Types of Data How to calculate distance?

Satya Katragadda January 25, 2016

Books

- Data Mining, Concepts and Techniques. Chapter 2, Sections 1,2,4. Types of Data in Cluster Analysis
- Advances in Instance-Based Learning Algorithms, Dissertation by D. Randall Wilson, August 1997. Chapters 4 and 5.
- Prototype Styles of Generalization. Thesis by D. Randall Wilson, August 1994, Chapters 3.

What is Data?

- Collection of data objects/instances and their attributes/features.
- Object is known as a record, point, case, sample, instance, or entity
- An attribute is a property or characteristic of an object
 - Attribute is known as variable, field, characteristic, or feature.
 - Attribute is composed of a data type and has a range of values
 - Examples: temperature, price of an item etc.
- In context of database, rows -> data objects; columns -> attributes.

Types of Data

- Nominal
 - ID's, colors etc.
- Binary
 - Gender
- Ordinal
 - grades, rankings
- Numeric: quantitative
 - Interval-scaled
 - calendar dates, body temperatures
 - Ratio-scaled
 - length, time

Properties of Attribute Values

- Type of an attribute depends on which of the following properties it posses
 - Distinctness: = ≠
 - Order: < >
 - Addition: + -
 - Multiplication: * /
 - Nominal: distinctness
 - Ordinal: distinctness & order
 - Interval-scaled: distinctness, order & addition
 - Ratio- scaled: All 4 attributes

Attribute Types

- Nominal: categories, states or "names of things"
 - Marital status = {single, married, divorced}
 - Occupation, zip codes etc.
- Binary
 - Nominal attribute with only 2 states (0 and 1)
 - Symmetric binary: both outcomes are equally important, e.g., gender
 - Asymmetric binary: All outcomes are not equally important
 - Medical test (positive vs. negative), assign 1 to important outcome

Attribute Types

- Ordinal
 - Values have a meaningful order (ranking) but magnitude between successive values is not known.
 - Size = {small, medium, large}
 - grades, rankings

Numeric Attribute Types

- Quantity (integer or real-m values)
- Interval
 - Measured on scale of equal-sized units
 - Values have order, temperature in centigrade
 - No true zero-point
 - Ratio

٠

- Inherent zero-point
- Values are presented in a order of magnitude (4 lb. is twice as heavy as 2lb.)
- e.g., temperature in kelvin, length

Types of Attributes - Summary

	Nominal	Ordinal	Interval	Ratio
Frequency distribution/ counts	YES	YES	YES	YES
Mode/median	NO	YES	YES	YES
Add, Subtract, mean, standard deviation and mean	NO	NO	YES	YES
Ratio/coefficient of variation Has "true zero"	NO	NO	NO	YES

Discrete vs. Continuous Attributes

- Discrete Attribute
 - Has finite set of values, e.g., zip codes, set of words in a corpus
 - Can be represented as a integer
 - Binary attributes as a special case of discrete attributes
- Continuous Attributes
 - Has real numbers as attributes, e.g., temperature, height, weight
 - Practically, real values can only be measured and represented using finite number of digits

Comparing Instances

- How does one compare instances?
 - Clustering
 - Classification
 - Instance based classifiers
 - Artificial neural networks
 - Support vector machines
- Distance Functions

Distance Measures

- Many different distance measures
 - Euclidean
 - Manhattan
 - Minkowski
- Assume all features in data point are interval- scaled

Distance Measures - Euclidean

- Also called L₂ norm
- Assumes a straight-line from two points

•
$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{in} - x_{jn})^2}$$

- Where
 - i, j are two different instances
 - N is the number of interval-features
 - X_{iz} is the value at zth feature value for i

Distance Measures - Manhattan

- Also called L₁ norm
- Non-Linear

•
$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{in} - x_{jn}|$$

- Where
 - i, j are two different instances
 - N is the number of interval-features
 - X_{iz} is the value at zth feature value for i

Distance Measures - Minkowski

- Generalized distance measure
- Also called L₁ norm

•
$$d(i,j) = (|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{in} - x_{jn}|^p)^{1/p}$$

- Where P is a positive integer
- Euclidean and Manhattan are special cases where p=1,2

Distance Measures - Minkowski

- Not all features are equal
 - Some are relevant
 - Some are highly influential

•
$$d(i,j) = (w_1|x_{i1} - x_{j1}|^p + w_2|x_{i2} - x_{j2}|^p + \dots + w_n|x_{in} - x_{jn}|^p)^{1/p}$$

- Where, W_z is the 'weight'
 - $W_z > 0$

Distance Measures - Example

• $x_1 = (1,2,3), x_2 = (3,5,7)$

• Euclidean:
$$d(x_1, x_2) = \sqrt{(1-3)^2 + (2-5)^2 + (3-7)^2} = 5.385$$

- Manhattan: $d(x_1, x_2) = |1 3| + |2 5| + |3 7| = 11$
- Minkowski (p=3):

$$d(x_1, x_2) = (|1 - 3|^3 + |2 - 5|^3 + |3 - 7|^3)^{1/3} = 4.30886$$

Distance Measures

- Camberra
- Chebychev
- Quadratic
- Mahalanobis
- Correlation
- Chi-Sqaured
- Kendall's Rank Correlation
- And so forth

Distance Measure - Problems

- Feature value ranges may distort results
- Example
 - Feature 1: [0,2]
 - Feature 2: [-2,2]
- Changes in feature 2, in the distance functions, has greater impact

Distance Measures - Scaling

- Scale each feature to a range
 - [0,1]
 - [-1,1]
- Possible Issue
 - Say feature range is [0,2]
 - 99% of the data >= 1.5
 - Outliers have large impact on distance
 - Normal values have almost none

Distance Measures - Normalize

- Modify each feature such that
 - Mean(m_f) =0, Standard Deviation (σ_f) = 1

•
$$y_{if} = \frac{x_{if} - m_f}{\sigma_f}$$
, $\sigma_f = \frac{\sqrt{|x_{1f} - m_f|^2 + |x_{2f} - m_f|^2 + \dots + |x_{1f} - m_f|^2}}{N}$

- Where
 - y_{if} is the new feature value
 - N is the number of data points
- Z-score, use absolute deviation instead of standard deviation

Distance Measures – Binary Data

- How to compare binary variables?
 - Can we use Euclidean, Manhattan and Minkowski functions
 - Are all symmetric measures same?

Distance Measures – Binary Data

• Symmetric binary variables:

i\j	1	0	sum
1	q	r	q+r
0	S	t	s+t
sum	q+s	r+t	р

Both states are equally valuble and carry same weight

•
$$d(i,j) = \frac{r+s}{q+r+s+t}$$

- Asymmetric binary variables:
 - One state is more important than the other

•
$$d(i,j) = \frac{r+s}{q+r+s}$$

Dissimilarity – Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Μ	Y	Ν	Р	Ν	Ν	Ν
Mary	F	Y	Ν	Р	Ν	Р	Ν
Jim	Μ	Y	Р	Ν	Ν	Ν	Ν

- Gender is a symmetric attribute
- All other attributes are asymmetric
- Set Y , P = 1 and N = 0
- D(Jack, Mary) = $\frac{0+1}{2+0+1} = 0.33$

The Center for Advanced Computer Studies University of Louisiana at Lafayette

Dissimilarity – Categorical

- $d(i,j) = \frac{p-m}{p}$
- Where
 - p = number of variables
 - m = number of matches

Dissimilarity – Categorical

• Example

Student	Test -1 (categorical)	Test -2 (ordinal)	Test – 3 (ratio)
1	Α	Excellent	445
2	В	Fair	22
3	С	Good	164
4	Α	Excellent	1,210

•
$$d(2,1) = \frac{1-0}{1} = 1$$

• $d(1,4) = \frac{1-1}{1} = 0$

Dissimilarity - Ordinal

- Identify the rank of variables
- Treat variables like interval scaled variables
 - Replace *x_{if}* by their rank
 - Map the range of each variable onto [0,1] by replacing *ith* object in the *fth* variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

Compute the dissimilarity using methods for interval scaled variables

Dissimilarity - Ordinal

- Example
- Mappings

Student	Test -1 (categorical)	Test -2 (ordinal)	Test – 3 (ratio)
1	Α	Excellent	445
2	В	Fair	22
3	С	Good	164
4	Α	Excellent	1,210

- Fair = 1, Good = 2, Excellent =3
- Normalized values
 - Fair = 0.0, Good = 0.5, Excellent = 1.0

• Euclidean:
$$d(2,3) = \sqrt{(0-0.5)^2} = 0.5$$

Dissimilarity – Ratio-Scaled

- Cant treat directly as interval-scaled
 - Scale of ratio-scaled would lead to distortion of results
- Eliminate distortions by applying
 - logarithmic transformations $y_{if} = \log x_{if}$
 - Other type of transformations
- Treat results as continuous ordinal data

Dissimilarity – Ratio-Scaled

- Example
- Convert ratio scaled to

Student	Test -1 (categorical)	Test -2 (ordinal)	Test – 3 (ratio)	Test – 3 (logarithmic)
1	Α	Excellent	445	2.68
2	В	Fair	22	1.34
3	С	Good	164	2.21
4	Α	Excellent	1,210	3.08

logarithmic values

• Euclidean: $d(4,3) = \sqrt{(3.08 - 2.21)^2} = 0.87$

- All the above examples assume all features are all the same type
- This scenario is rarely true
- Need a distance function that handles all kinds of data
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal

Use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- Where
 - for feature f is
 - $\delta_{ij}^{(f)}$ 0
 - If either x_{if} or x_{jf} is missing
 - $(x_{if} == x_{jf} == 0)$ and f is asymmetric binary
 - Else 1

- *f* is numeric: use normalized distance
- *f* is ordinal:
 - compute rank *r*_{if}
 - Treat the feature as interval-scaled value

$$d_{i,j}^{f} = \frac{|\mathbf{x}_{i}^{f} - \mathbf{x}_{j}^{f}|}{max^{f} - min^{f}}$$

• Example

Student	Test -1 (categorical)	Test -2 (ordinal)	Test – 3 (ratio)	Test – 3 (logarithmic)
1	Α	Excellent	445	2.68
2	В	Fair	22	1.34
3	С	Good	164	2.21
4	Α	Excellent	1,210	3.08

•
$$d(2,1) = \frac{1(1) + 1\left(\frac{|0-1|}{1-0}\right) + 1\left(\frac{|1.34 - 2.68|}{3.08 - 1.34}\right)}{3} = 0.92$$

• Email: satya@louisiana.edu

