Pattern Recognition:
Statistical, Structural
and Neural Approaches
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a significant problem. For example, when d = 10, there are 2'° = 1024 probabilities
to estimate. A simplification is to assume any two components z; and zj in z are
independent. Then

d
P(alw) = IT Plzifw) = H Pl -pi)t (4-43)

from before, where p; = P(z; = llw;) and 1 — p; = P(z; = Olw;). We therefore
need, for each class, only to estimate p;, i = 1,2,...d. With this assumption, there
exists a trade-off. In the general formulation there are 24 probabilities with statistically
dependent z; permitted, whereas the simplified formulation requires estimation of d
probabilities with the constraint that z; must be statistically independent.

TECHNIQUES TO DIRECTLY OBTAIN LINEAR CLASSIFIERS
The Concept of Linear Separability

Viewing the samples of a ¢ = 2 class training set as points in R9, we note that some

configurations of feature vectors are separable by a (possibly non-unique) hyperplane. |
Although this is not true for an arbitrary configuration of samples (this is considered

in the exercises), the computational and conceptual advantages of a linear decision

boundary often motivate us to consider its application, even at the expense of in-

creased classification error rates vis-a-vis using the exact (non-planar) decision sur-

faces.

DEFINITION: Linear Separability
If a hyperplanar decision boundary exists that correctly classifies all the training sam-
ples for a ¢ = 2 class problem, the samples are said to be linearly separable.

Recall (Appendix 6) that this hyperplane, denoted H;;, is defined by parameters
w and wyp in a linear constraint of the form:

9(z) =wTz-wo=0 (4 - 44)
g(z) separates R¢ into positive and negative regions R, and Rn, where
>0 ifz€R,
9(1)=yz7£-wo={0 ifz € Hyj (4 - 45)
<0 ifz€R,
Design of Linear Classifiers

Assume a ¢ = 2 class training set H = {z;} i = 1,2,...n, which may be partitioned
into Hy and H,, where H; consists only of samples Iabeled w;. The goal is to determine
plane Hy, where, foreach z; in H,
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>0 ifz;€H
Lﬂ_{ﬂ.‘ —Wo = { (4 — 46)

<0 ifngHz

This plane is characterized by d + 1 parameters, namely the d elements of w,, (the
normal) and wo. Defining
W2
w= (4 — 47a)
Wo

and converting each Z in H toa (d+ 1) x 1 vector by adding ‘1’ as the (d + 1)st ele-
ment yields the standard homogeéneous coordinate representation (see, for example,
[Riesenfeld 1981], [Schalkoff 1989]) as follows:

Zi
zi= ( ) (4 — 47b)
1

Noting that w7z, is a scalar quantity allows (4-46) to be rewritten as
>0 ifz:€ H,

w= { (4 —48)
<0 ifZ;€ H;

A desirable modification to (4-48) is to replace each homogeneous vector Z in Hp by

its negative. This conversion therefore yields the single constraint:

;Tw>0 i=12...n (4 - 49)
Considering all the ‘converted’ elements of H yields the matrix formulation of (4-49)
5 Aw>0 (4 - 50)
where the n x (d + 1) matrix A consists of the converted vectors from the training set

as:
T
=1

1al s (4 - 51)

Zn
A ‘Batch’ (Pseudoinverse) Solution. Equation 4-50 is a set of n linear inequalities.
Many solution procedures exist, including linear programming. A solution is devel-

oped that is based on converting (4-50) into a linear constraint, by defining a vector
of user-chosen ‘offsets’, b, as

¢
t
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by
b= b b >0 (4 - 52)
ba
Thus, (4-50) becomes
Aw=1% (4-353)

and a solution for the parameters of the separating plane, w, is obtained via forming
the pseudoinverse of A

w=A' (4-54)
The Solution Region in R**+*. Another approach for solving the system of linear in-
equalities given by (4-48) or, equivalently, (4-49) is to view these equations as n con-
straints in (d + 1)-dimensional space. Each equation of the form of (4-49) together
with a user-chosen offset or ‘margin’ may be written as

ETw-5>0 i=12,...n (4 - 55)

From Appendix 6, each of the n linear inequality constraints in (4-55) may be visual-
ized, by viewing z T as the normal vector to a (d + 1)-dimensional hyperplane that parti-
tions R9t!. A requirement for a solution is that the solution vector w must lie in the
positive half R, of R4*!, at a distance of |b;|/ || T || from the boundary. Moreover,
the intersection of the n half spaces of R4+! defined by (4-55) is the overall solution
region for w. In problems that are not linearly separable, this region does not exist.
Conversely, in linearly separable solutions with non-unique separating planes, this re-
gion contains an infinite number of solution points. In addition, by setting the margins
b; =0, i=1,2,...n,we find the largest solution region from solving

g§Tw>0 i=12,...n (4 - 56)

Iterative (Descent) Procedures. By using a gradient approach (Appendices 2 and 4),
an iterative procedure to determine w may be found. The form is
= 8J(w

(m Qn &(!2 )I!=!(n)

where a,, controls the adjustment at each iteration. The iteration procedure requires
a stopping criterion. Examples are

| ™ —w™ |<e (4 - 58a)

E('H-l) =

(4-57)

where ¢ is a user-chosen tolerance, or
R = Nias (4 — 58b)
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where nn,. is the (predetermined) maximum number of iterations, or
J(w™) < Jr (4 - 58¢)

where Jr is an error threshold and J (w) is a measure of classification error. Often we
design J(w) with the minimum value J(w) = 0 for perfect classification.

Error Forms. Many forms for the error J(w) are possible. For example, a vector w
where
$Tw<0 (4 - 59)

misclassifies sample £ T . Therefore, one error measure, the Perceptron Criterion Func-

tion, is
hw=- Y &fw (4 - 60)
2€Xgrr(w)
where X grr(w) is the set of samples misclassified by w. Note that this set will vary from
iteration to iteration in the solution procedure. If Xgrr(w) = 0, then Jp(w) = 0,and
the minimum of the error function is obtained.

Since
Vedpow)=- Y, & (4-61)
2.€Xgrr(w)
the iterative procedure of (4-57) becomes

W =y™tan Y & (4 - 62)
2.€Xgrr(w™)

Notice that when Xgrr(w™) = 0, the adjustments to w(™) cease.

Training by Sample and Training by Epoch. Equation 4-62 suggests that at each iter-
ation the entire set of samples misclassified by w(™ be used to form the correction at

the next iteration. This represents a consideration of the entire training set for each
adjustment of w and, thus, training by epoch. Another alternative is to adjust w as soon
as a single classification error is made. This represents training by sample, and may be
viewed as a ‘correct as soon as possible’ strategy. It is often unclear whether train-
ing by epoch or training by sample is preferable, and this concern carries over into
our training of certain similar neural network structures in Chapter 12. In the case of
training by sample, (4-62) becomes

w™* = w™ +ang; (4-63)
where 2, is the first sample misclassified by w™,

Procedures to Find Both w and b. In the previous procedures, it was necessary to
_ choose the ‘margin’ vector b. We consider a procedure [Ho/Kashyap 1965] based
on iterative refinement of both w and b that is derived from the approach of (4-53).
Choosing an error measure as

Ju(w,b) =|l Aw - b |*= (Aw - b7 (Aw - b) (4-64)




Vector-Matrix Differentiation Formulae

Examples of properties using the above definitions may be easily derived and are sum-
marized in the discussion that follows. For a matrix .4 and vectors z and y

d
E(A{)—A
Efg Az)= 4 y
i(;’-iz}ﬂA*AT); (A1=3)
dz

LEAST SQUARES TECHNIQUES (DETERMINISTIC)
The Formulation of a Pseudoinverse of a Matrix

The problem of forming an inverse of a rectangular matrix 4 with specified properties
has been studied for some time [Rao 1971]. The pseudoinverse of an m x n real matrix
Aisann x m matrix denoted by A'. Examples of desirable properties are

AA'A=4
AT44' = At
(AANHT = 44! (A.1 - 6)

If A has full column rank, one inverse of considerable interest is the so-called least
squares inverse, denoted by
A" = (ATA)-14T (A1=7)

The properties of this solution are considered extensively in references on least
squares estimation, interpolation, and the like. One important note is that the formu-
lation of this pseudoinverse requires the inversion of an M x M nonsingular matrix
(or conversely, the solution of the so-called normal equations, which are alsc of order
M). Numerous successful algorithms for the solution of this problem are available.

Basic Formulation
Suppose we are given an overdetermined linear equation of the form:
b=Az (A1-38)

where bism x 1, zisn x 1, m > nand A is m x n with rank n. There is no way to
exactly satisfy this equation for arbitrary . We define an m x 1 error function vector
corresponding tQ some approximate solution, :

e=b- A3 (A.1=-9)

and then determine a procedure to minimize some function of this error. Often, in
unweighted least squares, this function, denoted J, is chosen to be

J= grg (A.1-10)
To find the minimum of this function, we set

& e (A.1-11)

and use (A.1-3) to develop the so-called normal equations, that is,

ATA; = AT} (A1-12)
from which b may be determined. Note that in theory AT A may be inverted to yield
z



