.22e-03 5.4 100.0%

8 512 2.23e-06 173.0 7.6 95.3% 16 8.26e-04 5.5 98.2%

16 512 2.23e-06 90.7 14.5 90.9% 32 2.09e-04 5.8 93.1%

32 512 2.23e-06 51.1 25.8 80.7% 64 5.28e-05 6.6 81.8%

64 512 2.23e-06 32.0 41.2 64.4% 128 1.37e-05 8.3 65.1%

128 512 2.23e-06 23.0 57.3 44.8% 256 4.25e-06 12.0 45.0%

256 512 2.23e-06 19.4 68.0 26.6% 512 2.23e-06 19.6 27.6%

 16 Page 18 of 29 Adv Comput Math (2022) 48:16

efficiency. For n = 512 , from the strong scaling CPU column we observe that the
system can be solved within 20 s via our direct PinT algorithm using 256 cores, rather
than over 20 min using a single core.

Example 2 We next consider a linear wave equation with homogeneous Dirichlet
boundary condition defined on a 2D square domain = (0, 1)2:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

utt (x, y, t) − �u(x, y, t) = r(x, y, t), in × (0, T),

u(x, y, t) = 0, on ∂ × (0, T),

u(x, y, 0) = u0(x, y), in ,

ut (x, y, 0) = ū0(x, y), in ,

(4.9)

with the following data

u0(x, y) = 0, ū0(x, y) = 2πx(x − 1)y(y − 1),
r(x, y, t) = −4π2x(x − 1)y(y − 1) sin(2πt) − 2 sin(2πt)(x(x − 1) + y(y − 1)).

The exact solution of this problem is u(x, y, t) = x(x − 1)y(y − 1) sin(2πt). Using
the same notations in Example 1, we obtain a second-order ODE system:

u′′
h(t) − �huh(t) = rh(t), uh(0) = u0,h, u′

h(0) = ū0,h,

where ū0,h denotes the finite difference approximation to ū0 over the spatial grid
points. Then, we show in Table 3 the approximation errors, the strong and weak scal-
ing results. The parallel efficiency is very similar to that in Table 2. Since our PinT
algorithm is based on the same spectral decomposition B = V DV −1, the computa-
tional cost of solving the above second-order problem is essentially the same as the
first-order problem in Example 1. This is a desirable advantage over those iterative
algorithms (e.g., parareal and MGRiT), whose convergence rates are usually much
slower for handling hyperbolic problems.

Table 3 Scaling and error results of example 2: a wave PDE (T = 2 with m = 5122)

Core# Strong scaling Weak scaling

s n Error CPU Sp. SE n Error CPU WE

1 512 7.88e-05 1328.6 1.0 100.0% 2 9.19e-03 5.4 100.0%

2 512 7.88e-05 676.3 2.0 98.2% 4 2.21e-02 5.4 100.0%

4 512 7.88e-05 332.6 4.0 99.9% 8 3.16e-01 5.5 100.0%

8 512 7.88e-05 172.6 7.7 96.2% 16 1.33e-01 5.7 100.0%

16 512 7.88e-05 91.2 14.6 91.0% 32 2.30e-02 6.0 94.8%

32 512 7.88e-05 51.7 25.7 80.3% 64 5.21e-03 7.1 82.1%

64 512 7.88e-05 31.2 42.6 66.5% 128 1.27e-03 9.5 67.9%

128 512 7.88e-05 23.2 57.3 44.7% 256 3.16e-04 14.8 46.6%

256 512 7.88e-05 20.3 65.4 25.6% 512 7.88e-05 27.4 28.2%

Adv Comput Math (2022) 48:16 Page 19 of 29 16

Example 3 At last, we consider a semi-linear parabolic equation with homogeneous
Dirichlet boundary condition defined on a 2D square domain = (−1, 1)2:

⎧
⎪⎨

⎪⎩

ut (x, y, t) − �u(x, y, t) + f (u) = r(x, y, t), in × (0, T),

u(x, y, t) = 0, on ∂ × (0, T),

u(x, y, 0) = u0(x, y), in ,

(4.10)

where

f (u) = u3 − u, u0(x, y) = (x2 − 1)(y2 − 1),
r(x, y, t) = −2(x2 − 1)(y2 − 1)e−t + (x2 − 1)3(y2 − 1)3e−3t −2e−t ((x2−1) + (y2 − 1)).

This problem has the exact solution u(x, y, t) = (x2−1)(y2−1)e−t . By the centered
finite difference method in space, we get a nonlinear ODE system

u′
h(t) − �huh(t) + f (uh(t)) = rh(t), uh(0) = u0,h. (4.11)

This particular type of nonlinear function f (u) = u3 − u was widely used in lit-
erature, e.g., the Schlögl model in [9, 30]. We solve (4.11) by the nonlinear PinT
algorithm described in Section 2.1, for which the simplified Newton iteration starts
from a zero initial guess and stops whenever the relative residual norm is smaller than
the tolerance 10−8 (smaller than the level of discretization errors).

In Table 4, we show the approximation errors and the strong and weak scaling
results of the PinT algorithm, where the required number of SNI (listed in the column
“SNI”) shows an anticipated mesh-independent convergence rate. Compared to the
linear examples, we see that the parallel efficiency becomes lower, especially when
the core number s > 32. This is mainly because of the communication cost in dis-
tributing the averaged block-diagonal Jacobian matrices and dispatching the residual
vectors during the Newton iterations. Our codes may be further optimized to achieve
better parallel efficiency, which is however beyond the scope of the current paper.

Table 4 Scaling and error results of example 3: a semi-linear parabolic PDE (T = 2 with m = 2562)

Core# Strong scaling Weak scaling

s n Error SNI CPU Sp. SE n Error SNI CPU WE

1 512 6.36e-07 9 1514.0 1.0 100.0% 2 4.40e-01 11 6.6 100.0%

2 512 6.36e-07 9 770.4 2.0 98.3% 4 7.64e-03 9 5.4 122.2%

4 512 6.36e-07 9 400.6 3.8 94.5% 8 2.33e-03 11 6.8 97.1%

8 512 6.36e-07 9 217.2 7.0 87.1% 16 6.38e-04 9 5.9 111.9%

16 512 6.36e-07 9 126.9 11.9 74.6% 32 1.63e-04 9 7.0 94.3%

32 512 6.36e-07 9 84.7 17.9 55.9% 64 4.07e-05 9 9.4 70.2%

64 512 6.36e-07 9 67.6 22.4 35.0% 128 1.02e-05 9 28.8 22.9%

128 512 6.36e-07 9 60.6 25.0 19.5% 256 2.55e-06 9 29.8 22.1%

256 512 6.36e-07 9 60.8 24.9 9.7% 512 6.36e-07 9 61.6 10.7%

 16 Page 20 of 29 Adv Comput Math (2022) 48:16

5 Conclusions

In this paper we developed and analyzed a diagonalization-based direct (or non-
iterative) PinT algorithm for first- and second-order evolutionary problems. The
algorithm is based on a second-order boundary value method as the time integrator
and the diagonalization of the time discretization matrix. Explicit formulas for the
diagonalization are given and used to prove that the condition number of the eigen-
vector matrix is of order O(n2). The quadratic growth of the condition number with
respect to n guarantees that the proposed algorithm is well-conditioned and therefore
can be used to handle a larger number of time points, which is more practical than the
algorithm by Gander et al. [25]. For implementation, we need to compute the inverse
of the eigenvector matrix, for which we give a fast algorithm with complexity O(n2)

by exploiting its special structure. Numerical results indicate that the proposed direct
PinT algorithm has promising advantages with respect to roundoff errors and parallel
speedup.

Appendix A. Estimate the condition number of V

The proof of Theorem 3.3 is based on the following lemmas. Recall the following
definitions: i = √−1 is the imaginary unit and

Tn(x) = cos(n arccos x), Un(x) = sin[(n + 1) arccos x]/ sin(arccos x),

are the nth degree Chebyshev polynomials of first and second kind, respectively .
The following lemma provides some nice and frequently used properties of the zeros
of the polynomial equation Un−1(x) − iTn(x) = 0.

Lemma A.1 The zeros of Un−1(x)− iTn(x) = 0 can be arranged as x1, . . . , xn such
that for each j = 1, . . . , n, xj = cos(θj) = cos(αj + iβj) with αj = (jπ − aj)/n

and βj = bj /n, where aj ∈ (0, π) and bj > 0 satisfy the following equations

|xj | = cosh βj

cosh bj

= sinαj

sinh bj

= sinh βj

sin aj

= 1
√

cos2 aj + sinh2 bj

, cos aj sinh βj = sin aj cosαj . (A.1)

Moreover, we have the symmetric relations

aj + an+1−j = αj + αn+1−j = π, bn+1−j = bj , βn+1−j = βj , j = 1, · · · , n,

(A.2)
and the monotone properties (with m = �n/2� being the largest integer less than or
equal to n/2)

0 < a1 < · · · < am < π/2 < an+1−m < · · · < an < π, 0 < b1 < · · · < bm,

(A.3)

Adv Comput Math (2022) 48:16 Page 21 of 29 16

and the inequalities

bj >
1

n
, aj <

jπ

n + 1
< αj <

jπ

n
, j = 1, · · · , m. (A.4)

If n = 2m + 1, then bm+1 > 1/2. If n = 2m, then bm > 1/2.

Proof Let b̄ > 0 be the unique positive root of the equation sinh b sinh(b/n) = 1. It
is easily seen that the function

f (b) := n arcsin[tanh b cosh(b/n)] + arcsin[tanh(b/n) cosh b]
is strictly increasing on [0, b̄] with f (0) = 0 and f (b̄) = (n + 1)π/2. For each
positive index j ≤ (n+1)/2, there exists a unique bj ∈ (0, b̄] such that f (bj) = jπ .
Define

βj = bj /n, aj =arcsin[tanh(bj /n) cosh bj], αj =(jπ−aj)/n = arcsin[tanh bj cosh(bj /n)].

A simple calculation shows that xj = cos(αj +iβj) is a root ofUn−1(x)−iTn(x) = 0.
Moreover, (A.1) holds for 1 ≤ j ≤ (n + 1)/2. For (n + 1)/2 ≤ j ≤ n, define

bj = bn+1−j , βj = bj /n = βn+1−j , aj = π−an+1−j , αj = (jπ−aj)/n = π−αn+1−j .

We also obtain (A.1) and Un−1(xj) − iTn(xj) = 0 with xj = cos(αj + iβj).
The symmetric properties (A.2 follows immediately from the above construction.

The monotonicity of f (b) on [0, b̄] and (A.2) imply the monotonicity of aj and bj

in (A.3). In view of f (1/n) > π , we obtain bj > 1/n. Note from (A.1) that

tan aj / tanαj = sinh βj / sinαj = tanh βj / tanh bj < 1.

Thus, we have aj < αj . This together with αj = (jπ −aj)/n implies aj < jπ/(n+
1) < αj , and then (A.4) follows. Finally, for n = 2m + 1 it holds bm+1 = b̄ >

1/2, because sinh(1/2) sinh[1/(2n)] < 1 = sinh b̄ sinh(b̄/n). For n = 2m, it holds
cosαm = sin(am/n) < am/n < π/(2n). In view of (A.1) and n ≥ 2, we have

1 = (cos2 αm + sinh2 βm)(cos2 am + sinh2 bm) < (0.7+ sinh2 bm/4)(1+ sinh2 bm),

which implies that bm > 1/2. This completes the proof.

In the following, we always assume that the zeros xj (as well as aj , bj , αj and βj)
are ordered as in Lemma A.1. We denote by x̄j the conjugate of xj . The following
lemma gives some sharp bounds on the modulus of the zeros, which will be used in
the proof of Lemma A.3.

Lemma A.2 Assume n ≥ 3. For any j = 1, · · · , n, we have

|xj | >
ln n

2n
,

1

|x2
j (x̄j − xj)|

< n3. (A.5)

Proof By symmetry, we only need to consider the case j ≤ (n + 1)/2. Assume
to the contrary that |xj | ≤ (ln n)/(2n) for some j ≤ (n + 1)/2. Let σ = (n +

 16 Page 22 of 29 Adv Comput Math (2022) 48:16

1)/2 − j ≥ 0. We claim σ < 1/2 + (ln n)/4. Otherwise, we have j ≤ n/2 −
(ln n)/4, αj < jπ/n ≤ π/2 − (π ln n)/(4n), and consequently, |xj | > cosαj >

sin[(π ln n)/(4n)] > (ln n)/(2n), which is a contradiction. Hence, it holds

σ < 1/2 + (ln n)/4, j > n/2 − (ln n)/4.

It then follows that αj > jπ/(n + 1) > π/2− π(ln n + 2)/(4n + 4). Thus, cosαj <

sin[π(ln n+2)/(4n+4)] < π(ln n+2)/(4n+4). Since sinh βj < |xj | ≤ (ln n)/(2n),
we have bj < n sinh βj < (ln n)/2 and sinh bj < ebj /2 <

√
n/2. Consequently,

1 = (cos2 αj + sinh2 βj)(cos
2 aj + sinh2 bj) <

(
π2(ln n + 2)2

16(n + 1)2
+ (ln n)2

4n2

)

(1 + n

4
),

which is a contradiction again. This proves the first inequality in (A.5).
Next, we note that |x̄j − xj | = 2| Im xj | = 2 sinαj sinh βj and

|x2
j (x̄j − xj)| = 2(cos2 αj + sinh2 βj) sinαj sinh βj .

If cos2 αj ≥ 0.4, from sinαj > 2αj/π > 2/(n + 1) and sinh βj > βj > 1/n2 we
have

1

|x2
j (x̄j − xj)|

<
n2(n + 1)

1.6
< n3.

If cos2 αj < 0.4, it follows from n ≥ 3 and (A.1) that

1 = (cos2 αj + sinh2 βj)(cos
2 aj + sinh2 bj) < (0.4 + sinh2 bj /9)(1 + sinh2 bj),

which implies that bj > 0.87 and sinh βj > βj = bj /n > 0.87/n. We then have

1

|x2
j (x̄j − xj)|

<
1

2
√
1 − 0.4 sinh3 βj

<
n3

2
√
0.6(0.87)3

< n3.

Coupling the above two cases yields the second inequality of (A.5).

The following lemma will be used to estimate ‖Φ‖2.

Lemma A.3 For any j = 1, · · · , n, it holds

1

|xj |
∑n

k=1

[
1

|xk(x̄j − xk)| + 1

2|xk|
]

= O(n3). (A.6)

Proof By symmetry, we assume j ≤ n+1
2 . If k < n

2 , then Re xn+1−k < 0 < Re xj .
Thus,

|x̄j − xn+1−k| > |xn+1−k| = |xk| > cosαk > sin
(n/2 − k)π

n
>

n − 2k

n
,

and
∑

k>n/2+1

1

|xk(x̄j − xk)| <
∑

k<n/2

1

|xn+1−k(x̄j − xn+1−k)| <
∑

k<n/2

n2

(n − 2k)2
<

π2n2

6
.

(A.7)

Adv Comput Math (2022) 48:16 Page 23 of 29 16

If k < n/2 and k �= j , it holds

|x̄j − xk| > 2 sin
αj + αk

2
sin

|αj − αk|
2

>
2(j + k − 1)(|j − k| − 1/2)

n2
.

Therefore,
∑

k<n/2,k �=j
1

|xk(x̄j −xk)| <
∑

k<n/2,k �=j
n3

2(n−2k)(j+k−1)(|j−k|−1/2) = O(n2).

Finally, since |xk(x̄j − xk)| > | Im xk|2 = sin2 αk sinh2 βk , it is easy to estimate
∑

n/2≤k≤n/2+1

1

|xk(x̄j − xk)| = O(n2). (A.8)

A combination of the above estimates and Lemma A.2 gives the desired result.

For each s = 1, · · · , n, we denote θs = sπ/(n + 1) and ys = cos θs . Let

Lj (x) =
∏

1≤k≤n,k �=j

x − xk

xj − xk

= Un−1(x) − iTn(x)

(x − xj)[U ′
n−1(xj) − iT ′

n(xj)] , (A.9)

be the Lagrange interpolation polynomials such that Lj (xk) = δjk , where j =
1, · · · , n. The following lemma will be used to estimate ‖Φ−1‖2.

Lemma A.4 For any j = 1, · · · , n, we have
∑n

s=1
(1 − y2

s)|Lj (ys)|
∑n

k=1
|Lk(ys)| = O(n2). (A.10)

Proof A routine calculation gives

|Lj (ys)| =
∣
∣
∣
∣
∣

(−1)s−1(1 + iys)(1 − x2
j)

(ys − xj)(i − nxj)xjTn(xj)

∣
∣
∣
∣
∣
= |1 − x2

j |√1 + y2
s

|(ys − xj)(i − nxj)| . (A.11)

Note that |1 − x2
j | = | sin(αj + iβj)|2 = sin2 αj + sinh2 βj and |xj | >

max{| cosαj |, sinh βj }. Since ys is real with y2
s < 1 and Im xj < 0, we have

|ys − xj | ≥ | Im xj | = sinαj sinh βj , and

|Lj (ys)| <

√
2|1 − x2

j |
n|xj (ys − xj)| <

√
2 sin2 αj

n|xj (ys − xj)| +
√
2

n sinαj

<

√
2 sin2 αj

n|xj (ys − xj)| + √
2,

(A.12)
where we have used the inequality sinαj > sin[π/(n + 1)] > 2/(n + 1) > 1/n.
Another application of |ys − xj | > sinαj sinh βj yields

|Lj (ys)| − √
2 <

√
2 sinαj

n|xj | sinh βj

<

√
2

n|xj |βj

.

If cos2 αj ≤ 1/2, then (A.1) implies that 1 < (1/2+ sinh2 bj)(1+ sinh2 bj). Hence,
bj > 0.4 and |xj | > sinh βj > βj > 0.4/n. If cos2 αj > 1/2, then |xj | > | cosαj | >

1/
√
2 and βj = bj /n > 1/n2. In either case, we have

|Lj (ys)| − √
2 = O(n), 1 ≤ j, s ≤ n. (A.13)

 16 Page 24 of 29 Adv Comput Math (2022) 48:16

We next estimate the sum
∑n

k=1 |Lk(ys)|. By symmetry, we assume without loss of
generality that s ≤ (n + 1)/2. If k < m = �n/2� and k �= s, then it follows from
Lemma A.1 and (A.12) that

|ys − xk| > 2 sin
αk + θs

2
sin

|αk − θs |
2

>
2(αk + θs)|αk − θs |

π2
>

2(k + s)(|k − s| − 1/2)

(n + 1)2
,

and
∑m−1

k=1,k �=s(
√
2|Lk(ys)| − 2) <

∑m−1
k=1,k �=s

(n+1)π2(k+1/2)2

n(n+1−2k)(k+s)(|k−s|−1/2) = O(n).(A.14)

If k > n + 1 − m, then Re xk < 0 ≤ ys and |ys − xk| > |ys − xn+1−k|. Moreover,
|i− nxk| = |i− nxn+1−k|. It then follows from (A.11) that |Lk(ys)| < |Ln+1−k(ys)|.
This together with (A.13) and (A.14) implies that

∑n

k=1
(|Lk(ys)| − √

2) = O(n). (A.15)

Finally, we want to estimate
∑n

s=1(1 − y2
s)|Lj (ys)|. Since |Lj(ys)| =

|Ln+1−j (yn+1−s)|, it suffices to consider the case j ≤ (n+ 1)/2; namely, αj ≤ π/2.
For 1 ≤ s, j ≤ (n + 1)/2 with s �= j , we have

|ys − xj | > 2 sin
|θs − αj |

2
sin

θs + αj

2
>

2(θs + αj)|θs − αj |
π2

>
2(j + s)(|j − s| − 1/2)

(n + 1)2
,

and 1 − y2
s = sin2 θs < θ2s = s2π2/(n + 1)2. It then follows from (A.12) that

(1 − y2
s)(|Lj (ys)| − √

2) <

√
2π2s2

(ln n)(j + s)(|j − s| − 1/2)
.

By a routine calculation, we obtain from the above inequality and (A.13) that
∑

s≤(n+1)/2
(1 − y2

s)[|Lj (ys)| − √
2] = O(n). (A.16)

If s ≥ (n + 1)/2, then ys < 0 < Re xj and |ys − xj | > |ys − xn+1−j |. It follows
from (A.11) that |Lj (ys)| < |Lj (yn+1−s)|. On account of ys = −yn+1−s , we obtain
∑n

s=1
(1− y2

s)|Lj (ys)| < 2
∑

s≤(n+1)/2
(1− y2

s)[|Lj (ys)| −
√
2] = O(n). (A.17)

Coupling (A.15) and (A.17) gives the desired estimate.

A.1 Proof of Theorem 3.3

Proof Denote sk := xkTn(xk). It is readily seen that s2k = 1, Un−1(xk) = isk/xk and
Un(xk) = (1 + ixk)sk/xk . Recall from (3.14) that Φ is the main component of the
eigenvector matrix V of B. It then follows from the Christoffel-Darboux formula that

(Φ∗Φ)jk =
∑n−1

l=0
Ul(x̄j)Ul(xk) = Un(x̄j)Un−1(xk) − Un−1(x̄j)Un(xk)

2(x̄j − xk)
= sj sk(2i + x̄j − xk)

2x̄j xk(x̄j − xk)
,

Adv Comput Math (2022) 48:16 Page 25 of 29 16

which together with Lemma A.3 implies

∑n

k=1
|(Φ∗Φ)jk| ≤ 1

|xj |
∑n

k=1

[
1

|xk(x̄j − xk)| + 1

2|xk|
]

= O(n3),

and

‖Φ‖2 = √ρ(Φ∗Φ) ≤ √‖Φ∗Φ‖∞ = O(n3/2). (A.18)

Let W = (wjk)
n
j,k=1 = Φ−1. We obtain from orthogonality and Gaussian quadrature

formula that

wjk = 2

π

∫ 1

−1
Lj (x)Uk−1(x)

√
1 − x2dx =

∑n

s=1

2(1 − y2
s)

n + 1
Lj (ys)Uk−1(ys),

(A.19)
where Lj (x) are the Lagrange interpolation polynomials given by (A.9). A simple
calculation yields

(WW ∗)jk =
∑n

s=1

2(1 − y2
s)

n + 1
Lj (ys)L̄k(ys),

which together with Lemma A.3 implies

‖W‖2 = √ρ(WW ∗) ≤ √|WW ∗|1 = O(n1/2). (A.20)

Coupling (A.18) and (A.20) gives Cond2(V) = Cond2(Φ) = ‖Φ‖2‖W‖2 = O(n2).

Appendix B. A fastO(n2) algorithm for computing V−1

From (3.14), the eigenvector matrix V of B satisfies V = IΦ with I =
diag

(
i0, i1, · · · , in−1

)
. In the diagonalization procedure (1.3), we need to compute

V −1 = Φ−1I−1 and the major computation is to get W = Φ−1. In this appendix, we
present a fast and stable O(n2) algorithm for computing W accurately.

A simple application of the recurrence relation 2yUj (y) = Uj+1(y) + Uj−1(y)

gives

4y2
s Uk−1(ys) = 2ys [Uk−2(ys) + Uk(ys)]

=

⎧
⎪⎨

⎪⎩

Uk−3(ys) + 2Uk−1(ys) + Uk+1(ys), 2 ≤ k ≤ n − 1,

Uk−1(ys) + Uk+1(ys), k = 1,

Uk−3(ys) + Uk−1(ys), k = n.

(B.1)

It then follows from (A.19) that

2wjk = 1
n+1

∑n
s=14Lj (ys)Uk−1(ys) − 1

n+1

∑n
s=14y

2
s Lj (ys)Uk−1(ys)

=

⎧
⎪⎨

⎪⎩

2ψj,k − ψj,k−2 − ψj,k+2, 2 ≤ k ≤ n − 1,

3ψj,k − ψj,k−2, k = 1,

3ψj,k − ψj,k+2, k = n,

(B.2)

 16 Page 26 of 29 Adv Comput Math (2022) 48:16

where ψj,k = 1
n+1

∑n
s=1Lj (ys)Uk−1(ys). Since Un(ys) = 0, we have ψj,n+1 = 0

for j = 1, 2, · · · , n. Define

pn(x) = Un−1(x) − iTn(x), bk = 1

n + 1

∑n

s=1
pn(ys)Uk−1(ys). (B.3)

Recall from (A.9) that pn(ys) = p′
n(xj)(ys − xj)Lj (ys). Therefore,

2bk

p′
n(xj)

= 1
n+1

∑n
s=12(ys − xj)Lj (ys)Uk−1(ys) = ψj,k−1 + ψj,k+1 − 2xjψj,k .(B.4)

To evaluate bk , we investigate the integral of pn(x)Uk−1(x)
√
1 − x2 on [−1, 1]. On

account of (B.1) and (B.3), we obtain from the Gaussian quadrature formula that

4

π

∫ 1

−1
pn(x)Uk−1(x)

√
1 − x2dx = 1

n+1

∑n
s=1 4(1 − y2

s)pn(ys)Uk−1(ys)

=

⎧
⎪⎨

⎪⎩

2bk − bk−2 − bk+2, 2 ≤ k ≤ n − 1,

3bk − bk+2, k = 1,

3bk − bk−2, k = n.

(B.5)

On the other hand, it follows from a direct computation based on orthogonality that

4

π

∫ 1

−1
pn(x)Uk−1(x)

√
1 − x2dx = 2δn,k + iδk,n−1. (B.6)

Coupling the above two equations yields a sparse pentadiagonal linear system

Snb :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 0 −1
0 2 0 −1

−1 0 2 0 −1
. . .

. . .
. . .

. . .
. . .

−1 0 2 0 −1
−1 0 2 0

−1 0 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1
b2
b3
...

bn−2
bn−1
bn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
...
0
i
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (B.7)

Let � = [ψjk]. The whole fast inversion algorithm for computing W = Φ−1 is
given as the following three steps.

Step-1: solve b = [b1, · · · , bn]T from (B.7), which costs O(n) operations by the
fast Thomas algorithm.

Step-2: Based on the fact ψj,n+1 = 0, the j th row ψj = [ψj,1, · · · , ψj,n] of � can
be solved from a sequence of sparse tridiagonal linear systems (for each
j = 1, 2, · · · , n)

Gjψ
T
j := Tridiag{1, −2xj , 1}ψT

j = 2

p′
n(xj)

b, (B.8)

Adv Comput Math (2022) 48:16 Page 27 of 29 16

which in total also costs O(n2) operations based on the fast Thomas algo-
rithm for each system.

Step-3: W = 1
2�Sn, which also needsO(n2) operations since Sn is a sparse matrix.

In summary, the dense complex matrix W = Φ−1 can be computed with O(n2)

complexity.

Acknowledgements The authors are very grateful to the two anonymous referees for careful reading of
the original manuscript and their valuable suggestions, which greatly improved the quality of this paper.

Funding The third author is supported by the National Natural Science Foundation of China (NSFC)
(No. 12171080) and by the Natural Science Foundation of Jilin Province (No. JC010284408).

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Andreev, R.: Space-time discretization of the heat equation. Numer. Algor. 67, 713–731 (2014)
2. Andreev, R., Tobler, C.: Multilevel preconditioning and low-rank tensor iteration for space-time

simultaneous discretizations of parabolic PDEs. Numer. Linear Algebra Applic. 22, 317–337 (2014)
3. Axelsson, A.O.H., Verwer, J.G.: Boundary value techniques for initial value problems in ordinary

differential equations. Math. Comp. 45, 153–171 (1985)
4. Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constanti-

nescu, E., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Hapla, V., Isaac, T., Jolivet, P., Karpeev,
D., Kaushik, D., Knepley, M.G., Kong, F., Kruger, S., May, D.A., McInnes, L.C., Mills, R.T., Mitchell,
L., Munson, T., Roman, J.E., Rupp, K., Sanan, P., Sarich, J., Smith, B.F., Zampini, S., Zhang, H.,
Zhang, H., Zhang, J.: PETSc/TAO users manual, Tech. Report ANL-21/39 - Revision 3.16 Argonne
National Laboratory (2021)

5. Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constanti-
nescu, E.M., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Hapla, V., Isaac, T., Jolivet, P., Karpeev,
D., Kaushik, D., Knepley, M.G., Kong, F., Kruger, S., May, D.A., McInnes, L.C., Mills, R.T., Mitchell,
L., Munson, T., Roman, J.E., Rupp, K., Sanan, P., Sarich, J., Smith, B.F., Zampini, S., Zhang, H.,
Zhang, H., Zhang, J.: PETSc Web page https://petsc.org/ (2021)

6. Barker, A.T., Stoll, M.: Domain decomposition in time for PDE-constrained optimization. Comput.
Phys. Commun. 197, 136–143 (2015)

7. Brugnano, L., Mazzia, F., Trigiante, D.: Parallel implementation of BVM methods. Appl. Numer.
Math. 11, 115–124 (1993)

8. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value
Methods. Gordon and Breach Science Publ., Amsterdam (2003)

9. Buchholz, R., Engel, H., Kammann, E., Tröltzsch, F.: On the optimal control of the Schlögl-model.
Comput. Optim. Appl. 56, 153–185 (2013)

10. Bueler, E.: PETSc for Partial Differential Equations: Numerical Solutions in C and Python. SIAM
(2020)

11. Caklovic, G., Speck, R., Frank, M.: A parallel implementation of a diagonalization-based parallel-in-
time integrator, arXiv:2103.12571 (2021)

12. Calvetti, D., Reichel, L.: Fast inversion of Vandermonde-like matrices involving orthogonal polyno-
mials. BIT Numer. Math. 33, 473–484 (1993)

13. Chen, F., Hesthaven, J.S., Zhu, X.: On the use of reduced basis methods to accelerate and stabilize
the Parareal method. In: Reduced Order Methods for Modeling and Computational Reduction, vol. 9,
pp. 187–214. Springer, Berlin (2014)

https://petsc.org/
2103.12571

 16 Page 28 of 29 Adv Comput Math (2022) 48:16

14. Chopp, D.: Introduction to High Performance Scientific Computing. SIAM (2019)
15. Dai, X., Maday, Y.: Stable parareal in time method for first- and second-order hyperbolic systems.

SIAM J. Sci. Comput. 35, A52–A78 (2013)
16. Danieli, F., Southworth, B.S., Wathen, A.J.: Space-time block preconditioning for incompressible

flow, arXiv:2101.07003 (2021)
17. Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms.

Springer, Berlin (2004)
18. Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential

equations. Comm. App. Math. Comp. Sci. 7, 105–132 (2012)
19. Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: Parallel time integration

with multigrid. SIAM J. Sci. Comput. 36, C635–C661 (2014)
20. Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B., Vandewalle, S.: Multigrid

methods with space–time concurrency. Comput. Vis. Sci. 18, 123–143 (2017)
21. Farhat, C., Cortial, J., Dastillung, C., Bavestrello, H.: Time-parallel implicit integrators for the near-

real-time prediction of linear structural dynamic responses. Int. J. Numer. Methods Eng. 67, 697–724
(2006)

22. Fox, L.: A note on the numerical integration of first order differential equations. Quart. J. Mech. Appl.
Math. 3, 367–378 (1954)

23. Fox, L., Mitchell, A.R.: Boundary value techniques for the numerical solution of initial value problems
in ordinary differential equations. Quart. J. Mech. Appl. Math. 10, 232–243 (1957)

24. Gander, M.J., Halpern, L.: Time parallelization for nonlinear problems based on diagonalization. Lect.
Notes Comput. Sci. Eng. 116, 163–170 (2017)

25. Gander, M.J., Halpern, L., Rannou, J., Ryan, J.: A direct time parallel solver by diagonalization for
the wave equation. SIAM J. Sci. Comput. 41, A220–A245 (2019)

26. Goddard, A., Wathen, A.: A note on parallel preconditioning for all-at-once evolutionary PDEs.
Electron Trans. Numer. Anal. 51, 135–150 (2019)

27. Gohberg, I., Olshevsky, V.: Fast inversion of Chebyshev–Vandermonde matrices. Numer. Math. 67,
71–92 (1994)

28. Gohberg, I., Olshevsky, V.: The fast generalized Parker-Traub algorithm for inversion of Vandermonde
and related matrices. J. Complex. 13, 208–234 (1997)

29. Gohberg, I., Olshevsky, V.: Fast inversion of Vandermonde and Vandermonde-like matrices. In:
Communications, Computation, Control, and Signal Processing. Springer, pp. 205–221 (1997)

30. Güttel, S., Pearson, J.W.: A spectral-in-time Newton-Krylov method for nonlinear PDE-constrained
optimization. https://doi.org/10.1093/imanum/drab011

31. Higham, N.J.: Fast solution of Vandermonde-like systems involving orthogonal polynomials. IMA J.
Numer. Anal. 8, 473–486 (1988)

32. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM (2002)
33. Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear systems.

SIAM J. Matrix Anal. Applic. 32, 1288–1316 (2011)
34. Lin, X., Ng, M., Sun, H.: A separable preconditioner for time-space fractional Caputo-Riesz diffusion

equations. Numer. Math. Theor. Meth. Appl. 11, 827–853 (2018)
35. Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Acad. Sci.

Paris Sér. I Math. 332, 661–668 (2001)
36. Liu, J., Wu, S.L.: A fast block α-circulant preconditoner for all-at-once systems from wave equations.

SIAM J. Matrix Anal. Appl. 41, 1912–1943 (2020)
37. Maday, Y., Rønquist, E.M.: Parallelization in time through tensor-product space-time solvers. C. R.

Acad. Sci Paris Sér. I Math. 346, 113–118 (2008)
38. McDonald, E., Pestana, J., Wathen, A.: Preconditioning and iterative solution of all-at-once systems

for evolutionary partial differential equations. SIAM J. Sci. Comput. 40, A1012–A1033 (2018)
39. Neumüller, M., Smears, I.: Time-parallel iterative solvers for parabolic evolution equations. SIAM J.

Sci. Comput. 41, C28–C51 (2019)
40. Nguyen, H., Tsai, R.: A stable parareal-like method for the second order wave equation. J. Comput.

Phys. 405, 109156 (2020)
41. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM,

Philadelphia (2000)
42. Palitta, D.: Matrix equation techniques for certain evolutionary partial differential equations. J. Sci.

Comput. 87, 99 (2021)

2101.07003
https://doi.org/10.1093/imanum/drab011

Adv Comput Math (2022) 48:16 Page 29 of 29 16

43. Reichel, L., Opfer, G.: Chebyshev-vandermonde systems. Math. Comput. 57, 703–721 (1991)
44. Ruprecht, D.: Wave propagation characteristics of Parareal. Comput. Vis. Sci. 59, 1–17 (2018)
45. Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection system.

Comput. Fluids 59, 72–83 (2012)
46. Steiner, J., Ruprecht, D., Speck, R., Krause, R.: Convergence of parareal for the Navier-Stokes

equations depending on the reynolds number. Lect. Notes Comput. Sci. Eng. 103, 195–202 (2015)
47. Stoll, M., Breiten, T.: A low-rank in time approach to PDE-constrained optimization. SIAM J. Sci.

Comput. 37, B1–B29 (2015)
48. Wu, S.L.: Convergence analysis of the Parareal-Euler algorithm for systems of ODEs with complex

eigenvalues. J. Sci. Comput. 67, 644–668 (2016)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Jun Liu1 ·Xiang-ShengWang2 ·Shu-Lin Wu3 ·Tao Zhou4

Jun Liu
juliu@siue.edu

Xiang-Sheng Wang
xswang@louisiana.edu

Tao Zhou
tzhou@lsec.cc.ac.cn

1 Department of Mathematics and Statistics, Southern Illinois University Edwardsville,
Edwardsville, IL 62026, USA

2 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
3 School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
4 LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS,

Chinese Academy of Sciences, Beijing, 100190, China

mailto: juliu@siue.edu
mailto: xswang@louisiana.edu
mailto: tzhou@lsec.cc.ac.cn

	A well-conditioned direct PinT algorithm for first- and second-order evolutionary equations
	Abstract
	Introduction
	The PinT algorithm for nonlinear problems
	First-order problems
	Second-order problems

	Diagonalization of the time discretization matrix B
	Numerical results
	Accuracy comparison of two direct PinT algorithms
	Fast spectral decomposition of B
	Parallel experiments

	Conclusions
	Appendix: A. Estimate the condition number of V
	A.1 Proof of Theorem 3.3
	Appendix B. A fast O(n2) algorithm for computing V-1
	Appendix: B. A fast O(n2) algorithm for computing V-1
	References
	Affiliations

