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1. Introduction

There are many powerful and systematically developed techniques in asymptotic
theory for orthogonal polynomials. For instance, the steepest-descent method for
integrals [9], the WKB (Liouville–Green) approximation for differential equations
[7], the Deift–Zhou’s nonlinear steepest-descent method for Riemann-Hilbert prob-
lems [2, 3], etc. Here, we intend to develop a simple, and yet systematic approach
to derive asymptotic formulas for orthogonal polynomials by using their recurrence
relations. Let {πn(x)}∞n=0 be a system of monic polynomials satisfying the recur-
rence relation

πn+1(x) = (x − an)πn(n) − bnπn−1(x), n ≥ 1, (1.1)
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and the initial conditions π0(x) = 1 and π1(x) = x − a0. Note that for the sake
of convenience, we have normalized the polynomials to be monic. To construct the
asymptotic formulas of πn(x), we first set

πn(x) =
n∏

k=1

wk(x). (1.2)

It is readily seen from (1.1) that w1(x) = x − a0 and

wk+1(x) = x − ak − bk

wk
, k ≥ 1. (1.3)

When x is away from the oscillatory region of the orthogonal polynomials, it is
easy to find an asymptotic formula for wk(x) from (1.3). Then, as we shall see,
the asymptotic behavior of πn(x) for x away from the oscillatory region can be
obtained readily. When x is near the oscillatory region, we use a method similar to
that given in [8, 10] to derive asymptotic formulas for general solutions of (1.1). The
asymptotic formula of πn(x) for x near the oscillatory region is then obtained by
doing a matching. In the subsequent three sections, we will consider the following
three cases:

Case 1: an = 0 and bn = n2/(4n2 − 1). This case is related to the Legendre
polynomials.

Case 2: an = 0 and bn = n/2. This case is related to the Hermite polynomials.
Case 3: an = n2 and bn = 1/4. This case was recently brought to our attention

by Ismail.

For simplicity, we use the same notations in the following three sections.
Since each section is independent and self-contained, this will not lead to any
confusion.

2. Case 1: The Legendre Polynomials

The Legendre polynomials can be defined as [6, (1.8.57)]

Pn(x) = 2F1

(
−n, n + 1

1

∣∣∣∣1 − x

2

)
.

They satisfy the recurrence relation [6, (1.8.59)]

(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x).

For convenience, we normalize the Legendre polynomials to be monic. Put

πn(x) :=
2nn!

(n + 1)n
Pn(x).
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The monic Legendre polynomials {πn(x)}∞n=0 satisfy [6, (1.8.60)]

πn+1(x) = xπn(x) − n2

4n2 − 1
πn−1(x), n ≥ 1, (2.1)

π0(x) = 1, π1(x) = x. (2.2)

Theorem 2.1. As n → ∞, we have

πn(x) ∼
(

x +
√

x2 − 1
2

)n(
x +

√
x2 − 1

2
√

x2 − 1

)1/2

(2.3)

for x in the complex plane bounded away from [−1, 1].

Proof. Set

πn(x) =
n∏

k=1

wk(x). (2.4)

From (2.1), (2.2) and (2.4), it follows that

wk+1(x) = x − k2

4k2 − 1
1

wk(x)
, k ≥ 1, (2.5)

w1(x) = x. (2.6)

As k → ∞, we have

wk(x) ∼ x +
√

x2 − 1
2

for x ∈ C\[−1, 1]. Here, the square root takes its principle value so that
√

x2 − 1 ∼ x

as x → ∞. Define

w(x) :=
x +

√
x2 − 1
2

(2.7)

and

uk(x) :=
wk(x)
w(x)

. (2.8)

It is easily seen from (2.5), (2.6) and (2.8) that

uk+1(x) =
x

w(x)
− k2

4k2 − 1
1

w(x)2uk(x)
, k ≥ 1, (2.9)

u1(x) =
x

w(x)
. (2.10)
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We make a change of variable

t = t(x) := (x −
√

x2 − 1)2. (2.11)

It follows from (2.7) and (2.11) that

w(x)2 =
1
4t

,
x

w(x)
= 1 + t. (2.12)

Hence, Eqs. (2.9) and (2.10) can be written as

uk+1(x) = 1 + t − 4k2t

4k2 − 1
1

uk(x)
, k ≥ 1, (2.13)

u1(x) = 1 + t. (2.14)

Define Q0(t) := 1 and

Qn(t) :=
n∏

k=1

uk(x), n ≥ 1. (2.15)

From (2.13)–(2.15), we obtain Q1(t) = 1 + t and

Qn+1(t) = (1 + t)Qn(t) − 4n2t

4n2 − 1
Qn−1(t).

From this recurrence relation, one can construct a generating function from which
it is easily deducible that Qn(t) has the explicit expression

Qn(t) =
n∑

j=0

(1/2)j(n − j + 1)j

j!(n − j + 1/2)j
tj .

A simpler verification of this identity is by induction. Using the Lebesgue dominated
convergence theorem, it can be readily shown that

Qn(t) → (1 − t)−1/2

as n → ∞. Note that by (2.4), (2.8) and (2.15), πn(x) = w(x)nQn(t). Thus, it
follows that

πn(x) ∼ w(x)n(1 − t)−1/2

as n → ∞. This, together with (2.7) and (2.11), yields (2.3).

Theorem 2.2. Let δ > 0 be any fixed small number. For x in a small complex
neighborhood of the interval [−1 + δ, 1 − δ], we have

πn(x) ∼ 1
2n

[
cosnθ

(
1 + sin θ

sin θ

)1/2

+ sin nθ

(
1 − sin θ

sin θ

)1/2
]

(2.16)

as n → ∞, where θ = θ(x) := arccosx with 0 < Re θ < π.
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Proof. To put the difference Eq. (2.1) in the form suggested by Wang and Wong
[8, (2.1)], we let

pn(x) :=
2nΓ(n/2 + 1/4)Γ(n/2 + 3/4)

[Γ(n/2 + 1/2)]2
πn(x). (2.17)

From (2.17), it is easily seen that

[Γ(n/2 + 1/2)]2(n/2 + 1/4)
[Γ(n/2 + 1)]2

· 2xpn(x) = pn+1(x) + pn−1(x). (2.18)

Motivated by the form of the normal (series) solutions to second-order difference
equations (see [10, (1.5)]), we assume

pn(x) ∼ nα[r(x)]n{f(x) cos[nϕ(x)] + g(x) sin[nϕ(x)]} (2.19)

as n → ∞, where r(x) and ϕ(x) are real-valued functions, whereas f(x) and g(x) can
be complex-valued. We now proceed to determine the constant α and the functions
r(x), ϕ(x), f(x) and g(x) in (2.19). It can be easily shown from (2.19) that

pn±1(x) ∼ nαrn±1[(f cosϕ ± g sin ϕ) cos(nϕ) + (g cosϕ ∓ f sin ϕ) sin(nϕ)].

(2.20)

Furthermore, by the asymptotic formula for the ratio of Gamma functions [1,
(6.1.47)], we have

[Γ(n/2 + 1/2)]2(n/2 + 1/4)
[Γ(n/2 + 1)]2

= 1 + O(n−2) (2.21)

as n → ∞. Applying (2.19)–(2.21) to (2.18) gives

2x[f cos(nϕ) + g sin(nϕ)]

∼ r[(f cosϕ + g sinϕ) cos(nϕ) + (g cosϕ − f sin ϕ) sin(nϕ)]

+ r−1[(f cosϕ − g sinϕ) cos(nϕ) + (g cosϕ + f sin ϕ) sin(nϕ)].

Comparing the coefficients of cos(nϕ) and sin(nϕ) on both sides of the last formula
yields

2xf = (r + r−1)f cosϕ + (r − r−1)g sin ϕ;

2xg = −(r − r−1)f sinϕ + (r + r−1)g cosϕ.
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Thus, we obtain from the above two equations

x = cosh(log r) cos ϕ, 0 = sinh(log r) sin ϕ.

It can be easily seen that the only solution to these equations is log r = 0 and
ϕ = arccosx. Recall that

θ = θ(x) := arccosx, 0 < Re θ < π. (2.22)

Hence, we conclude that

r = 1 and ϕ = θ. (2.23)

Next, we are going to determine the constant α in (2.19). Applying (2.23) to (2.19)
gives

pn(x) ∼ nα[f cos(nθ) + g sin(nθ)], (2.24)

and

pn±1(x) ∼ nα
(
1 ± α

n

)
[(f cos θ ± g sin θ) cos(nθ) + (g cos θ ∓ f sin θ) sin(nθ)].

(2.25)

A combination of (2.18), (2.21), (2.24) and (2.25) yields

2x[f cos(nθ) + g sin(nθ)] ∼ 2f cos θ cos(nθ) + 2g cos θ sin(nθ)

+
α

n
[2g sin θ cos(nθ) − 2f sin θ sin(nθ)].

In view of (2.22), we obtain by matching the coefficients in the last formula

αg sin θ = 0, αf sin θ = 0.

These equations hold for all x in a small complex neighborhood of [−1 + δ, 1 − δ].
Since f and g cannot be identically zero, it follows that

α = 0. (2.26)

Thus, we have from (2.19), (2.23) and (2.26)

pn(x) ∼ f cosnθ + g sin nθ (2.27)

as n → ∞. This formula holds uniformly for x in a small complex neighborhood of
[−1 + δ, 1 − δ]. Moreover, it follows from (2.3) and (2.17) that

pn(x) ∼ (x +
√

x2 − 1)n

(
x +

√
x2 − 1

2
√

x2 − 1

)1/2

(2.28)

for complex x bounded away from [−1, 1]. Our last step is to determine the coef-
ficients f and g in (2.27) by matching the above two formulas in an overlapping
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region. With θ and x given by (2.22), it can be shown that for Imx > 0, we have
Im θ < 0. Thus, (2.27) implies

pn(x) ∼
(

f

2
+

g

2i

)
einθ.

Meanwhile, in view of x = cos θ and
√

x2 − 1 = i sin θ by (2.22), we obtain from
(2.28) that

pn(x) ∼ einθ

[
ei(θ−π/2)

2 sin θ

]1/2

.

Coupling the last two formulas gives

f

2
+

g

2i
=

ei(θ/2−π/4)

(2 sin θ)1/2
.

Similarly, matching (2.27) with (2.28) in the region Imx < 0 yields

f

2
− g

2i
=

e−i(θ/2−π/4)

(2 sin θ)1/2
.

From the last two equations of f and g we have

f =
(

1 + sin θ

sin θ

)1/2

, g =
(

1 − sin θ

sin θ

)1/2

.

This, together with (2.17) and (2.27), implies (2.16).

3. Case 2: The Hermite Polynomials

The Hermite polynomials can be defined as [6, (1.13.1)]

Hn(x) = (2x)n
2F0

(
−n/2, −(n − 1)/2

−

∣∣∣∣− 1
x2

)
.

They satisfy the recurrence relation [6, (1.13.3)]

2xHn(x) = Hn+1(x) + 2nHn−1(x).

For convenience, we normalize the Hermite polynomials to be monic, and put

πn(x) := 2−nHn(x).

The monic Hermite polynomials {πn(x)}∞n=0 satisfy [6, (1.13.4)]

πn+1(x) = xπn(x) − n

2
πn−1(x), n ≥ 1, (3.1)

π0(x) = 1, π1(x) = x. (3.2)
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Theorem 3.1. As n → ∞, we have

πn(
√

2ny) ∼
( n

2e

)n/2

exp
{
n[y2 − y

√
y2 − 1 + log(y +

√
y2 − 1)]

}

×
(

y +
√

y2 − 1
2
√

y2 − 1

)1/2

(3.3)

for complex y bounded away from the interval [−1, 1].

Proof. Set

πn(x) =
n∏

k=1

wk(x). (3.4)

It follows from (3.1) and (3.2) that w1(x) = x and

wk+1(x) = x − k

2wk(x)
.

Let x = xn :=
√

2ny with y ∈ C\[−1, 1]. It can be proved by induction that for real
y and y /∈ [−1, 1], we have

xn +
√

x2
n − 2k

2

[
1 +

1
2(x2

n − 2k)
− 5xn −√x2

n − 2k

8(x2
n − 2k)5/2

]

< wk(xn) <
xn +

√
x2

n − 2k

2

[
1 +

1
2(x2

n − 2k)

]

for all k = 1, . . . , n. From these inequalities, it follows that

wk(xn) =
xn +

√
x2

n − 2k

2

[
1 +

1
2(x2

n − 2k)
+ O(n−2)

]
(3.5)

as n → ∞, uniformly in k = 1, . . . , n. By using a continuity argument, it can be
shown that the validity of this asymptotic formula can be extended to complex
y ∈ C\[−1, 1]. Recall that xn =

√
2ny. By the trapezoidal rule

1
n

n∑
k=1

f(k/n) =
∫ 1

0

f(t)dt +
f(1) − f(0)

2n
+ O(n−2),

we have

1
n

n∑
k=1

log
xn +

√
x2

n − 2k

xn +
√

x2
n − 2n

=
1
n

n∑
k=1

log(y +
√

y2 − k/n) − log(y +
√

y2 − 1)
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∼
∫ 1

0

log(y +
√

y2 − t)dt +
1
2n

log
y +

√
y2 − 1

2y
− log(y +

√
y2 − 1)

= y2 − 1/2 − y
√

y2 − 1 +
1
2n

log
y +

√
y2 − 1

2y
(3.6)

and

n∑
k=1

log
[
1 +

1
2(x2

n − 2k)

]
∼

n∑
k=1

1
2(x2

n − 2k)
=

1
n

n∑
k=1

1
4(y2 − k/n)

∼
∫ 1

0

dt

4(y2 − t)
=

1
4

log
y2

y2 − 1
(3.7)

as n → ∞. Applying the last two formulas and (3.5) to (3.4) yields

πn(xn) ∼
n∏

k=1

[
xn +

√
x2

n − 2n

2

]
·

n∏
k=1

[
xn +

√
x2

n − 2k

xn +
√

x2
n − 2n

]
·

n∏
k=1

[
1 +

1
2(x2

n − 2k)

]

∼
(n

2

)n/2

(y +
√

y2 − 1)n exp[n(y2 − 1/2 − y
√

y2 − 1)]

×
(

y +
√

y2 − 1
2y

)1/2(
y2

y2 − 1

)1/4

∼
( n

2e

)n/2

exp{n[y2 − y
√

y2 − 1 + log(y +
√

y2 − 1)]}

×
(

y +
√

y2 − 1

2
√

y2 − 1

)1/2

,

thus proving (3.3).

Theorem 3.2. Let δ > 0 be any fixed small number. For y in a small complex
neighborhood of [−1 + δ, 1 − δ], we have

πn(
√

2ny) ∼
( n

2e

)n/2 eny2

(1 − y2)1/4

×
{

cos
[
n(θ − sin θ cos θ) +

θ

2

]
+ sin

[
n(θ − sin θ cos θ) +

θ

2

]}
(3.8)

as n → ∞, where θ = θ(y) := arccos y.
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To prove the above theorem, we need a lemma analogous to [8, Lemma 1]. For
convenience, we use the notation

y± :=
(

n

n ± 1

)1/2

y ∼ y ∓ y

2n
+

3y

8n2
. (3.9)

Lemma 3.3. Let ϕ(y) be any analytic function in a small complex neighborhood
of [−1 + δ, 1 − δ]. We have

cos[(n ± 1)ϕ(y±)] ∼ cos(nϕ)
(

cosλ ∓ µ

n
sin λ

)
∓ sin(nϕ)

(
sin λ ± µ

n
cosλ

)
(3.10)

and

sin[(n ± 1)ϕ(y±)] ∼ sin(nϕ)
(

cosλ ∓ µ

n
sin λ

)
± cos(nϕ)

(
sinλ ± µ

n
cosλ

)
(3.11)

as n → ∞, where

λ = λ(y) := ϕ(y) − yϕ′(y)
2

, (3.12)

and

µ = µ(y) := −yϕ′(y)
8

+
y2ϕ′′(y)

8
. (3.13)

Proof. From (3.9) we have

(n ± 1)ϕ(y±) ∼ n

(
1 ± 1

n

)
ϕ

(
y ∓ y

2n
+

3y

8n2

)

∼ n

(
1 ± 1

n

)(
ϕ ∓ yϕ′

2n
+

3yϕ′

8n2
+

y2ϕ′′

8n2

)

∼ n

(
ϕ ± λ

n
+

µ

n2

)
,

where ϕ denotes ϕ(y), and λ and µ are given in (3.12) and (3.13). It then follows
that

cos[(n ± 1)ϕ(y±)] ∼ cos(nϕ) cos(λ ± µ/n) ∓ sin(nϕ) sin(λ ± µ/n)

∼ cos(nϕ)
(

cosλ ∓ µ

n
sin λ

)
∓ sin(nϕ)

(
sinλ ± µ

n
cosλ

)
;

sin[(n ± 1)ϕ(y±)] ∼ sin(nϕ) cos(λ ± µ/n) ± cos(nϕ) sin(λ ± µ/n)

∼ sin(nϕ)
(

cosλ ∓ µ

n
sin λ

)
± cos(nϕ)

(
sinλ ± µ

n
cosλ

)
.

This proves the lemma.
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Proof of Theorem 3.2. Define

pn(x) := [Γ(n/2 + 1/2)]−1πn(x). (3.14)

We make a change of variable x = xn :=
√

2ny. It is easily seen from (3.1) and
(3.14) that

Γ(n/2 + 1/2)
√

2n

Γ(n/2 + 1)
· ypn(

√
2ny) = pn+1(

√
2ny) + pn−1(

√
2ny). (3.15)

As in (2.19), we now assume

pn(
√

2ny) ∼ nα[r(y)]n{f(y) cos[nϕ(y)] + g(y) sin[nϕ(y)]} (3.16)

as n → ∞. First, we shall determine the constant α and the functions r(y) and
ϕ(y) in (3.16). From (3.9) and (3.16), we have

pn±1(
√

2ny) = pn±1(
√

2(n ± 1)y±) ∼ (n ± 1)α[r(y±)]n±1

×{f(y±) cos[(n ± 1)ϕ(y±)] + g(y±) sin[(n ± 1)ϕ(y±)]}. (3.17)

Moreover, it can be shown from (3.9) that

[r(y±)]n±1 ∼ rn±1e∓yr′/2r, (3.18)

where r = r(y). Applying (3.9)–(3.11) and (3.18) to (3.17) yields

pn±1(
√

2ny) ∼ nαrn±1e∓yr′/2r

× [(f cosλ ± g sinλ) cos(nϕ) + (g cosλ ∓ f sin λ) sin(nϕ)]. (3.19)

Here f and g stand for f(y) and g(y). By Stirling’s formula [1, (6.1.37)] we have

Γ(n/2 + 1/2)
√

n/2
Γ(n/2 + 1)

∼ 1 − 1
4n

. (3.20)

A combination of (3.15), (3.16), (3.19) and (3.20) implies

2y[f cos(nϕ) + g sin(nϕ)]

∼ re−yr′/2r[(f cosλ + g sin λ) cos(nϕ) + (g cosλ − f sin λ) sin(nϕ)]

+ r−1eyr′/2r[(f cosλ − g sin λ) cos(nϕ) + (g cosλ + f sin λ) sin(nϕ)].

Comparing the coefficients of cos(nϕ) and sin(nϕ) on both sides of the last formula
gives

2yf = re−yr′/2r(f cosλ + g sinλ) + r−1eyr′/2r(f cosλ − g sinλ);

2yg = re−yr′/2r(g cosλ − f sinλ) + r−1eyr′/2r(g cosλ + f sinλ).
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Solving the above two equations, we obtain

cosh
(

log r − yr′

2r

)
cosλ = y, sinh

(
log r − yr′

2r

)
sinλ = 0.

A solution is

log r − yr′

2r
= 0, cosλ = y. (3.21)

The first equation in (3.21) implies

r = ecy2
(3.22)

for some constant c ∈ C. From (3.12) and (3.21), we have

ϕ = ±(arccosy − y
√

1 − y2) + c′y2 + 2kπ

for some constant c′ ∈ C and k ∈ N. Without loss of generality, we may take c′ = 0
and k = 0. Hence,

ϕ = arccos y − y
√

1 − y2. (3.23)

Next, we are going to determine the functions f and g in (3.16). From (3.9) and
(3.22), we obtain

[r(y±)]n±1 = [r(y)]n (3.24)

and

f(y±) ∼ f ∓ yf ′

2n
, g(y±) ∼ g ∓ yg′

2n
, (3.25)

where f = f(y) and g = g(y). Applying (3.10), (3.11), (3.24) and (3.25) to (3.17)
yields

pn±1(
√

2ny)
nαrn

∼ (f cosλ ± g sin λ) cos(nϕ) + (g cosλ ∓ f sinλ) sin(nϕ)

+
cos(nϕ)

n

(
±αf cosλ ∓ µf sin λ ∓ yf ′

2
cosλ

+ αg sin λ + µg cosλ − yg′

2
sin λ

)

+
sin(nϕ)

n

(
±αg cosλ ∓ µg sinλ ∓ yg′

2
cosλ

− αf sin λ − µf cosλ +
yf ′

2
sinλ

)
. (3.26)

A combination of (3.15), (3.16), (3.20) and (3.26) gives(
1 − 1

4n

)
[2yf cos(nϕ) + 2yg sin(nϕ)]

∼ 2f cosλ cos(nϕ) + 2g cosλ sin(nϕ)
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+
cos(nϕ)

n
(2αg sinλ + 2µg cosλ − yg′ sinλ)

+
sin(nϕ)

n
(−2αf sin λ − 2µf cosλ + yf ′ sin λ).

In view of the second equation in (3.21), we obtain by matching the coefficients in
the last formula

f

2
cosλ + 2αg sinλ + 2µg cosλ − yg′ sin λ = 0; (3.27)

g

2
cosλ − 2αf sin λ − 2µf cosλ + yf ′ sin λ = 0. (3.28)

Note from (3.12), (3.13) and (3.23) that

λ = arccos y, µ =
y

4
√

1 − y2
.

Hence, Eqs. (3.27) and (3.28) can be written as

f +
4αg

√
1 − y2

y
+

yg√
1 − y2

− 2g′
√

1 − y2 = 0; (3.29)

g − 4αf
√

1 − y2

y
− yf√

1 − y2
+ 2f ′√1 − y2 = 0. (3.30)

Set

u := y−2α(1 − y2)1/4f ; v := y−2α(1 − y2)1/4g. (3.31)

We then have from (3.29)–(3.31)

u′ = − v

2
√

1 − y2
; v′ =

u

2
√

1 − y2
. (3.32)

Define

θ = θ(y) := arccos y. (3.33)

The solution of the system (3.32) is given by

u = C1 cos
θ

2
+ C2 sin

θ

2
; v = −C1 sin

θ

2
+ C2 cos

θ

2
, (3.34)

where C1 ∈ C and C2 ∈ C are two arbitrary constants. Consequently, we obtain
from (3.31) that

f =
y2α

(1 − y2)1/4

(
C1 cos

θ

2
+ C2 sin

θ

2

)
; (3.35)

g =
y2α

(1 − y2)1/4

(
−C1 sin

θ

2
+ C2 cos

θ

2

)
. (3.36)
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Applying (3.22), (3.35) and (3.36) to (3.16) yields

pn(
√

2ny) ∼ nαency2
y2α(1 − y2)−1/4[C1 cos(nϕ + θ/2) + C2 sin(nϕ + θ/2)].

(3.37)

This formula holds uniformly for y in a small complex neighborhood of [−1+δ, 1−δ].
Moreover, it follows from (3.3) and (3.14) that

pn(
√

2ny) ∼ 1√
2π

exp{n[y2 − y
√

y2 − 1 + log(y +
√

y2 − 1)]}
(

y +
√

y2 − 1
2
√

y2 − 1

)1/2

(3.38)

for complex y bounded away from [−1, 1]. Finally, we match the above two formulas
in an overlapping region to determine the constants α, c, C1 and C2 in (3.37). For
Im y > 0, it follows from (3.33) that Im θ < 0; see a similar statement following
(2.28). Furthermore, it can be shown from (3.23) that if Im y > 0, then we also
have Im ϕ < 0. (To do this, one first notes that ϕ′(y) is negative for y ∈ [−1 +
δ, 1 − δ]. Then, by the continuity of ϕ′, one concludes that Re ϕ′(y) < 0 for y in
a neighborhood of [−1 + δ, 1 − δ] in the complex plane. Finally, the mean value
theorem ensures that there exists a real number ξ ∈ (0, Im y) such that ϕ(y) =
ϕ(Re y) + i(Im y)ϕ′(Re y + iξ), from which one obtains Imϕ(y) < 0.) Thus, (3.37)
implies

pn(
√

2ny) ∼ nαency2
y2α(1 − y2)−1/4

(
C1

2
+

C2

2i

)
einϕ+iθ/2.

Meanwhile, we have from (3.33) and (3.38)

pn(
√

2ny) ∼ 1√
2π

exp{n[y2 − iy
√

1 − y2 + i arccosy]}
[

ei(θ−π/2)

2
√

1 − y2

]1/2

.

Thus, we obtain from (3.23) and the above two formulas that α = 0, c = 1 and

C1

2
+

C2

2i
=

e−iπ/4

2
√

π
.

Similarly, matching (3.37) with (3.38) in the region Im y < 0 yields again α = 0,
c = 1 and the equation

C1

2
− C2

2i
=

eiπ/4

2
√

π
.

Coupling the last two equations gives

C1 = C2 =
1√
2π

.

Therefore, we conclude that

α = 0, c = 1, C1 = C2 =
1√
2π

.

This, together with (3.14), (3.23) and (3.37), yields (3.8).
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4. Case 3: An Open Problem

Recently, Ismail proposed the problem of finding asymptotic formulas for the
orthogonal polynomials determined by

πn+1(x) = (x − n2)πn(x) − 1
4
πn−1(x), n ≥ 1, (4.1)

π0(x) = 1, π1(x) = x; (4.2)

see [5, Sec. 6] and [4, p. 370]. We first present a result for x not in the interval of
oscillation.

Theorem 4.1. As n → ∞, we have

πn(n2y) ∼
(n

e

)2n

exp{n[(
√

y + 1) log(
√

y + 1)

− (
√

y − 1) log(
√

y − 1)]}
(

y

y − 1

)1/2

(4.3)

for complex y bounded away from [0, 1].

Proof. Set

πn(x) =
n∏

k=1

wk(x). (4.4)

It follows from (4.1) and (4.2) that w1(x) = x and

wk+1(x) = x − k2 − 1
4wk(x)

.

Let x = xn := n2y with y ∈ C\[0, 1]. As with the case of Hermite polynomials, it
can be shown that for real x and x /∈ [0, n2], we have

x − (k − 1)2 − 1 < wk(x) < x − (k − 1)2 + 1

for all k = 1, . . . , n. Thus,

1 +
2k

x − k2
− 2

x − k2
<

wk(x)
x − k2

< 1 +
2k

x − k2
.

Consequently,

wk(n2y) = n2

(
y − k2

n2

)[
1 +

2k

n2y − k2
+ O(n−2)

]
(4.5)

as n → ∞, uniformly in k = 1, . . . , n. By using a continuity argument, it can be
shown that the validity of this asymptotic formula can be extended to complex



March 21, 2012 9:38 WSPC/S0219-5305 176-AA 1250010

230 X.-S. Wang & R. Wong

y ∈ C\[0, 1]. In view of the trapezoidal rule

1
n

n∑
k=1

f(k/n) ∼
∫ 1

0

f(t)dt +
f(1) − f(0)

2n
,

we have
n∑

k=1

log
(

y − k2

n2

)
∼ n

∫ 1

0

log(y − t2)dt +
1
2

log
y − 1

y

= n[(
√

y + 1) log(
√

y + 1) − (
√

y − 1) log(
√

y − 1) − 2]

+
1
2

log
y − 1

y

and
n∑

k=1

log
(

1 +
2k

n2y − k2

)
∼

n∑
k=1

2k

n2y − k2
∼
∫ 1

0

2t

y − t2
dt = log

y

y − 1

as n → ∞. Applying the last two formulas and (4.5) to (4.4) gives (4.3).

Next, we give a result for x inside the interval of oscillation.

Theorem 4.2. Let δ > 0 be any fixed small number. For y in a small neighborhood
of [δ, 1 − δ] in the complex plane, we have

πn(n2y) ∼ (−1)n−12 sin(nπ
√

y)
(n

e

)2n
(

1 +
√

y

1 −√
y

)n
√

y

y1/2(1 − y)n−1/2 (4.6)

as n → ∞.

To prove the above theorem, we will need a lemma analogous to [8, Lemma 1].
As in (3.9), for convenience we set

y± :=
(

n

n ± 1

)2

y ∼ y ∓ 2y

n
+

3y

n2
. (4.7)

Lemma 4.3. Let ϕ(y) be any analytic function in a small neighborhood of [δ, 1−δ]
in the complex plane. We have

cos[(n ± 1)ϕ(y±)] ∼ cos(nϕ)
(

cosλ ∓ µ

n
sinλ

)
∓ sin(nϕ)

(
sin λ ± µ

n
cosλ

)
(4.8)

and

sin[(n ± 1)ϕ(y±)] ∼ sin(nϕ)
(

cosλ ∓ µ

n
sin λ

)
± cos(nϕ)

(
sinλ ± µ

n
cosλ

)
(4.9)
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as n → ∞, where

λ = λ(y) := ϕ(y) − 2yϕ′(y), (4.10)

and

µ = µ(y) := yϕ′(y) + 2y2ϕ′′(y). (4.11)

Proof. From (4.7) we have

(n ± 1)ϕ(y±) ∼ n

(
1 ± 1

n

)
ϕ

(
y ∓ 2y

n
+

3y

n2

)

∼ n

(
1 ± 1

n

)(
ϕ ∓ 2yϕ′

n
+

3yϕ′

n2
+

2y2ϕ′′

n2

)

∼ n

(
ϕ ± λ

n
+

µ

n2

)
,

where λ and µ are given in (4.10) and (4.11). It then follows that

cos[(n ± 1)ϕ(y±)] ∼ cos(nϕ) cos(λ ± µ/n) ∓ sin(nϕ) sin(λ ± µ/n)

∼ cos(nϕ)
(

cosλ ∓ µ

n
sin λ

)
∓ sin(nϕ)

(
sin λ ± µ

n
cosλ

)
;

sin[(n ± 1)ϕ(y±)] ∼ sin(nϕ) cos(λ ± µ/n) ± cos(nϕ) sin(λ ± µ/n)

∼ sin(nϕ)
(

cosλ ∓ µ

n
sinλ

)
± cos(nϕ)

(
sin λ ± µ

n
cosλ

)
.

This proves the lemma.

Proof of Theorem 4.2. Define

pn(x) :=
(−1)n

Γ(n)2
πn(x). (4.12)

We make a change of variable x = xn := n2y. It is readily seen from (4.1) and
(4.12) that

(1 − y)pn(n2y) = pn+1(n2y) +
1

4n2(n − 1)2
pn−1(n2y). (4.13)

As in (3.16), we first assume

pn(n2y) ∼ nα[r(y)]n{f(y) cos[nϕ(y)] + g(y) sin[nϕ(y)]} (4.14)

as n → ∞, and then determine the constant α and the functions r(y), f(y), g(y)
and ϕ(y) in the formula. From (4.7) and (4.14) we have

pn±1(n2y) = pn±1((n ± 1)2y±)

∼ (n ± 1)α[r(y±)]n±1{f(y±) cos[(n ± 1)ϕ(y±)]

+ g(y±) sin[(n ± 1)ϕ(y±)]}. (4.15)
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Moreover, it can be shown from (4.7) that as n → ∞, we also have

[r(y±)]n±1 ∼ rn±1e∓2yr′/r, (4.16)

where r stands for r(y). Applying (4.7)–(4.9) and (4.16) to (4.15) yields

pn±1(n2y) ∼ nαrn±1e∓2yr′/r

× [(f cosλ ± g sin λ) cos(nϕ) + (g cosλ ∓ f sin λ) sin(nϕ)]. (4.17)

A combination of (4.13), (4.14) and (4.17) gives

(1 − y)[f cos(nϕ) + g sin(nϕ)] ∼ re−2yr′/r

× [(f cosλ + g sin λ) cos(nϕ) + (g cosλ − f sin λ) sin(nϕ)].

By comparing the coefficients of cos(nϕ) and sin(nϕ) on both sides of the last
formula, we obtain

(1 − y)f = re−2yr′/r(f cosλ + g sinλ);

(1 − y)g = re−2yr′/r(g cosλ − f sinλ).

Thus, we have from the above equations

(1 − y) = re−2yr′/r cosλ, 0 = re−2yr′/r sin λ.

The only solution is λ = 0, and

re−2yr′/r = 1 − y. (4.18)

With λ = 0, we obtain from (4.10)

ϕ = c
√

y (4.19)

for some constant c ∈ C. Let R(y) := log r(y). From (4.18), it is easily seen
that R(y) satisfies a first-order linear inhomogeneous equation, whose solution is
given by

R(y) = −1
2
y1/2

[∫ y

s−3/2 log(1 − s)ds

]
.

Upon integration by parts, followed by a change of variable u = s1/2, one obtains

R(y) = log(1 − y) + 2y1/2arctanh
√

y + c′
√

y

for some constant c′ ∈ C. Taking exponentials on both sides gives

r(y) = (1 − y)
(

1 +
√

y

1 −√
y

)√
y

ec′√y.

Without loss of generality, we may take c′ = 0. Hence,

r(y) = (1 − y)
(

1 +
√

y

1 −√
y

)√
y

. (4.20)



March 21, 2012 9:38 WSPC/S0219-5305 176-AA 1250010

Asymptotics of Orthogonal Polynomials via Recurrence Relations 233

Next, we determine the functions f and g in (4.14). From (4.7), (4.18) and (4.20)
we have

[r(y±)]n±1 ∼ (1 − y)±1[r(y)]n
[
1 +

y

n(1 − y)

]
. (4.21)

Furthermore, it is easily seen from (4.7) and (4.19) that (n± 1)ϕ(y±) ∼ nϕ(y) and

f(y±) ∼ f(y) ∓ 2yf ′(y)
n

, g(y±) ∼ g(y) ∓ 2yg′(y)
n

.

Applying the above formulas for functions r, ϕ, f and g to (4.15) yields

pn±1(n2y) ∼ nαrn(1 − y)±1

×
(
1 ± α

n

) [
1 +

y

n(1 − y)

] [(
f ∓ 2yf ′

n

)
cos(nϕ) +

(
g ∓ 2yg′

n

)
sin(nϕ)

]
.

(One can also obtain this result from Lemma 4.3, since λ = µ = 0 by (4.19).) This,
together with (4.13) and (4.14), implies

f cos(nϕ) + g sin(nϕ) ∼
[
f +

1
n

(
yf

1 − y
+ αf − 2yf ′

)]

× cos(nϕ) +
[
g +

1
n

(
yg

1 − y
+ αg − 2yg′

)]
sin(nϕ).

Comparing the coefficients on both sides of the last formula gives

yf

1 − y
+ αf − 2yf ′ = 0,

yg

1 − y
+ αg − 2yg′ = 0.

Hence,

f = C1y
α/2(1 − y)−1/2, g = C2y

α/2(1 − y)−1/2, (4.22)

where C1 ∈ C and C2 ∈ C are two arbitrary constants. Applying (4.19), (4.20) and
(4.22) to (4.14) yields

pn(n2y) ∼ nαyα/2(1 − y)n−1/2

(
1 +

√
y

1 −√
y

)n
√

y

[C1 cos(nc
√

y) + C2 sin(nc
√

y)].

(4.23)

This formula holds uniformly for y in a small neighborhood of [δ, 1 − δ] in the
complex plane. Moreover, it follows from (4.3) and (4.12) that

pn(n2y) ∼ (−1)nn

2π
exp{n[(

√
y + 1) log(

√
y + 1)

− (
√

y − 1) log(
√

y − 1)]}
(

y

y − 1

)1/2

(4.24)

for complex y bounded away from [0, 1]. At the final stage, we match the last two
formulas in an overlapping region to determine the constants α, c, C1 and C2 in
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(4.23). In view of the equalities exp(±inc
√

y) = cos(nc
√

y) ± i sin(nc
√

y) and

(1 − y)n

(
1 +

√
y

1 −√
y

)n
√

y

= exp{n[(
√

y + 1) log(
√

y + 1) − (
√

y − 1) log(1 −√
y)]},

formula (4.23) can be written as

pn(n2y) ∼ nαyα/2(1 − y)−1/2exp{n[(
√

y + 1) log(
√

y + 1) − (
√

y − 1) log(1 −√
y)]}

×
[(

C1

2
− C2

2i

)
e−inc

√
y +

(
C1

2
+

C2

2i

)
einc

√
y

]
. (4.25)

Meanwhile, it follows from (4.24) that for Im y > 0, we have

pn(n2y) ∼ n

2π
exp{n[(

√
y + 1) log(

√
y + 1) − (

√
y − 1) log(1 −√

y)]

− inπ
√

y − iπ/2}
(

y

1 − y

)1/2

.

A comparison of the above two asymptotic formulas shows that α = 1 and c = π

or c = −π. Without loss of generality, we take c = π. Note that the function
exp(inc

√
y) = exp(inπ

√
y) is exponentially small, and hence negligible in the region

Im y > 0. By matching the last two formulas one more time, and ignoring the
exponentially small term, we have

C1

2
− C2

2i
=

e−iπ/2

2π
.

With α = 1 and c = π, we match (4.24) with (4.25) in the region Im y < 0 to obtain
the other equation

C1

2
+

C2

2i
=

eiπ/2

2π
.

Upon solving the last two equations, we obtain C1 = 0 and C2 = −1/π. Therefore,
we conclude that

α = 1, c = π, C1 = 0, C2 = −1/π.

Combining this with (4.12) and (4.23) gives (4.6).
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