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Books

Data Mining, Concepts and Techniques. Chapter 2, Sections
1,2,4. Types of Data in Cluster Analysis

Advances in Instance-Based Learning Algorithmes,
Dissertation by D. Randall Wilson, August 1997. Chapters 4

and 5.

Prototype Styles of Generalization. Thesis by D. Randall
Wilson, August 1994, Chapters 3.
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What i1s Data?

- Collection of data objects/instances and their attributes/features.

- Object is known as a record, point, case, sample, instance, or
entity

- An attribute is a property or characteristic of an object
- Attribute is known as variable, field, characteristic, or feature.
- Attribute is composed of a data type and has a range of values

- Examples: temperature, price of an item etc.

- In context of database, rows -> data objects; columns -> attributes.
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Types of Data

Nominal

- ID’s, colors etc.

Binary

- Gender

Ordinal

- grades, rankings

- Numeric: quantitative
* Interval-scaled

- calendar dates, body temperatures

- Ratio-scaled

- length, time
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Properties of Attribute Values

Type of an attribute depends on which of the following properties it posses

Distinctness: = #

Order: <>

Addition: + -

Multiplication: * /

- Nominal: distinctness

- Ordinal: distinctness & order

- Interval-scaled: distinctness, order & addition

- Ratio- scaled: All 4 attributes
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Attribute Types

- Nominal: categories, states or “names of things”
Marital status = {single, married, divorced}
Occupation, zip codes etc.
- Binary
- Nominal attribute with only 2 states (0 and 1)

- Symmetric binary: both outcomes are equally important, e.g.,
gender

+  Asymmetric binary: All outcomes are not equally important

- Medical test (positive vs. negative), assign 1 to important
outcome

%*
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Attribute Types

- Ordinal

- Values have a meaningful order (ranking) but magnitude
between successive values is not known.

- Size = {small, medium, large}

- grades, rankings
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Numeric Attribute Types

Quantity (integer or real-m values)

Interval

Measured on scale of equal-sized units

Values have order, temperature in centigrade

No true zero-point

Ratio

Inherent zero-point

Values are presented in a order of magnitude ( 4 Ib. is twice as heavy as 21b.)

e.g., temperature in kelvin, length
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Types of Attributes - Summary

Nominal Ordinal Interval Ratio
Frequency distribution/ VES VES VES VES
counts
Mode/median NO YES YES YES
Add, Subtract, mean,
standard deviation and NO NO YES YES

mean

Ratio/coefficient of
variation NO NO NO YES
Has “true zero”
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Discrete vs. Continuous Attributes

Discrete Attribute

Has finite set of values, e.g., zip codes, set of words in a
corpus

Can be represented as a integer
Binary attributes as a special case of discrete attributes
Continuous Attributes

Has real numbers as attributes, e.g., temperature, height,
weight

Practically, real values can only be measured and
represented using finite number of digits
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Comparing Instances

- How does one compare instances?

Clustering

Classification

Instance based classifiers
Artificial neural networks

Support vector machines

- Distance Functions

O

The Center for Advanced Computer Studies

University of Louisiana at Lafayette

&

LOUISIANA



Distance Measures

- Many different distance measures
» Euclidean
- Manhattan
+  Minkowski

- Assume all features in data point are interval- scaled
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Distance Measures - Euclidean

O

Also called L, norm

Assumes a straight-line from two points

d(i,j) = \[(xu— Xi1)“ + (Xip— x2)% + - + (X — Xjp)*

Where

i, j are two different instances
N is the number of interval-features

X., is the value at z'" feature value for i
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Distance Measures - Manhattan

Also called L, norm

Non-Linear

 d(i,)) = |xi = x|+ |xXi2 — x| + -+ |xim — Xy
- Where

i, j are two different instances
N is the number of interval-features

+ X, is the value at z'" feature value for i
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Distance Measures - Minkowski

O

Generalized distance measure

Also called L; norm

/v

1
.. p p p
d(i,)) = (|xix = x1| + [xiz = x52|" 4+ + [xin — x| )
Where P is a positive integer

Euclidean and Manhattan are special cases where p=1,2
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Distance Measures - Minkowski

- Not all features are equal

Some are relevant

Some are highly influential

/p

. p p p
c d(Q,)) = (Wylxg — x1|” F walxiz — x|+ F wy|xim — X0 )
- Where, W, is the ‘weight’

W, >0

The Center for Advanced Computer Studies UNIN ,I'i SITY
University of Louisiana at Lafayette LOUISIANA

O



Distance Measures - Example

. x1=(1,2,3), %3 =(3,5,7)

Euclidean: d(xy,x;) = /(1 —3)2+(2 — 5)2+(3 — 7)2 =5.385
Manhattan: d(x,x,) =[1—-3|+ |2 -5+ |3 —-7| =11

Minkowski (p=3):

d(xy, %) =([1=33+ 12 =53+ |3 - 7|3) /3= 4.30886
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Distance Measures

O

Camberra

Chebychev

Quadratic

Mahalanobis

Correlation

Chi-Sqaured

Kendall’s Rank Correlation

And so forth
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Distance Measure - Problems

Feature value ranges may distort results

Example

Feature 1: [0,2]
Feature 2: [-2,2]

Changes in feature 2, in the distance functions, has greater
Impact

O
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Distance Measures - Scaling

Scale each feature to a range
0,1}
:_111]

Possible Issue
Say feature range is [0,2]
99% of the data >= 1.5

Outliers have large impact on distance

Normal values have almost none
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Distance Measures - Normalize

Modify each feature such that

Mean(m,) =0, Standard Deviation (oy) = 1

2 2 2
.  xif-my _J|x1f—mf| +|xzp—mp| o+ |xg fmmp
Yif = oy y Of = N

Where

Yir is the new feature value

N is the number of data points

- Z-score, use absolute deviation instead of standard deviation
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Distance Measures — Binary Data

- How to compare binary variables?

Can we use Euclidean, Manhattan and Minkowski
functions

- Are all symmetric measures same?

O
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Distance Measures — Binary Data

- Symmetric binary variables:

d(i,j) = —

q+r+s+t

+S

i\j 1 0 sum

1 q r q+r

0 S t s+t
sum g+s r+t P

- Asymmetric binary variables:

O

d(i,j) =

r+s
q+r+s

One state is more important than the other
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Dissimilarity — Binary Variables

O

Name |Gender |Fever | Cough |Test-1 | Test-2 | Test-3 | Test-4
Jack |M Y N P N N N
Mary |F Y N P N P N
Jim |M Y P N N N N

Gender is a symmetric attribute

All other attributes are asymmetric

SetY,P=1and N =0

O+1

2+0+1 =0.33

D(Jack, Mary) =
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Dissimilarity — Categorical

d(i,j) = ==

- Where

p = number of variables

m = number of matches
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Dissimilarity — Categorical

- Example

Student Test -1 Test -2 Test -3
(categorical) (ordinal) (ratio)
1 A Excellent 445
2 B Fair 22
3 C Good 164
4 A Excellent 1,210

. d(2,1) = 1T‘°= 1

ot |

. d(1,4) = — =0

O
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Dissimilarity - Ordinal

- |dentify the rank of variables

- Treat variables like interval scaled variables

Replace x; by their rank

Map the range of each variable onto [0,1] by replacing it" object in the ft
variable by
rif -1
Zif =
My —1

- Compute the dissimilarity using methods for interval scaled variables
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Dissimilarity - Ordinal

O

Student Test -1 Test -2 Test -3
Exa m p I e (categorical) (ordinal) (ratio)
1 A Excellent 445
2 B Fair 22
Mapplngs 3 C Good 164
4 A Excellent 1,210

Fair =1, Good = 2, Excellent =3

Normalized values

Fair = 0.0, Good = 0.5, Excellent = 1.0

Euclidean: d(2,3) = /(0 — 0.5)2=0.5
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Dissimilarity — Ratio-Scaled

- Cant treat directly as interval-scaled

Scale of ratio-scaled would lead to distortion of results

- Eliminate distortions by applying
logarithmic transformations y;r = log x;r

« Other type of transformations

« Treat results as continuous ordinal data
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Dissimilarity — Ratio-Scaled

O

Student Test -1 Test -2 Test-3 Test-3
E X a m p I e (categorical) (ordinal) (ratio) (logarithmic)
1 A Excellent 445 2.68
2 B Fair 22 1.34
Convert ratio scaled to 3 c Good 164 2.21
4 A Excellent 1,210 3.08

logarithmic values

Euclidean: d(4,3) = /(3.08
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Dissimilarity — Mixed distance

All the above examples assume all features are all the same
type

This scenario is rarely true

Need a distance function that handles all kinds of data

Nominal, symmetric binary, asymmetric binary, numeric,
ordinal

O

The Center for Advanced Computer Studies I

University of Louisiana at Lafayette I,O_L'l_s’ll\.\f.-\



Dissimilarity — Mixed distance

Use a weighted formula to combine their effects

3 dNd)
(i, j)=~L

Where 2P _0L)
for feature f is
d¢) 0
ij

If either x;- or X is missing

(x,.f ==X;==0 ) and f is asymmetric binary

Else 1
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Dissimilarity — Mixed distance

- fis numeric: use normalized distance

- fis ordinal:

+compute rank ri

Treat the feature as interval-scaled value

g XX
L] =

max’ - min’

O
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Dissimilarity — Mixed distance

- d(2,1) =

O

Example

Student Test -1 Test -2 Test-3 Test-3
(categorical) (ordinal) (ratio) (logarithmic)
1 A Excellent 445 2.68
2 B Fair 22 1.34
3 C Good 164 2.21
4 A Excellent 1,210 3.08

|0—1]

|1.34 —2.68|

1(1)+1(

1—-0 )+1( 3.08 —1.34

)

3
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Questions?

O

Email: satya@louisiana.edu
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