
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 9, SEPTEMEBER 1985

RUBRIC: A System for Rule-Based Information Retrieval
BRIAN P. MC CUNE, MEMBER, IEEE, RICHARD M. TONG, MEMBER, IEEE, JEFFREY S. DEAN, MEMBER, IEEE, AND

DANIEL G. SHAPIRO

Abstract-A research prototype software system for conceptual infor-
mation retrieval has been developed. The goal of the system, ca)led
RUBRIC, is to provide more automated and relevant access to unfor-
matted textual databases. The approach is to use production rules from
artificial intelligence to define a hierarchy of retrieval subtopics, with
fuzzy context expressions and specific word phrases at the bottom.
RUBRIC allows the definition of detailed queries starting at a concep-
tual level, partial matching of a query and a document, selection ofonly
the highest ranked documents for presentation to the user, and detailed
explanation of how and why a particular document was selected. Initial
experiments indicate that a RUBRIC rule set better matches human
retrieval judgment than a standard Boolean keyword expression, given
equal amounts of effort in defining each. The techniques presented
may be useful in stand-alone retrieval systems, front-ends to existing
information retrieval systems, or real-time document filtering and
routing
Index Terms-Artificial intelligence, evidential reasoning, expert sys-

tems, information retrieval.

I. THE INFORMATION RETRIEVAL PROBLEM
THE three most common approaches to the textual infor-

mation retrieval (see the vertices of the triangle in Fig. 1),
when used in isolation, suffer from problems of precision and
recall, understandability, and scope of applicability. For ex-
ample, Boolean keyword retrieval systems such as the commer-
cial DIALOG system operate at a lexical level, and hence ignore
much of the available information that is syntactic, semantic,
pragmatic (subject-matter specific), or contextual. The under-
lying reasoning behind the responses of statistical retrieval sys-
tems [2] is difficult to explain to a user in an understandable
and intuitive way. Systems that rely on a semantic under-
standing of the natural language that is present in documents
[3] must severely restrict the vocabulary and document styles
allowed (e.g., to partially formatted, stereotypic messages).
In addition to being used by specialists, in the near future

large on-line document repositories will be made available via
computer networks to relatively naive computer users. For
both classes of users, it is important that future retrieval sys-
tems possess the following attributes.
* Detailed queries should be posed at the user's own concep-

tual level, using his or her vocabulary of concepts and without
requiring complex programming.

* Partial matching of queries and documents should be
provided, in order to mirror the imprecision ofhuman interests.

* The number of documents retrieved should be dependent
upon the needs of the user (e.g., uses for the documents, time
constraints on reading them).

Manuscript received November 7, 1983.
The authors are with Advanced Information & Decision Systems,

Mountain View, CA 94040.

AISTICAL

CLUSTERING FREQUENCY
TECHNIQUES ANALYSIS

APPROXIMATE
STRING

MATCHING

I--'

KEYWORD
APPROACH)

BOOLEAN EXPRESSIONS
REGULAR EXPRESSIONS

RULE-BASED SIMPLE STEM EXTRACTION
MATCHING

THESAURUS
CONCEPTUAL
REPRESENTATION
SIMPLE INFERENCE

HYPOTHESIS NATURAL LANGUAGE
FORMATION PARSING

GENERAL INFERENCE

NATURAL LANGUAGE
UNDERSTANDING

SEMANTIC
APPROACH

Fig. 1. The information retrieval triangle.

* A logical, understandable, and intuitive explanation of
why each document was retrieved should be available.

* The user should be able to easily experiment with and revise
the conceptual queries, in order to handle changing interests or
disagreement with previous system performance.

* Conceptual queries should be easily stored for periodic use
by their author and for sharing with other users.

II. A KNOWLEDGE-BASED APPROACH
In order to address the issues raised above, we have created a

prototype knowledge-based full-text information retrieval sys-
tem called RUBRIC (for RUle-Based Retrieval of Information
by Computer). RUBRIC integrates some of the best charac-
teristics of all three basic approaches to information- retrieval
(Fig. 1) within the framework of a standard artificial intelli-
gence technique. Queries are represented as a set of logical
production rules that enable the user to define retrieval criteria
using much better semantic and heuristic controls than can be
found in current retrieval systems.
The rules define a hierarchy of retrieval topics (or concepts)

and subtopics. By naming a single topic, the user automatically
invokes a goal-oriented search of the tree defined by all of the
subtopics that are used to define that topic. The lowest level
subtopics are defined in terms of pattern expressions in a text
reference language, which allows keywords, positional contexts,
and simple syntactic and semantic notions. Each rule may have
a user-provided heuristic weight. This weight defines how
strongly the user believes that the rule's pattern indicates the
presence of the rule's subtopic. Technical issues that arise when
information retrieval is viewed as a problem in evidentiary rea-
soning are discussed in [6].

0098-5589/85/0900-0939$01 .00 C 1985 IEEE

939

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-il, NO. 9, SEPTEMBER 1985

To perform a retrieval RUBRIC uses the set of rules for a

topic to create a heuristic AND /OR goal tree that defines at its
leaves what patterns of words should be present in documents,
and in what combinations.
Document recall by RUBRIC is enhanced by the use of

higher level notions than simple Boolean combinations of key-
words. Retrieval precision is improved by the use of variable
weights on each rule to define the certainty of match. These
weights make it possible to present to the user only partial
matches above some threshold. By tracing through rule invoca-
tion chains, an explanation facility allows the user to see ex-

actly why a document was retrieved and why it was assigned
its overall certainty or importance weight. This promotes
experimentation and appropriate modification of the rule base.
The retrieval vocabulary to be used is unrestricted, being left
up to whoever creates the rules. Rule sets may be stored in
public or private rule "libraries," so that useful subtopics may
be shared among users, thus simplifying the task of defining
new topics.
A rule-based query can be more complex than the keyword

expression that might be used with a Boolean retrieval system.
Therefore, we expect rule-based retrieval to be used initially
for applications in which the same query is made repetitively
over some period of time. In such situations people who are

trained RUBRIC users but not programmers should be willing
to expend more effort to develop a detailed rule-based defini-
tion of the query topic.
Although RUBRIC is a knowledge-based system, it really is

not an expert system in the usual sense. In an expert system
the system's knowledge base is an attempt to define what is
known about some field of inquiry (e.g., infectious diseases,
geology) in a useful form analogous to that used by human
experts. Although the knowledge is never complete and per-

haps not agreed upon by all experts, there exists some under-
lying theory or physical model that all concerned believe. In
the case of information retrieval, as in other areas of preference
such as politics or matters of style, there is no "right" answer.

Hence, RUBRIC is really a system for capturing and evaluating
human preferences. Preference systems are likely to play a

much larger role in the future, as artificial intelligence tackles
the problem of supporting complex, multiattribute decision
making.

III. EXPRESSING QUERY TOPICS AS PRODUCTION RULES

RUBRIC gains its power from the knowledge base of retrieval
rules at its disposal. An example set of rules that defmes the
topic of the 1982 World Series of Baseball is given in Fig. 2.
These 15 rules defme a main topic, called World-Series, and a

number of subtopics. The subtopics are used to define the
main topic, but may also be used as query topics on their own
or as subtopics of other main topics. This rule set is by no

means complete; however, extensions in the form of additional
rules are easy to make.

Each rule defimes a logical implication; that is, the existence
of the pattern on the left-hand side ofthe arrow ("=>") implies
the existence of the topic named on the righthand side. Thus,
a rule defimes the topic or concept named in its right-hand side.
There may be multiple rules about the same topic, and RUBRIC

team event => World_Series
St._Louis_Cardinals Milwaukee_Brewers => team

"Cardinals" => St. Louis Cardinals (0.7)
Cardinals_full_name => St._Louis_Cardinals (0.9)

saint & "Louis" & "Cardinals"
=> Cardinals_full_name

"St." => saint (0.9)
"Saint" => saint

"Brewers" => Milwaukee_ Brewers (0.5)
"Milwaukee Brewers" => Milwaukee_Brewers (0.9)
"World Series" => event
baseball_championship => event (0.9)

baseball & championship => baseball-championship
"ball" => baseball (0.5)
"baseball" => baseball
"championship" => championship (0.7)

Fig. 2. Rule base for topic of world_series.

will use each as an equally valid alternate defmition (i.e., there
is an implicit OR). The left-hand side of a rule is its body,
which defines a pattern to be matched. This can be the topic
named in the right-hand side of another rule, a text reference
expression (defined below), or a compound expression that
defines the logical AND (denoted by "&") or OR ("I") of two
or more other rule topics of text reference expressions. Ex-
plicit text to be matched without further interpretation is sur-
rounded by quotation marks; names of topics and text reference
language constructs are not. The last element in a rule is its
weight, which is a real number in the interval [0, 1]. It repre-
sents the rule definer's confidence that the existence in a docu-
ment of the pattern defined by the rule's left-hand side implies
that the document is about the topic named in the rule's right-
hand side. If a weight is omitted, it is assumed to be 1.0 (i.e.,
absolute confidence). Note that a weight is a number made up
by a human user, based upon his or her experience and insight;
a weight is not a statistical quantity.
A text reference expression may be a single keyword or

phrase, or a lexical context within which two keywords or
phrases must be found (e.g., word adjacency, same sentence,
same paragraph). So, for example, one can specify that two
patterns are of interest only if they occur in the same sentence.
Fuzzy (partial) matching versions of these contexts are also
allowed. RUBRIC's fuzzy pattern matcher returns a value in
[0, 1] that is proportional to the degree that the phrases are
in the desired context, i.e., inversely proportional to the logical
distance between the two objects in the document. For ex-
ample, when matching a fuzzy same-sentence context, two
phrases in the same sentence might receive a weight of 1.0,
within adjacent sentences 0.8, etc.
Rules often define alternate terms, phrases, and spellings for

the same concept. Thus, rules can also provide a simple hier-
archical thesaurus, with variable weights defining the degree of
certainty with which a particular variant is to match. For
example, in English "St." is used as the abbreviation for both
"Saint" and "Street," and thus "St." is weighted less that the
keyword "Saint" in Fig. 2. Rules can also aid multilingual
information retrieval. For example, if the database contains
text in multiple languages, then the lowest level(s) of rules

940

MC CUNE et al.: RUBRIC: SYSTEM FOR INFORMATION RETRIEVAL

World-Series (.63)

team (0) event (.

St._Louis_Cardinals (0) "MilwaukeeJBrewers" (0) "World Series" (0)

.7 9 .5

"Cardinals" (0) Cardinals_ "Brewers" (0) "Milwaukee Brewers" (0)
full-name (0)

"ball" (1.0) "t
saint (0) "Louis" (0) "Cardinals" (0)

.*9a

"St." (0) "Saint" (0)

L
LEGEND

Number Next To Arc: A Priori Inference Weight
Number in Parenthese Following Node Name:
Weight of the Node as Computed for Example
Document Containing Keywords "Ball",
"Baseball", and "Championship" I

:.83)

basebalLehampionship (.7)

baseball (1.0) championship (.7)

.7

baseball" (1.0) "championship" (1.0)

Fig. 3. Rule evaluation tree for world_series topic.

might define synonyms in each language of interest. The more
conceptual language-independent rules higher in the hierarchy
would remain unchanged.

It has been found useful to provide a new type of rule in
RUBRIC, called a modifier rule, which enables the user to in-
corporate auxiliary (or contextual) evidence into the query.
Auxiliary evidence is evidence that by itself neither confirms
nor disconfirms a hypothesis, but which may increase (or de-
crease) our belief if seen in conjunction with some primary
evidence. The form of such a rule is

ifA, then C to degree wI;
but if also B, then C to degree w2

where if w1 is greater than w2 then B is disconfirming auxiliary
evidence, and if w, is less than w2 then B is confirming auxil-
iary evidence. This has the effect of interpolating between w1
and w2, depending upon the certainty computed for the auxil-
iary clause B. Thus we might have a rule of the kind:

if (the story contains the literal string "bomb"),
then (it is about an explosive device)

to degree 0.6;
but if also (it mentions a boxing match),
then (reduce the strength of the conclusion)

to degree 0.3

Here we see the concept of disconfirming evidence in opera-
tion; notice that by itself being about the concept boxingmatch
is not evidence that can be used to support or deny the con-
clusion we are trying to establish.
Knowledge bases of rules are expected to evolve over time.

Initially the set of rules provided in a knowledge base will cap-
ture a small portion of the kinds of knowledge required. New
rules are easily added to RUBRIC, currently by means of a

standard display-oriented text editor. Existing rules may be
modified for experimentation to provide feedback for honing
their logical structure, keywords, and weights.

IV. QUERY PROCESSING
A set of rules defines a logical hierarchy of retrieval topics

and subtopics (Fig. 3). A specific retrieval request is carried
out by a goal-oriented inference process similar to that used in
the MYCIN medical diagnosis system [41. This process creates
and evaluates an AND/OR tree of logical retrieval patterns. The
root node of this tree represents a semantic topic or concept
that the user wants retrieved; nodes farther down in the tree
represent intermediate topics with which the root topic is
defined; and nodes at the leaves of the tree represent patterns
of words that are to be searched for in the database. Each arc
in the tree is weighted such that the intermediate topics and
keyword expressions contribute, according to their weight, to
the overall confidence that the root topic has also been found.
(Unlabeled arcs in Fig. 3 have an implicit weight of 1.O.) Arcs
representing the conjuncts of an AND expression are linked
together near their common base in Fig. 3.
RUBRIC supports a number of calculi for interpreting the

rule weights. Weights are treated as certainty or partial truth
values, not as probabilities. Each calculus defines how to com-
bine the uncertainties during such logical deductions as AND,
OR, and implication. The default method is to use the func-
tions minimum, maximum, and product to propagate the
weights across AND and OR arcs and implication nodes, respec-
tively [4].

Referring to Figs. 2 and 3, we now describe how RUBRIC
processes a query. (Annotated traces of the system's operation
are found in [1].) When the user types in the conceptual query
World_Series. RUBRIC searches its rule base for all rules that

941

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1 1, NO. 9, SEPTEMBER 1985

Support for
Phrases Present in Document World_Series Topic
"World Series" 1.00
"Saint", "Louis", "Cardinals" 0.90

"Milwaukee Brewers" 0.90
"St.", "Louis", Cardinals" 0.81
"Cardinals" 0.70

"baseball", "championship" 0.63

"Brewers" 0.50
"ball", "championship" 0.45
none of the above 0.00

Fig. 4. Possible weights for world-series topic.

provide definitions for this topic (i.e., that have World_Series
on their right-hand sides). There is only one such rule in Fig. 2,
so RUBRIC expands that rule according to its lefthand side.
The result is that the World_Series, team, and event nodes of
Fig. 3 are created, as well as the two arcs between them. Since
tearm and event are themselves the names of topics, rather than
textual patterns, RUBRIC searches its rule base for their defini-
tions. This process continues recursively until all leaf nodes of
the tree contain textual patterns.
At this point each document in the database is matched

against all of the phrases in the leaves of the tree. For a given
document, if a phrase is found somewhere in the document,
the corresponding node in the tree is assigned a value of 1.0,
otherwise 0. Then the weights at the leaves are combined and
propagated up through the tree to determine the overall weight
to be assigned to this document.
For example, if a document contained the words "ball,"

"baseball," and "championship," and no other words referred
to in the example rule base, then the nodes of the tree would
be assigned the weights shown in parentheses in Fig. 3. The
"ball," "baseball," and "championship" leaf nodes all receive a

weight of 1.0, and all other leaves receive a weight of 0. The
baseball node would then be assigned the value 1.0 because
that is the maximum of (1.0 multipled by 0.5) and (1.0 times
1.0). Similarly, the championship node receives the value 0.7.
Then, because it is an AND node, the baseball_schampionship
node gets the value 0.7, which is 1.0 times the minimum of
1.0 and 0.7. The event node then gets the value 0.63, which
is the maximum of (0 times 1.0) and (0.7 times 0.9). Since
there are no keywords in the document that support the team
subtopic, the overall weight of the match of the World_Series
topic on this document is 0.63 (1.0 times the maximum of 0
and 0.63).
Other combinations of keywords and phrases in a document

can satisfy the concept of World_Series to varying degrees.
Fig. 4 shows the other weights possible for the World_Series
topic, depending upon the dominant phrases that occur in the
document.

V. USER INTERFACE
A user need only see the highest weighted documents. After

the database has been searched, each document that was con-

sidered has an associated weight that represents the system's
confidence that the document is relevant to the topic requested

by the user. RUBRIC sorts these documents into descending
order based upon their weights, and groups the documents by
applying statistical clustering techniques to the weights. The
user is then presented with those documents that lie in a cluster
containing at least one document with a weight above a thresh-
old provided by the user (e.g., 0.8 or above). Clustering pre-
vents an arbitrary threshold from splitting closely ranked docu-
ments. The threshold may be varied depending upon how
much time the user has available to read docutnents, how
important it is not to miss any potentially relevant ones, etc.
RUBRIC is able to explain why a particular document was

retrieved. This capability is very important for instilling confi-
dence in users and helping them get a good enough feel for the
operations of the system that they can successfully write and
use their own retrieval rules. RUBRIC can display each rule
that results in a nonzero weight being propagated, as well as
the value of that weight. RUBRIC can also show each attempt
to match a word or phrase to the document, along withwhether
or not it matched.

VI. EXPERIMENTAL RESULTS
We have done preliminary experiments with RUBRIC to

examine the improvements that can be achieved over a con-
ventional Boolean keyword approach. As an experimental
database for testing the retrieval properties of RUBRIC, we
have used a selection of thirty stories taken from the Reuters
News Service. Our basic experimental procedure is to rate the
stories in the database by inspection (i.e., define a subjective
ground truth), construct a rule-based representation of a typi-
cal query, apply the query to the database, and then compare
the rating produced by RUBRIC with the a priori rating.
We concentrate on two basic measures of performance. Both

of these are based on the idea of using a selection threshold to
partition the ordered stories so that those above it are "rele-
vant" (either fully or marginally) and those below it are "not
relevant." In the first we lower the threshold until we include
all those deemed a priori relevant, and then count the number
of unwanted stories that are also selected (denoted NF). In
the second we raise the threshold until we exclude all irrelevant
stories, and then count the number of relevant ones that are
not selected (denoted NM). The first definition therefore gives
us an insight into the system's ability to reject unwanted stories
(precision), whereas second gives us insight into the system's
ability to select relevant stories (recall).
We selected as a retrieval concept "violent acts of terrorism,"

and then constructed an appropriate rule-based query. This is
summarized in Fig. 5, where we make extensive use ofmodifier
rules. An auxiliary clause is shown linked to its conclusion by
a directed arc labeled "Modifier". Application of this query
to the story database results in the story profile shown in Fig.
6. (Notice that for presentation purposes the stories are or-
dered such that those determined to be a priori relevant are to
the left in Figure 6.) The performance scores for this experi-
ment are
Precision: NF = 1 when we ensure thatNM = 0, and
Recall: NM = 5 when we ensure that NF = 0.

This is almost perfect performance, being marred only by the
selection of story 25, which, although it contains many of the

942

MC CUNE et al.: RUBRIC: SYSTEM FOR INFORMATION RETRIEVAL

Modifier 1.0
TERRORISM REASON

.8 1.0

REVOLUTION SENTENCE.8 (OPPOSITION,

GOVERNMENT)

Modifier 1.0
TERRORIST-EVENT ASSASSINATION

.5

SENTENCE (KILLING, POLITICIAN)

Modifier 1.0
ACTION ACTOR

1.0 1.0

.6
SPECIFIC-ACTOR GENERAL-ACTO

Modifier 1.0
VIOLENT-EVENT VIOLENT-EFFECT

.5. r

.8 "DEAD" "DEATH" "DEBRIS"

VIOLENT-ACT

KILLING BOMBING KIDNAPPING ENCOUNTER TAKEOVER

Fig. 5. Rule base structure for concept of violent acts of terrorism.

STORY RATING

10

. 9
8

7-

6

5 -

4

3

2

1 -

0*

3 8 9 192122232629 4 5 7 27 1 2 6 10 11121314151617182024252830

STORY NUMBER
Fig. 6. Story profile from RUBRIC experiment.

elements of a terrorist article, is actually a description of an
unsuccessful bomb disposal attempt.
To compare RUBRIC against a more conventional approach,

we constructed two Boolean queries by using the rule-based
paradigm and setting all rule weights to 1.0 (thus incidentally
showing that our method subsumes Boolean retrieval as a
special case). One of these queries is shown in Fig. 7 as an
AND/OR tree of subconcepts. The only difference between
the two Boolean queries is that in the first we insist on the
conjunction of ACTOR and TERRORIST-EVENT (as shown),
whereas in the second we require the disjunction of these con-

cepts. The conjunctive form of the Boolean query misses five
relevant stories and selects one uniniportant story, whereas the
disjunctive form selects all the relevant stories, but at the cost
of also selecting seven of the irrelevant ones.
While these results represent only a preliminary test, we be-

lieve that they indicate that the RUBRIC approach allows the
user to be more flexible in the specification of his or her query,
thereby increasing both precision and recall. A traditional
Boolean query tends either to over- or under-constrain the
search procedure, giving poor recall or poor precision. We feel
that, given equal amounts of effort, RUBRIC allows better

943

)R

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 9, SEPTEMBER 1985

TERRORISM

TERRORIST-EVENT ACTOR

VIOLENT-EVENT ASSASSINATION SPECIFIC-ACTOR GENERAL-ACTOR

SLAYING TAKEOVER SLAYING POLITICIAN "BASQUE" PLO "IRA" "REVOLUTIONARY" "SNIPER"
BOMBING "GUERILLA"

DEVICE EXPLOSION
Fig. 7. AND/OR concept tree for Boolean query.

models of human retrieval judgment than can be achieved with
traditional Boolean mechanisms.
We have also explored the effects of using different calculi

for propagating the uncertainty values within the system [5].
Among these calculi are well-known classes such as those that
use "max" and "min" as disjunct and conjunct operators, and
those (so-called "Bayesian-like") that use "sum" and "prod-
uct". Our initial conclusion is that the calculus used is not
the major determinant of performance, but that it does inter-
act with how rules are defined.

VII. FUTURE WORK
Much additional research and system development are needed

to make RUBRIC usable. We are currently providing a better
user interface and conducting more complete experiments.
The interface for end users will include more focused interac-
tive explanation, analysis of results for sensitivity to specific
rules and weights, display of graphs such as Fig. 6, and rule
editing. Experimentation will consist of defining, in conjunc-
tion with users, larger rule sets for a realistic retrieval domain
and then using these rules to retrieve documents from a realistic
database.
Other areas of possible future work include making rule

evaluation and textual pattern matching more efficient, possibly
through the use of heuristics to limit rule evaluation; exploring
additional ways of representing and propagating uncertainty in
both numeric and symbolic representations; ablative, testing to
measure how useful each system feature is; extending the text
reference language to allow specification of the syntactic role
that a word plays in a sentence (e.g., "ship" used as a noun
versus as a verb); constructing a more, general thesaurus that
has a network structure rather than a hierarchical oie like rules;
and allowing retrieval from multiple remote databases.

VIII. POTENTIAL APPLICATIONS
Application systems based on RUBRIC may be useful for

information routing and change detection, in addition to infor-
mation retrieval. For information retrieval RUBRIC could be
extended to work on formatted documents such as messages
or bibliographic entries, to work as a front end to existing
databases and information retrieval systems, and to segment

larger documents by subtopics. RUBR:IC could be used to
process messages in real-time, filtering the important ones and
routing them to the appropriate recipient (human or another
program). With RUBRIC, analyses of documents over time
could detect statistical changes at a conceptual level rather
than just in the use of individual keywords.

REFERENCES

[1] B. P. McCune, J. S. Dean, R. M. Tong, and D. G. Shapiro, "RUBRIC:
A system for rule-based information retrieval," Advanced Informa-
tion & Decision Systems, Mountain View, CA, Tech. Rep. 1018-1,
Feb.1983.

[2] G. Salton and M. J. McGill, Introduction to Modem Information
RetrievaL New York: McGraw-HilL 1983.

[3] R. C. Schank and G. DeJong, "Purposive understanding," in Ma-
chine Intelligence, vol. 9, J. E. Hayes, D. Michie, and L. l. Mikulich,
Eds. 1979, ch.24, pp. 459-478.

[4] E. Hance Shortliffe, Computer-Based Medical Consultations.
MYCIN. New York: Elsevier, 1976.

[5] R. M. Tong, D. G. Shapiro, J. S. Dean, and B. P. McCune, "A com-
parison of uncertainty calculi in an expert system for iriformation
retrieval," in Proc. Eighth Int. Joint Conf Artificial Intell., A.
Bundy, Ed. Los Altos, CA: William Kaufman, Aug. 1983, voL 1,
pp. 194-197.

[6] R. M. Tong, D. G. Shapiro, B. P. McCune, and J. S. Dean, "A rule-
based approach to information retrieval: Some results and com-
ments,"inProc.Nat.ConfArtificialIntel. LosAltos,CA:Wiliam
Kaufman, Aug. 1983, pp. 411-415.

Brian P. McCune (S'74-M'80) received the B.A.
(Honors) degree in mathematics from Oregon
State University, Corvallis, and the Ph.D. de-
gree in computer science from Starnford Univer-
sity, Stanford, CA.

f l 1liHis professional interests include artificial
intelligence, emphasizing knowledge-based and
expert systems; software systems, especially
enviromnents for software and knowledge engi-
neering; decision support systems; and distrib-
uted computing. He is a cofounder ofAdvanced

Information & Decision Systems, Mountain View, CA, where he is Vice
President and Manager of the User Aids Program. Since 1980, he has

944

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-il, NO. 9, SEPTEMEBER 1985

led research and development of interactive software systems to support
decision makers such as battlefield commanders, managers, planners,
analysts, system designers, and programmers. He is currently supervis-
ing work on expert systems for software engineering, database access,
decision support, and a variety of analysis applications.
Dr. McCune is on the Editorial Advisory Board of Defense Electronics

and the Advisory Board of The Artificial Intelligence Report.

Richard M. Tong (M'80) received the Ph.D. degree from Cambridge
University, Cambridge, England, in 1975.
His main research interests are in intelligent decision support systems,

fuzzy set theory, theories of approximate reasoning, and artificial intel-
ligence. He joined Advanced Information & Decision Systems in 1980
where he is the Department Head for the Decision Systems Department.
He has been conducting a program of research designed to explore the
effects of various forms of uncertainty representation in expert systems,
and is currently leading a team that is performing research for the devel-
opment of an intelligent informnation retrieval system.

(Wi4~ Jeffrey S. Dean (S'77-M'79j received the B.A.ffi _degree from Hampshire College, Amherst, MA,
in 1978, and the M.S. degree in computer sci-

l ence from Stanford University, Stanford, CA,
l1ll - ll in 1979.

He joined Advanced Information & Decision
l h* Systems in 198i, where he has pursued research

in artificial intelligence applied to programming
environments, software engineering, informa-
tion retrieval, documentation, and user inter-
faces.

Mr. Dean is a member of the Association for Computing Machinery,
the American Association for Artificial Intelligence, and Computer
Professionals for Social Responsibility.

* Daniel G. Shapiro received the M.S. degree
from the M.I.T. Artificial Intelligence Lab,
Massachusetts Institute of Technology, Cam-
bridge, in 1981.

_ g Since that time, he has worked for AI&DS on
the topics of intelligent editors, uncertainty
representation, Al applied to information re-
trieval, and Al planning. He is currently direct-
ing research towards a planning system which
will guide the DARPA autonomous land vehicle
through long distances in cross-country terrain.

SPD: A Humanized Documentation Technology
MOTOEI AZUMA, TETSU TABATA, YOSHIHIRO OKI, AND SUSUMU KAMIYA

Abstract-The SPD (Structured Programming Diagram) it a documen-
tation technology used to design well structured programs. With SPD,
designers can easily express functional structure, control structure, and
physical layout of a program on one sheet of paper. Its straightforward
expression appeals to both document writers and readers. SPD concept
and conventions are introduced in this paper. SPD usage is then ex-
plained with a program-design example. Other documentation technol-
ogies used in coordination with SPD are briefly touched upon. Finally,
SPD reputation and evolution in the last ten years are reviewed.

Index Terms-Documentation, software development, Structured
Programming Design.

I. INTRODUCTION
N OBODY is successful in software development without
N sufficient documentation. Documentation provides in-
formation to support the effective design, managemnent, imple-
mentation, and mnaintenance, and to facilitate the interchange
of information. Documentation technology is important in
order to accomplish development smoothly and efficiently,
and to maximize the return on development investment.

Manuscript received November 7, 1983.
The authors are with the NEC Corporation, 7-15 Shiba, Minatoku,

Tokyo 108, Japan.

As a result of software engineering research and development
activities up to now, various useful programming technologies
have been developed, such as structured programming [1] -[3],
stepwise refinement [41, top-down design [5], one page coding
[6], structured design [7], [8], composite design [9], mod-
ular programming method [10], [11], Warnier programming
method [12], M. Jackson programming method [13], etc.
Reflecting these technologies, flowchart usefulness was ques-
tioned [17], and various documentation techniques which
support these programming technologies to be use, have also
been developed, such as Warnier-Orr diagram [12], [14], [15],
Jackson diagram [13], [16], NS chart [18], [19], Chapin
chart [20], HIPO [21], etc. Although these documentation
technologies differ in details, they have a common essential
characteristic, that is, to represent a hierarchy of program func-
tions and basic control constructs in a comprehensive fashion.
This characteristic is the minimum required quality of a
documentation technology for a modern programming method.
In order to improve software productivity, one of the best

ways is to reuse existing programs. Ironically, it is obvious that
the fewer new programs are created, the greater the productiv-
ity gained. However, it is very difficult to manage what and

0098-5589/85/0900-0945$01.00 © 1985 IEEE

945

