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The Vector Space Model (VSM) has been adopted in information retrieval as a means of coping with
inexact representation of documents and queries, and the resulting difficulties in determining the
relevance of a document relative to a given query. The major problem in employing this approach is
that the explicit representation of term vectors is not known a priori. Consequently, earlier researchers
made the assumption that the vectors corresponding to terms are pairwise orthogonal. Such an
assumption is clearly unrealistic. Although attempts have been made to compensate for this assump-
tion by some separate, corrective steps, such methods are ad hoc and, in most cases, formally
inconsistent.

In this paper, a generalization of the VSM, called the GVSM, is advanced. The developments
provide a solution not only for the computation of a measure of similarity (correlation) between
terms, but also for the incorporation of these similarities into the retrieval process.

The major strength of the GVSM derives from the fact that it is theoretically sound and elegant.
Furthermore, experimental evaluation of the model on several test collections indicates that the
performance is better than that of the VSM. Experiments have been performed on some variations
of the GVSM, and all these results have also been compared to those of the VSM, based on inverse
document frequency weighting. These results and some ideas for the efficient implementation of the
GVSM are discussed.
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Analysis and Indexing—indexing methods; thesauruses; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval—retrieval models; search process
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space, retrieval strategy, term cooccurrence, vector space theory

1. INTRODUCTION

Information Retrieval (IR) systems are designed with the objective of providing,
in response to a user query, references to documents that would contain the
information desired by the user. In other words, the system is intended to identify
which documents the user should read in order to satisfy his (her) information
requirements.
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In this environment, the information items to be searched are not simply
“records” or “tuples” as in conventional database management systems. Instead,
we have a collection of documents (e.g., books, journal articles, technical reports,
etc.). In order to identify which documents the user should read with respect to
his information requirements, some method for the representation of what the
documents are about (i.e., knowledge representation of documents) is needed.
Since any knowledge representation of a set of objects provides only partial and
imprecise characterization of the perceived reality, the representation in the
system as to the contents of the documents cannot be expected to be entirely
satisfactory.

Another problem which is closely related to the difficulty in representing
the contents of documents is that of characterizing the user need. Although the
query language used can be very precise relative to the method of representation
chosen, it is unlikely that the actual user need can be exactly specified by the
language.

An additional probiem in this context is one of making an assessment as to
whether or not a document meets the actual needs of the user. That is, not only
does the system have to represent the documents and user needs, but it must
also provide a characterization of the process by which the user comes to a

particular decision concerning relevance. A document may or may not be relevant
to a user query depending on many variables concerning the document (e.g., its
scope, how it is written) as well as numerous user characteristics (e.g., why the
search is initiated, user’s previous knowledge). In any case, whatever the
information retrieval system does, if a document is judged by the user to be of
interest, it is relevant; it is nonrelevant otherwise. Since many factors may
influence the judgement concerning relevance in a complex way, it is easy to see
that designing an IR system within this frame of reference is very challenging.
In fact, it is impossible to come up with a “perfect” scheme for representation
and retrieval whereby only and all relevant documents are retrieved.

Finally, even if one manages to adopt a “perfect” scheme for representation,
and a query language with full expressive power, the user may still have difficul-
ties. From a practical point of view, any such system would be too complex for a
typical user to master.

It is due to all these reasons that IR researchers take the view that the system
should adopt fairly simple methods of representation and seek approaches that
facilitate the ranking of documents in the order of their estimated usefulness to
a user query.

One well-known approach for the design of an IR system, with the above goals
and constraints, models documents and queries as elements of a vector space
[6, 9, 11]. First, a representation as a vector is developed for each document
in the collection. This would require the application of some automatic or manual
indexing technique to the full text or some surrogate (e.g., abstract) of the
documents in order to identify the index terms or keywords to be used in their
representation. Second, each index term involved is assumed to correspond to a
vector, and these vectors together are assumed to generate the vector space of
interest. The effect of this is that one can express any document as a linear
combination of these term vectors. Similarly, when a query is presented, it is also
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put through the indexing process and a vector representing the query is con-
structed.

In addition to the representation of documents and queries as vectors, one
needs to introduce some notion of closeness or similarity between a document
and a query, between terms, and so on. A natural way to determine cioseness
between these items in the vector space model is to define a scalar product
between the corresponding vectors. The matching of documents against the
query, then, consists of computing the scalar product between the respective
vectors. Finally, the documents are presented to the user in the decreasing order

Ul. blllS measure.

2. MOTIVATION

Typically, the end result of putting a document collection through the indexing
process is a document-by-term matrix, where the (i, j)th element of the matrix
LUIIUBpUlldb to the £ irequency of occurrence of term / in the ith document [6 1o j Let

this p X n matrix be denoted by the symbol W, and its elements by w;;.
The most common implementation of the vector space model involves

(a) the interpretation of the rows of matrix W as the component of document
vectors along the direction of the various term vectors, and

(b) the assumption that terms are pairwise orthogonal. That is, scalar product
t; - t; of any two (normalized) term vectors equals 1 if i = j and equals 0
otherwise.

It is well known that the orthogonality assumption is too restrictive. However, it
has been considered acceptable as a first order of approximation, and many
useful and interesting results have been obtained despite such a simplifying
assumption [6, 9, 11].

While there may be good justification for starting an investigation with a
simpler model (which is a special case), it is important to clearly understand the
general model. In Raghavan and Wong [4], it is pointed out that earlier work
with the vector space model does not fully explain the various concepts and
interactions that are critical and this, in turn, has led to some misunderstandings
and inconsistent usage of the model.

For example, in order to relax the assumption that terms are pairwise orthog-
onal, term cooccurrence information has been used, and certain methods of
computing term correlations suggest that the columns of W can be viewed as

vectors corresponding to the terms, that is, t; = (wy;, wa;, . . ., Wn;). However, it
is easily shown that representing terms as columns of Wis nnf congistent with

representing documents as the rows of W. In other words, if columns of W are
interpreted as components of terms along document vectors, then the rows
cannot, at the same time, be used to represent document vectors [4].

Raghavan and Wong [4] introduced and explained the various notations and
definitions necessary for the understanding of vector space model in the context
of information retrieval. While the difficulties involved in the generalization, to
the situation where term vectors are not assumed to be orthogonal, were explained

lll db’ball, up}uuabuca IJU ICBUIVU au\,u dllllbu}blCB WEre LU.llBldUlCd Ulll_y l.ll puamug
In the current work, a particular approach is thoroughly explored.
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Two main aspects of dealing with nonorthogonality are

(i) the definition of what it means to say that two terms are orthogonal, and a
method of computing the degree of similarity (or correlation) between non-
orthogonal terms;

(ii) the incorporation of this information into the retrieval strategy.

As has been the case in the past, the first aspect of computing the term-term
correlations is based on cooccurrence data. However, the specific scheme we
propose for dealing with nonorthogonality leads to a natural and rigorous frame-
work for identifying a set of orthogonal basis vectors that spans the subspace of
interest. As for the second aspect, given the premises of the vector space model,
it can be readily shown how the term-term correlations ought to be incorporated
into the retrieval process. Thus, in this paper, both of these important phases
are given a clean, theoretical justification. In contrast, certain methods reported
earlier have been, for the most part, heuristic and without adequate formal
support [3, 7, 12].

Because of the emphasis in this work on a theoretical foundation for utilizing
term cooccurrence data, it is believed that the significance of our results is
comparable to that of several recent investigations on term cooccurrence
[2, 10, 13]. This paper is organized as follows. In Section 3, we introduce notions
and definitions that are needed for subsequent discussions on the vector space
model. In Section 4, an overview of the steps involved in the proposed generali-
zation of the vector space model is provided. Section 5 contains the specific
details of the generalized model and the justification for the various prescriptions.
The proposed model and a few of its variations are experimentally tested and
these results are discussed in Section 6. In the final section, the conclusions of
this investigation are summarized.

3. NOTATIONS AND BASIC DEFINITIONS

The basic premise in the vector space model is that the various items of interest
in the information retrieval environment are modeled as elements of a vector
space. Specially terms, documents, queries, concepts, and so on are all repre-
sented as vectors in a vector space.

Let ¢, tz, ..., t, be the terms used to index the documents in a collection.
Corresponding to each term, t;, suppose there exists a vector f; in a vector
space. For the general case of the model, we consider the set of term vectors,
{t:| 1 < i < n}, to be the generating set of the subspace of interest. Thus, any
vector in the subspace can be expressed as a linear combination of the t;'s. .

Let d,, dz, ..., d, denote the documents in a collection and let {d, =
(@u1s Qaz, - - - » Gan) | 1 = a < p} be the set of vectors representing the documents,
where a,;’s are real numbers. More precisely, a.. is the component of d, along the
direction of the term vector ¢;. It follows then, that

Ja = Z aait?i' (3.1)
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Definition 3.1. A set of vectors {0, ..., 0:} is linearly dependent if there exist
some scalars ¢y, ¢z, . . ., ¢x not all zero, such that

€101 + Colop + -+ 0, = 0.

Clearly, if the set {f1, &, . . ., £,} is linearly independent, then this set of vectors
is also a basis for the subspace of interest, the subspace is of dimension n, and
the expansion of d, given in Eq. (3.1) is unique. In contrast, if the set of vectors
{t1, &, ..., t,} that spans the vector space is linearly dependent, then the
dimension of the vector space is n’, for some n’ < n, since a set of linearly
1ndependent vectors consisting of n vectors can always be selected from
{ty, to, ..., bal-

Definition 3.2. Given a vector space V, the scalar product & - U of any two
vectors i, 0 € V, is given by || - | 0| cos 6, where | i | and | § | are the lengths
of the vectors and 8 is the angle between & and b.

Two term vectors, £; and , are orthogonal if ¢; t: = 0, If every pair of vectors
{t;, t;} for i # j in the set {tl, fa, ..., ba} i8 orthogonal then the set is linearly
mdependent and forms a basis for the subspace under consideration. The con-
verse, however, is not true. That is, the set {{;, fs, ..., {,} may be linearly
independent, but not necessarily pairwise orthogonal. From the above discus-
sions, it should be clear that, when adopting the vector space model, one cannot
assume that term vectors are necessarily pairwise orthogonal.

Now let us consider the issue of ranking documents with respect to a
query as a part of the retrieval process. The fact that the set of term vectors
{t1, ta, ..., t,} is considered a generating set implies that not only the documents,
but also the queries, can be represented as a linear combination of the ’s.
A query vector § can, therefore, be expressed by

i=3Y g - . (3.2)
Jj=1

Given the expression in (3.1) and (3.2), and assuming that the scalar product
between two normalized vectors is a measure of their similarity (cosine similarity
function), we have

-

Z a,,,-q,-f,- - t, where a«a=1,2,...,p. 3.3)

llM:

We can, then, rank the documents relative to ¢ in terms of the values of the
above similarity function. Thus, for our purposes, we need to know a,’s, the
components of documents along the various term vectors as well as the similarity
between every pair of term vectors expressed as f; t Note that we may or may
not know the vector representation for the £/’s exphc1t1y

4. OVERVIEW

In this section an overview of how we propose to resolve the problems and issues
associated with the use of the vector space model is presented. More specifically,
we identify the assumptions or hypotheses needed, the kinds of data in the
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physical problem that are considered as given, and the mapping of these data to
the elements of the vector space model. The last issue mentioned above concerns
the interpretation of the objects and reiationships in the physical probiem to the
formal objects and components of the model.

As mentioned in the introduction, it is common to start with a document-by-
term matrix W, which has been obtained from a document collection through a
process of indexing. The matrix element w,; of W is the occurrence frequency of

tarm F. in Ao nt A4 Tn tha santavt af the vantaor anace maodal thawa ara o fonr
term i; ini Qocument G,. 111 tne Coniext o1 tne vecwor DpaLe livavi, UIIETre are a iew

different options for interpreting the elements of W [4]. For the purposes of this
paper, w,; is interpreted as the component of the document vector d, along term
vector ¢;. That is, a,; = w,,;. It follows from Eq. (3.1) that

d~ = z Weit;. (4.1)

We further assume that the components of a query vector along the various term
vectors is determined in a similar fashion. However, from the point of view of
computing the document-query similarity defined by Eq. (3.3), the term-term
similarities are still unknown.

On the one hand, one could side-step this issue by assuming that there does
not exist any correlation between terms. In other words, the assumption is that

the terms are nairwicse orthooonal Thic ie. elearlv. not enfrnfanfnnr On the other

ViU VWCALLS QIT PQLIVaoT VIUIVRVIIGL, 4 JA5 LD, VITRILy )y A20U0 SQUASLIAUVWWI . il Ll Uuads

hand, a prescription for obtaining term-term similarity measures can be proposed.
Our aim is to take the latter route. In doing so, we would like to also ensure that
the prescription is a natural and rigorous extension of the conventional vector
space model.

Before we can measure term-term similarity, there must first be a determina-
tion of what we want to mean by saying that two terms are similar. Alternatively,
we may ask under what condition can two terms be considered not similar or,

naing tha tarminalagy af +ha madal whaonamal Mha anauan +a +thia siactian
UDLLiE bl.l.c VWCLLLINVIVERY UL bllc ajuuclt, Ul bllUsUllalo Lllc aLiovweTil W blllb Yucoouivii lB

crucial since whatever notion one applies at this stage will essentially dictate the
meaning attached to the similarity between any two vectors within the model.
Once a meaning is selected, it remains fixed for all subsequent computations of
similarity between vectors. The real question, then, is to what aspect of the
physical problem do we want to map the formal concept of orthogonality, which
is a part of the model.
A review of earlier work in interpreting term-term similarity suggests various
directions:
(i) words in the language can be analyzed from a linguistic point of view to
to hierarchical structure

ohtain synonyms, antonyms ralationghing laadin
CAVALL, lll\lul 2uld uv vl

obtain synonyms, antonyms, relationships leading to hierarc
and so on;

(ii) term-term relationships can be based on pseudoclassification, where the
term relationships are obtained by analyzing the way in which document
representations and similarity computations must be adjusted to obtain
retrieval results desired by the user [5, 8];

(iii) term cooccurrence data can be used to determine if the presence of one term

implies the presence of another, and this fact can be used for obtaining

t+a +a ilawitey 1O 10 121
IlUlul DUILLI Dxxuuaxuz.y la, 1V, J.UJ.
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It is interesting to note that the direction one chooses also has implication for
the extent to which terms are imagined to exist, independently of the document
collection at hand. In the first case above, terms are considered to have meaning
and relationships between each other, essentially, without particular reference to
what documents we have in a collection or how they are indexed. In contrast, the
third case views concepts that correspond to the terms and their relationships
totally within the context of the particular document representations at hand.
That is, the meaning of terms are formal notions specified with respect to the
given collection of documents.

The specific choice made for the developments in this paper bases the com-
putation of term similarities on cooccurrence data. In this connection, the
following hypotheses' are made:

Hypothesis 1. A concept (an index term is a special case) is characterized by a
set of documents. More precisely, a concept corresponds to the maximal subset
of documents such that every document in the set contains the concept.

Hypothesis 2. A concept i is unrelated to another concept j if the set of
documents characterizing concept i does not intersect with the set of documents
characterizing concept j.

Hypothesis 3. The greater the overlap between the document sets character-
izing two different concepts, the more similar are the two concepts.

The important contribution of the current work is the realization of the vector
space model in a way that is consistent with the hypotheses given above. The
model then forms a basis for verifying the validity of the hypotheses as measured
by the retrieval performance.

In summary, the investigation of these hypotheses involves the following
correspondences between model elements and the physical problem:

(i) vectors representing concepts are such that if sets of documents correspond-
ing to two different concepts are disjoint, then the associated vectors are
orthogonal;

(ii) the scalar product between vectors associated with two different concepts,
essentially, becomes larger as the amount of overlap between the correspond-
ing sets of documents increases;

(iii) the determination of the basis vectors involves the identification of a set of
fundamental concepts (denoted by m’s in subsequent sections) that are,
together, complete and are pairwise orthogonal;

(iv) terms contained in documents are represented as a linear combination of
vectors associated with the fundamental concepts;

(v) finally, documents and queries are represented as a linear combination of
terms, which as mentioned in (iv), are in turn a linear combination of
fundamental concepts.

! These hypotheses are not really new [3, 7, 12], but they have often not been explicitly identified as
such.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.



306

S. K. M. Wong et al.

5. DEVELOPMENT OF THE MODEL

Tn thia anntinn tha aacaantial faatniras af tha madal haing nrannged ara davalanad
In this section the essential features of the moael OUCIINE PTOPOosea arc Gevaigpea

and justified. The resulting model is referred to as the Generalized Vector Space
Model (GVSM). The justification for the GVSM is provided both by considering
how the limitations associated with Boolean retrieval can be removed and by
showing that it is a theoretically sound generalization of the conventional vector
space model for handling term correlations. The measure of term correlation is
based on term cooccurrence information. The first step in the development is to
explain how the elements of Boolean algebra may be modeled as vectors in a
vector space. It is then pointed out how terms that are represenied as Boolean
expressions in a Boolean retrieval system can be modeled as vectors in a vector
space. In the vector space corresponding to the Boolean retrieval model, if
documents are not identical then they are, by our definition, orthogonal. Finally,
these concepts are generalized to handle nonorthogonality and the situation

whara dacimants and anarv ara ranracantad hy waichtad tarmg
TVALVAW UULVULIIVIIUVD GAiivs \.’uvx‘y UL l\/yl\zn‘d“w UJ V'\llsllwu VA RLIO.

5.1 Vector Representation of Elements of a Boolean Algebra

Let x,, %, . . ., X, be n literals used to generate the free Boolean algebra, denoted
By, Any Boolean expression composed of these literals (using operators AND,
OR, or NOT) is an element of the algebra.

What we desire is to identify a vector space such that every Boolean expression
in Bgs corresponds to a vector in the vector space. In a vector space it is necessary
to S‘peCuy a set of vectors that form a basis. If a basis is KﬁGWi‘x, then any vector
in the space can be expressed as a linear combination of the basis vectors. Since
the intent is to obtain a way of expressing every possible Boolean expression, it
is appropriate to have the set of basis vectors correspond to a set of fundamental
expressions which can be combined to generate any element of the algebra. We
therefore employ the notion of an atomic expression.

An atomic expression, or a minterm, in the n literals x;, x2, ..., x, is a
conjunction of the literals where each x; appears exactly once and is either in
compiemented or uncompiemented form. Clearly, there are 2" minterms in all.
It is well known that the conjunction of any two minterms is always zero (false)
and that any Boolean expression in the literals x;, x3, ..., %, can be uniquely
expressed as a disjunction of minterms. The representation obtained in this way
is the well-known disjunctive normal form.

Let {m;};» denote the set of minterms in B.». In order to characterize a vector
space in which these correspond to the basis vectors, we define a set of
2"-dimensional vectors {m.}. These vectors constitute an orthonormal basis
of the vector space in R as follows:

m=(1,00,...,0)

my = (0, i, 0,...,

mg = (Oy 0, 1 (5 1)
g = (0,0,0,...,1)
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Given these, it is easily seen that the vector representation of any Boolean
expression is given by the vector sum of the basis vectors which correspond to
the minterms in the disjunctive normal form of the expression.

The assertion that, for any two vectors m;, m;, the scalar product m; - m; is
zero corresponds to the fact that the conjunction of atomic expressions m; and
m; is zero. In general, if two vectors are not orthogonal, then the corresponding
Boolean expressions have at least one minterm in common.

5.2 Vector Representation of Terms Assuming No Weights

The ideas developed in Section 5.1 can be applied to an information retrieval
environment and each index term can be given an explicit vector representation.
Let the indexing vocabulary consist of terms ¢y, ty, . . ., t,. Any literal can appear
in a Boolean expression either as t; or t;, depending on whether it needs to
be complemented or not. In particular, conjunctive expressions, where every
literal appears in either uncomplemented or complemented form are the atomic
expressions.

Let {mz}o~ denote the set of all atomic expressions in the literals ¢, ¢, . . ., t..
Then, since each ¢; is itself an element of the Boolean algebra generated, t; can
be expressed in its disjunctive normal form:

t; = m;, OR mg... OR m,;, (5.2)

where the m;’s are minterms in which ¢ .is uncomplemented. Let the set of
minterms in Eq. (5.2) be denoted by {m}’. We can now define basis vectors
analogous to Eq. (5.1) and the term ¢; can be written in the vector notation as

-

ti = 2 . Tﬁk. (5.3)
mEfm}*
Alternatively,
- 2"
i = ¢, M (5.4)
k=1
where

=70, otherwise.

That is, the term vectors are a linear combination of the m,’s, the basis vectors,
and the vector sum operator is mapped to the Boolean operator OR of Eq. (5.2).
Furthermore, the scalar product between any two basis vectors is zero, corre-
sponding to the fact that the ANDing of two minterms is “false.”

5.3 The Generalized Vector Space Model (GVSM)

In this section we review the essential features of the GVSM [14, 15]. This model
is the result of incorporating the idea developed in Section 5.2 into the framework
of the conventional vector space model. One of the main steps in this process
involves the generalization of the term vector representation in such a way that
the expansion coefficients in Eq. (5.4) are not binary. The determination of these
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coefficients is, however, closely tied in with our hypothesis of what is meant by
two terms being not orthogonal (or correlated). This is because, once the coeffi-
cients are specified, the scalar product between any two nonbinary vectors ¢t; and
t; is defined. Since scalar product being zero implies orthogonality, a nonzero
value must represent a measure of nonorthogonality.

5.3.1 Document and Query Representation in GVSM. From Eq. (3.1), it is seen
that in the VSM the representation of a document is taken to be a sum of term
vectors. In the GVSM we continue to use the vector sum operator and hypothesize
that a document should be expressed as the vector sum of the associated term
vectors. More precisely,

Ja = walfl + wa2£2 + .- wani‘n

= 2 waiEi- (5.5)
i=1

Since the term vectors are of the form specified in Egs. (5.4) and (5.5) implies
that the documents can be represented as a vector sum of the m’s. That is,

-

d.= Y cim, (5.6)

=1
where the ¢/’s are yet to be specified. Although the use of Eq. (5.6) for obtaining
a vector representation of documents can be taken simply as a hypothesis, the
following points are noted in support of that choice.

Let d, be a document indexed by terms {t., f.z2, . . ., t..}. Imagine also that we
are working in a strict Boolean environment where each query is a Boolean
expression in t’s, the literals associated with the terms. Then d, should be
retrieved for a query g, if the disjunctive normal form of ¢ includes the minterm
in which precisely the literals ., t.q, . . . , .- are not negated and all other literals
are negated. Now, if this case is modeled by our vector model, we would have

Ja = ﬁl,‘d,

such that m;, = t,s AND t., AND ... t,, AND tar+1 AND ... AND Z,,. Let m;,
be referred to as the dominant atom of d,. Since a query can be a vector sum of
m’s, we have the correspondence that d, is retrieved for query g if and only if
d, - § = 1. It is clear from the foregoing discussion that representing d, by its
dominant atom is a special case of Eq. (5.6). We however observe that this
representation is inflexible in the sense that the condition for retrieval is too
strict. Furthermore, in this case, if two documents are not identical, then they
are orthogonal. Thus, Eq. (5.6) has the effect of relaxing the retrieval criterion
and broadening the scope of the document.

Our choice of representatior (Eq. (5.6)) can also be justified from another
point of view. The point is that this kind of broadening of representation is a
natural way in which to reflect the effect of term similarities. In earlier studies
involving the use of term-term similarities, the approach employed had some
parallels. For example, both Minker et al. [3] and Sparck-Jones [12] proposed
certain algorithms to construct clusters of terms. Then, the incorporation of
these clusters into the retrieval process consisted of either expanding queries
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with terms which belong to the same cluster as those already in the query [3], or
by replacement of the original terms in documents and queries by the new,
broader concepts (corresponding to the clusters) of which they are a part. In our
case, we propose to represent each document by a disjunction of certain funda-
mental concepts. The idea of having m’s other than the dominant atom in
representing a document can be illustrated with the following example.

Let us consider a situation involving just three terms, ¢, t;, t3. Suppose a
document d contains terms t; and t;. Furthermore, let there be many documents
in our collection that contain exactly ¢; and t,, implying that we may conclude
that d’s description should include ¢, as well. We make d’s description include ¢,
by letting d be represented by more than one basis vector. More precisely, d is
represented not just by the dominant atom m; = t; AND t, AND t;, but also by
the m;=t, AND t, AND t;. That is, d is a linear combination of the corresponding
basis vectors m; and m;. We believe that this is an alternative way of incorporating
the effect of term dependencies; it is well suited to the premises upon which the
GVSM is based.

In a general sense, expressing documents as a combination of m’s can also be
seen as a way to model another aspect of the physical problem. For instance, it
is well known that there is certain variability in the way trained indexers describe
the same document [16]. If several descriptions are equally valid, then, clearly,
building a system based on just one of them may bias the representation towards
certain kinds of users. Thus our approach can be seen as a means associating
more than one description (m’s) with each document and, additionally, having a
certain measure of importance accorded to each such description. In fact, this
line of thinking is central to a recent paper by Gordon [1], in which the generic
algorithm is used as a basis for determining alternative descriptions and corre-
sponding measures of usefulness for each document.

It is also necessary to specify the way in which a query will be represented.
Given ¢ = (q1, g, - . . , g»), we propose that the query be represented as the vector
sum of the £;’s involved. That is,

3

+

g= 2 gt (5.7

j=1

-~

This choice is made for the same reason that documents are represented as a
vector sum of terms.

Using these prescriptions, both documents and queries can be expressed as a
linear combination of the m’s, and the computation of d,, - § is straightforward.
All that still remains is to show how Eq. (5.4) is generalized to express the t’s as
a vector sum of m’s in terms of nonbinary expansion coefficients. As mentioned
earlier, this requires the meaning of term correlations to be made precise.

5.3.2 Vector Representation of Terms Using Term Occurrence Frequencies.
First, a simple example is presented to motivate the approach adopted.

Example 5.1. Let D be a set of documents indexed only by two terms, ¢; and
t;. Let Dy be the maximal subset of documents satisfying F, where F is a Boolean
expression in the t’s.
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We can identify the following disjoint subsets forming a partition of D:

Dtlt_z = Dzl N ﬁtza
Dt1t2 = Dtl N th,
Dt_ltz = Dtl n th.

where D, r,, D..,, and so on, correspond respectively to D anp,, D:,anpt,, and so
on. (The ANDs are dropped for convenience.) D, denotes the set complement of
D, (i.e., D, is the subset of documents not containing ¢;).

Based on intuition, we argue that the correlation between any two index terms
depends on the number of documents in which these two terms appear together.
This sort of argument based on term cooccurrence information has been the
basis for measuring term correlation in earlier studies [2, 10, 13].

Let ¢(Dp) denote the cardinality of the set Dr. For reasons of clarity, the
cardinality c¢(D,,,,) of the subset D,,, = D,, N D,, (which denotes the number of
documents containing ¢; and ¢,) is first taken as the measure of the “unnormal-
ized” correlation between t; and ¢,. We develop a finer measure of term correlation
using nonbinary weights in the latter part of this section.

In terms of vector notation, the correlation between ¢, and t,, denoted by
t, - i, can be conveniently expressed as the scalar product of two normalized
term vectors, ¢; and &, namely,

5 i = 02(Dt,z2)
! 2 [Cz(Dzlt_z) + Cz(Dtltg)ll/Z[cz(D_ltz) + CZ(Dtltg)]l/Z ’

where

i = C(Dtlt_z)'ﬁl + c(Dtltz)’ﬁZ
P (D) + D)V

i = c(Dys,)ms + c(Di,)ms
27 [¢A(Dyygy) + ADr )1

and ri2,, m,, and ri; are the orthonormal basis vectors.

It is evident from the above example that terms can be meaningfully expressed
as linear combinations of m’s. Clearly, m,, m., and s correspond respectively
to the atomic expressions ¢, ¢, t;t;, and £;¢,. In the example, only the presence
or absence of a term in a document is considered. This limitation is reflected in
the assertion that c(D,,,) is a measure of the correlation between , and ¢,.
Furthermore, this example helps in convincing oneself that the expansion of a
term vector, say t;, need not have a nonzero coefficient for all vectors correspond-
ing to minterms in {m}’. This is due to the fact that term cooccurrence, and the
cardinalities of other sets used as normalization factors, depend on the particular
collection of documents at hand. For instance, if ¢, and ¢, do not cooccur in a
given collection, then the expansion of neither £, nor £, will involve ma,
and ¢, - &, will be zero.

More generally, given terms ¢, t3, ..., t, and a collection of documents of
cardinality p, the number of “active” minterms is a subset of all possible minterms,
which we denoted as {m}s. Since, in the worst case, each document can corre-
spond to a different minterm, the number of active basis vectors is at most p.
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Thus, the expansion of ;, 1 < i < n, involves only those basis (atomic) vectors
restricted to the set of active minterms. It is understood, in subsequent discus-
sions, that {m}’ refers to this subset of active basis vectors.

Another issue raised in the discussion above is the limitation of using only the
cardinalities. A natural generalization, which considers the importance of a term
to the documents (i.e., term weights), should be developed. For this purpose the
following expression for (unnormalized) ¢; is proposed:

-

ti= X cyfu, (5.8)

myEtmyi
where the unnormalized form of ¢, is given by
Cik = 2 Wai. (5°9)

4,EDp,

The above concepts are illustrated by the following example.

Example 5.2. Given a set of documents D = {d,, d,, ds, d,} indexed by the set
of terms T = {t,, &, £3}. The weights of each term in the documents are given by
the following matrix:

th L t3

d 2 0 1

ds 0 1 3

di 2 0 0
There are eight fundamental products or minterms, {m1 = libats, my = titats,
ms = titats, my = titats, ms = Eilats, Mg = titats, mq = talyts, mg =

titats), generated by the literals t;, t;, and ¢;. In vector notation, these
minterms can be represented explicitly by the following set of orthonormal
basis vectors:

m =(10,000,0,0,0)
rfzz =(0,1,0,0,0,0,0,0)
=(0,0,1,0,0,0,0,0)
=(0,0,0,1,0,0,0,0)
=(0,0,00,1,0,0,0)
=(0,0,0,0,0,1,0,0)
=(0,0,0,0,0,0,1,0)
ms—(0,0,0 0,0,0,0,1)

Each t; € T can be expressed in a disjunctive normal form as follows:

t = t; AND (¢; OR £;) AND (¢ OR £)
= [(t, AND t;) OR (t; AND ,)] AND (¢; OR ¢3)
= (t, AND ¢, AND ¢3) OR (t; AND £, AND t;) OR
(t: AND t, AND ¢;) OR (¢, AND ¢, AND ts)
= Mmy OR nm OR ms OR ma,
= my OR ms OR ms OR mq,
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and
F— AN NDR + )Y A
3 = 03 AN \91 VIV U1) AN

= my OR m; OR ms; OR ms.

V- 1.1 h ] . xr

From Egs. (5.8), (5.9), and the above document matrix W, we obtain the following
normalized term vectors:

0.55m; + 0.83m,,

1= [22 + 32]1/2
. 0y + (0+0)my + Ims _ .
t2 - [12]1/2 = ms,

- 1my + (0 + 0)my + 3ms
t3 = [12 + 32]1/2

= 0.32m, + 0.95m;.

By substituting the above expressions for term vectors into Eq. (5.5), it follows:

dy = 26 + £ = 2(0.55; + 0.83r2) + (0.32r, + 0.951%;)
= 1.421, + 1.66r, + 0.957,,

£, = 0.55m, + 0.83m,,

ds = ty + 38 = Mz + 3(0.32m, + 0.95r,)

0.96r7; + 3.85r7,

‘)f = 9mr;;m + 0.83m ) = 1.1m, + 1.66m..

4 o
Lg == Lv] T LA\ 82

4 S
I

Sxmxlarly, we can transform, for example, the query vector, ¢ = ¢, + £,, into a
linear combination of atomic vectors, that ig,

q = (0.55m; + 0.83m,) + (m3)
= NEEm. L NQY 1
VJUIIE] 1T V.OOINg 1 g3
Then the cosine similarity s;=d; - §/|d;| | § | between the normalized document
A amd thhn Arrnseer 4 nnm ha ansariidbad ao FAallac.a
Uy ALIU LIIT YUTL Y Y Ldll UT LU lpuu':u. ad LULIUWD.
5 = e e A2UB0) + (L66)(89) + L)~ — 0.9234,
[1.42° + 1.66° + 0.95%]*/*[0.55° + 0.83% + 1*]'/*
5 = ——20)(50) + (83)(83) + O0D) __ 4 7056,
10.00% + 0.83°]“|V.00° + U.83° + 1°}~*
55 = ——o200(55) + (0)(83) + BENWD) __ 4,9,
[0.96° + 3.80°]V“|V.00° + 0.83° + 1°]V*
1.1)(.55 .6 + 1
S4 = ( 1)(.5 .). q _(_;Z( 83.) A_A,,(O)( )o = 0.7056.
(1. %2 + 1.66 “1740.00° + 0.83° 1)v=

Based on these similarity values (s; > s3 > s; = s4), d; will be retrieved first,
ds second, and so on.

Before concluding this section, we relate the formulation presented above to
earlier work. It should be noted that in Eq. (5.9) the ¢;,’s are obtained as the sum
of term frequency weights, w,;’s, over those documents belonging to D,,.. When
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the cardinality of D, equals one, Eq. (5.8) can be rewritten as

£g= E ) wa,-n'zk. (5.10)

myEimt

In this special case, we obtain the following expression for term correlation:
. . P
. 2 A%l -3 Y
- b= 2 Wally, 0.11)

a=1

which is in fact similar to the formulas adonted in the experiments at Cornell

add A&l SRl L LT JRRIIARAGS SRR 242 A Tcapcil villeil

[6). Thus, we provide a rigorous framework in which he method of computing
term correlations used many years ago can be justified. However, the question of
how to incorporate this information into the retrieval process is answered very
differently in this work (see Eq. (3.3)).

6. EXPERIMENTAL RESULTS

6.1 Genera ications

Spec
Four document collections are used for these experiments: ADINUL, CRN4NUL,
d ;k TN ARQ MTha enllantinn charantaretineg ara tha fallawnne-

T an
Uiy, All Vit 21, AD0S, 1 N€ CoLEClIon CAaracierisiics are tag 0L 0wWilr L.

—ADINUL is a collection of 82 documents in library science, It onsists of the

full text of naners nresented at American Documentation Ingtitute meeting

Mir WAy Ui PR S PRIUSUIAVWAL Gy JRILTLIVGAL ASUURIIN LG VI e -.-u LACCLE

held in 1963. There are 35 queries.

—CRN4NUL has abstracts of 424 documents on aerodynamics, which were used
by the Cranfield Project. The corresponding query collection involves 155
queries.

—MEDNUL is a collection of 450 documents and 30 queries. The documents are
in the area of biomedicine.

—MEDLARS is a collection with 1,033 documents, also in biomedicine, and has
30 queries associated with it.

The indexing of the first three collections is done automatically in the SMART
sysnem [Oj, usmg tne woru-snem metnoa 1 ne laSE two COlleLElOIlS are SuDSGtS OI
documents prepared by the National Library of Medicine. The query collections
include, for evaluation purposes, information as to which documents are relevant
to each query.

The standard recall and precision measures are used for comparing the per-
formance of different strategies for weighting index terms. Recall is defined as
the proportion of relevant documents retrieved and precision is the proportion
of the retrieved documents actually relevant. The overall performance of a

strategy is determined by processing the queries with that strategy and computing

the average precision over all the queries for recall values 0.1, 0.2, ..., and 1.
The algorithm for averaging is consistent with that implemented in the SMART
system.

The comparison of one method with another is accomplished by presenting
the percentage improvement of both relative to a base strategy. The standard
COSINE matching technique, where both documents and queries are weighted
and terms are assumed to be pairwise orthogonal, is used as the base. In the
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tables consisting of experimental results, the set of precision values corresponding
to the base method are labelled VSM.

6.2 Evaluation of the GVSM

As mentioned in Section 4, the term occurrence frequency data are the basis for
prescribing the document vectors. Specifically, the ath document is given by

where w,,, the component of d, along £;, is the number of times term t; appears
in the ath document. Equations (5.8) and (5.9) are used to obtain a vector
representation for each term t;. That is, each ¢; is expressed as a linear combi-
nation of the orthonormal basis vectors {m}s». Given the term vectors, term-term
similarities are computed in a straightforward manner (as the scalar product),
and these are incorporated in the retrieval process, for ranking purposes, by using
Eq. (3.3).

The retrieval performance, when this approach is used, is compared to
that of the VSM in Tables I(a), I(b), I(c), and I(d) respectively for ADINUL,
CRN4NUL, MEDNUL, and MEDLARS collection. The column of precision
values for the proposed scheme is labelled GVSM.

Significant improvement over the standard implementation of the vector model
is observed. The GVSM gives consistently better results in that the precision
values are higher for every recall level and for all four collections tested. The
ADINUL, CRN4NUL, and MEDLARS collections yield, respectively, average
improvements of 29%, 20.5%, and 31.7%. For the MEDNUL collection, the
improvement is an impressive 150.9%.

Although the standard vector model with COSINE similarity is often used as
the base strategy, it may not be a fair comparison in our context since the
standard model ignores term similarities. Unfortunately, there seems to be very
little one can do to correct this. For one thing, any of the methods in earlier
literature is not nearly as sound as the proposed scheme from a theoretical
viewpoint. Moreover, earlier experiments based on term cooccurrence data have
not led to worthwhile improvements in performance. For example, Minker et al.
[3] conclude that, when retrieval is carried out using their scheme for query
expansion, the only significant changes observed in overall performance are
degradations, although some small improvements over limited portions of “recall”
range can be realized in a few isolated instances. Salton has also noted that the
utility of fully automatic methods of thesaurus construction is marginal at best,
[71. More precisely, automatic refinement of manually constructed thesaurus is
believed to be the most promising. Consequently, earlier proposals for incorpo-
rating term-term similarities are not included for comparison.

There are, however, other well-known approaches in the literature that perform
better than our base strategy. An example of such a method is to use the term
frequency weights in combination with inverse document frequency (IDF)
weights. We therefore use this kind of a weighting scheme for comparative
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Table I (a) and (b). VSM versus GVSM

ADINUL (82 DOCS 35 QUES) CRN4NUL (424 DOCS 155 QUES)
Precision Precision

Recall VSM GVSM Recall VSM GVSM
0.1 3786 4587 0.1 6415 7005
0.2 3434 4253 0.2 5540 6250
0.3 3094 3433 0.3 4514 5246
0.4 2587 3289 04 3621 4459
0.5 2465 3104 0.5 3249 4040
0.6 1887 2613 0.6 2726 3251
0.7 1357 1993 0.7 2059 2502
0.8 1283 1879 0.8 1655 2084
0.8 1092 1361 0.9 1241 1574
1.0 1082 .1353 1.0 1179 1492
Improvement 29.0% 20.5%

Table I (c) and (d). VSM versus GVSM

MEDNUL (450 DOCS 30 QUES) MEDLARS (1033 DOCS 30 QUES)
Precision Precision
Recall VSM GVSM Recall VSM GVSM
0.1 4975 .7918 0.1 7824 .8280
0.2 3577 7187 0.2 6931 .7685
0.3 3047 6462 0.3 5879 6931
0.4 .2548 6061 04 5450 6358
0.5 .2186 58958 0.5 4409 5907
0.6 1934 5210 0.6 3821 5263
0.7 .1642 4467 0.7 .3296 4469
0.8 1328 .3658 0.8 2708 .3866
0.9 0996 .3100 0.9 .1547 2841
1.0 .0755 2270 1.0 0832 1549
Improvement 150.9% 31.7%
purposes. The specific form of IDF weight adopted is as foliows:
IDF,‘j = Wij; [ g _l
L i

where

N = the total number of documents in the collection, and
n; = the total number of documents that contain term j.

In both VSM (IDF) and GVSM (BQ) methods, the query terms are assumed to
be unweighted. The performance results in Tables II(a) and (b) and II(c) and (d)
show that VSM (IDF) is better than VSM (see Tables I(a)-(d)) for each collection.
Although GVSM (BQ) is not always better, in three out of the four collections
GVSM gives a better retrieval performance over VSM. The percentage of
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Table II (a) and (b). VSM(IDF) versus GVSM using Binary Queries

ADINUL (82 DOCS 35 QUES) CRN4NUL (424 DOCS 155 QUES)
Precision Precision

Recall VSM(IDF) GVSM(BQ) Recall VSM(IDF) GVSM(BQ)
0.1 4714 4572 0.1 .6817 7110
0.2 4523 4237 0.2 6129 .6345
0.3 3941 3631 03 4973 5324
04 .3509 .3290 04 4107 .4456
0.5 .3453 .3090 0.5 .3690 .4026
0.6 .3038 .2607 0.6 .3050 .3239
0.7 .2230 .1906 0.7 .2269 .2507
0.8 2143 1831 0.8 .1804 .2078
0.9 1842 .1406 0.9 .1359 .1563
1.0 .1825 1397 1.0 .1287 .1482
Average improvement -12% +10%

Table II (¢) and (d). VSM(IDF) versus GVSM using Binary Queries

MEDNUL (450 DOCS 30 QUES) LARS (1033 DOCS 30 QUE
Precision Precision
Recali VSM(IDF) GVSM(BQ) Recall VSM(IDF) GVSM(BQ)
0.1 .8247 .8199 0.1 8511 8400
0.2 7339 7497 0.2 7682 7868
0.3 6455 6714 0.3 6848 7194
04 5239 6416 0.4 5965 6454
0.5 4759 6199 0.5 4954 6026
0.6 3966 5474 0.6 4183 5345
0.7 3592 4584 0.7 3531 4398
0.8 2586 3577 0.8 3010 3751
0.9 2010 2567 0.9 1848 27406
1.0 1450 2200 1.0 0865 1576
Average improvement +26% +24%

improvement is computed by comparing the average precision over all recall
values of a given strategy with the corresponding average of the base strategy.
The improvement in the average precision can be imagined as an approximation

of tha narcantacn nhanoa in tha araa 11indar tha racnantiva nranicinn-ranall mirvag
UL ViIT PUILTIivagT VIIQIETU 11 VT ALivQ Ulluvi uiie Lvuyvvuxvv PLVUISIVIITITVUQLL LUl YV UD.

That is, the average improvement for GVSM is 10% in CRN4NUL, 26% in
MEDNUL, and 24% in MEDLARS. The reason for the behavior in the ADINUL
coliection is possibly explained by the collection statistics presented in the
subsequent sections.

In summary, we find the proposed scheme to determine term-term similarities
and to incorporate them for ranking purposes to be very effective. Although the
performance improvement achieved is very encouraging, the approach does

involve a vrice in the form of computine resources. First, there igs the cost

AZiVLY T pFAALT aid vadU dULAE UL VLA evadlpn AVOVMAUTS. L 2iDU) vaiTAT AT vail VUS

associated with starting from the term distributional data and obtaining the
vector representation of each document in terms of the m’s, the fundamental
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Table III. Distribution of Atoms in the Document Vectors

Total number of atoms

Coefficient

of atom ADINUL CRN4NUL MEDNUL MEDLARS
0.00-0.05 2,027 144,747 133,321 879,485
0.05-0.10 3,744 23,886 7,881 32,632
0.10-0.20 830 4,164 2,078 5,903
0.20-0.30 23 309 298 593
0.30-0.40 0 90 59 90
0.40-0.50 0 105 14 95
0.50-0.60 2 106 15 173
0.60-0.70 25 89 29 271
0.70-0.80 36 54 99 306
0.80-0.90 19 14 197 163
0.90-1.00 0 2 107 28
ATOMS < .05 30% 83% 93% 96%

concepts. This is not a major concern, since it is a one-time cost. Second, there
is an increase in the retrieval time, which is due to the fact that the similarity
computation, as denoted by Eq. (3.3), is more complicated. This effect, in our
implementation, comes through by way of increase in the number of nonzero
coefficients in the typical document. That is, the document-by-fundamental-
concept matrix is not as sparse as W. Since a substantial increase in retrieval
time with respect to individual queries is not attractive, we perform some
experiments that represent an approximation of the GVSM.

6.3 Experimental Evaluation of GVSM Approximations

6.3.1 Component Approximation. Although the document-by-fundamental-
concept matrix is not sparse, we expect that many of the matrix elements to be
extremely small. If this is the case, then by ignoring coefficients that are
considered to be too small, the retrieval process can be speeded up. Conceptually,
this is a way of approximating term correlations, which is somewhat analogous
to the use, for example, of tree dependence in the context of probabilistic models
{2, 13]). Thus our approach to the approximation of the GVSM consists of
including only those m’s having sufficiently large coefficients in the expansion
of a document.

In order to determine the cut-off value where a certain component is small
enough to be dropped, a frequency distribution of the values in the document-
by-fundamental-concept matrix is computed. These values, for the four collec-
tions, are presented in Table IIL

A careful study of the figures in Table III, as well as the data it is derived from,
shows that a vast majority of the matrix elements are small. In the case of
ADINUL, there is a distinct gap in the value of the coefficient of the domain m
in any document versus the other m’s. This is seen by the fact that there are
exactly 82 coefficient values that are greater than 0.5. The values less than 0.3
correspond to nondominant riz’s. While the separation is less distinct in other
collections, it is seen that a much higher percentage of values is small in the
larger collections. From the distribution, it is decided that 0.05 is a reasonable
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Table IV (a) and (b). Component Approximation versus GVSM

ADINUL (82 DOCS 35 QUES) CRN4NUL (424 DOCS 155 QUES)
Precision Precision
Recall GVSM C-Approx. Recail GVSM C-Approx.
0.1 4587 4315 0.1 7005 6855
0.2 4253 4162 0.2 6250 6132
0.3 .3433 .3380 0.3 5246 5181
0.4 .3289 3254 0.4 .4459 4241
0.5 3104 .3066 0.5 .4040 .3877
0.6 2613 .2545 0.6 3251 3032
0.7 .1993 .1897 0.7 2502 .2356
0.8 .1879 .1708 0.8 .2084 .1955
0.9 1361 1234 0.9 1674 1475
1.0 1353 1227 1.0 .1492 .1406
Improvement over VSM 22.8% 15.0%
Improvement over GVSM  —4.7% -4.5%

Table IV (¢) and (d). Component Approximation versus GVSM

MEDNUL (450 DOCS 30 QUES) MEDLARS (1033 DOCS 30 QUES)
Precision Precision
Recall GVSM C-Approx. Recall GVSM C-Approx.
0.1 71918 71846 0.1 .8280 .8322
0.2 7187 7016 0.2 7685 7527
0.3 6462 6403 0.3 6931 7149
0.4 6061 5817 0.4 6358 6503
0.5 .5898 .5706 0.5 5907 .5908
0.6 5210 5101 0.6 5263 5296
0.7 4467 4413 0.7 4469 4654
0.8 .3658 .3589 0.8 .3866 .3847
0.9 .3100 .3080 0.9 .2841 2719
1.0 2270 .2061 1.0 .1549 1517
Improvement over VSM  143.8% 37.4%
Improvement over GVSM —27.0% 4.0%

value of cut-off. The bottom row of the table shows that for the CRN4NUL,
MEDNUL, and MEDLARS collections, the percentage of coefficients dropped
is respectively 83, 93, and 96. This approximation would therefore cut down the
retrieval time drastically, and the amount of savings is expected to increase with
the size of the coliection. In particular, the three larger coliections shouid speed
up the retrieval time by a factor of 8 to 10.

Table IV (a, b, ¢, and d) presents the performance results with the above
approximation. For these experiments, the document representations are
renormalized after coefficients below 0.05 are ignored. The columns of precision
values for the approximation are labeled C-Approx. For ADINUL, CRN4NUL,
MEDNUL, and MEDLARS, the C-Approx. is better than VSM by respectively
22.8%, 15%, 143.8%, and 37.4%. Furthermore, the approximation results are not
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significantly different from those of the GVSM. The differences vary, for the
four collections, from —4.7% to +0.4%; very small indeed. As far as retrieval time
is concerned, it is expected that cut-off can be small enough to achieve a speed
comparable to, 1f not better than, VSM. Consequently, we believe that the

nnnnnnn A oaln 4 ~anler affnndiern e
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6.3.2 Dominant-Atom Approximation It is mentioned in Section 6.3.1 that we
can associate a particular m m, the dominant m m, with each document. The dominant

LA QSSULIGW AL vAV IR VaAaT SAURIAAIQRLLY Ty Wavdl DRI WU RRIAITALY. 4 L0 [l

m is expected to receive the largest coefﬁment in the vector representation of the
document. If each document is represented as a linear combination of several
m’s, then we have the situation where documeni-document similarities are
assumed to exist. In contrast, if each document is simply represented just by a
single r, then the effect is to assume documents as being uncorrelated (just as a
matter of convenience or simplification).

When such a simplification is made, the queries can still be handled as before.

That ig term conccurrencas can otill he nsad ta obtain tarm-tarm similaritice and
i aav 15, 1Worinl COOCCUITeICEs Call Slii UC USCG 10 00talll 1eIml-virin SiMizarivics anG

to determine query vectors. Thus we have the special case of the GVSM where
term similarities are not ignored, but documents are deemed orthogonal to each
other.

This special case is very attractive from a computational point of view, because
now the matrix (document-by-fundamental-concept) is diagonal. This means
each document is described by a single m and the scalar product between a
document and a query is simply the coefficient of that m in the query vector. It

ijs sagv to gsocae that anarv-document similarity comnutation will hn decreased
18 €asy 10 se¢ itnat query-qedument Simuarity compuiatiion wiil decreaseq

drastically, assuming that the (one time) preprocessing to represent the index
terms in terms of m’s has been done.

The retrieval performance, when each document is represented only by the m
with the largest coefficient, is summarized in Table V. The columns of precision
values are labelled DA-Approx.

Naturally, the retrieval performance of DA-Approx. is not good in comparison
to the GVSM, except in the case of the ADINUL collection. The ADINUL

collection ig a special case where, in our sense, documents indeed are almost

L1073 L0171 1083 & Spolitl Last WAKKIT, ail VUL SPiist, [RVULRAANIALS 1IXCW &I Qs

orthogonal to each other. The more interesting result is that, for ADINUL and
MEDNUL, DA-Approx. is better than the VSM by 28.3% and 82.5%, respectively.
For the other two collections, DA-Approx. is only slightly worse (by about 10%).
These results lead us to believe that DA-Approx. can be very attractive in order
to provide a first-cut retrieval very quickly. Such a result can then be refined
using relevance feedback techniques [6, 9, 11].

DA-approximation is not only interesting in terms of its computational econ-
omy, bhut also because of its theoretical connection to strict Boolean retrieval
systems. In Section 5.2 it is mentioned that the m’s comprise the basis of our
vector space and that they are pairwise orthogonal It follows, then, that
UA approx1mauon lS pl'eClSGly Eﬂe spec1a1 case \WlEﬂ respeu, to mq (5 6)
of GVSM) in which documents are deemed orthogonal. In a related paper [14],
where an approach for extended Boolean queries is developed, the mapping of a
strict Boolean system to our vector space results in each document being
represented by its dominant atom.
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Table V (a) and (b). Dominant-Atom Approximation versus GVSM.

ADINUL (82 DOCS 35 QUES) CRN4NUL (424 DOCS 155 QUES)
Precision Precision
Recail GVSM DA-Approx. Recail GVSM DA-Approx.
0.1 4587 4840 0.1 .7005 6325
0.2 4253 4339 0.2 6250 5371
0.3 .3433 3528 0.3 5246 4172
0.4 .3289 .3369 0.4 4459 .3367
0.5 3104 3233 0.5 4040 .3003
0.6 .2613 2720 0.6 3251 .2366
0.7 .1993 1673 0.7 .2502 1748
0.8 .1879 .1608 0.8 .2084 .1288
0.9 1361 1425 0.9 1574 .0996
1.0 1353 1414 1.0 1492 .0932
Improvement over VSM 28.3% -11.7%
Improvement over GVSM  0.0% —26.4%

Table V (¢) and (d). Dominant-Atom Approximation versus GVSM

MEDNUL (450 DOCS 30 QUES) MEDLARS (1033 DOCS 30 QUES)
Precision Precision
Recall GVSM DA-Approx. Recall GVSM DA-Approx.

0.1 .7918 7190 0.1 .8280 7094
0.2 7187 .6521 0.2 .7685 .6355
0.3 6462 5670 0.3 .6931 .5502
0.4 6061 5150 0.4 6358 4793
0.5 .5898 .4687 0.5 5907 4132
0.6 5210 3919 0.6 5263 .3439
0.7 4487 3257 0.7 .4469 .2872
0.8 .3658 .2240 0.8 .3866 .2400
0.9 .3100 .1629 0.9 .2841 1484
1.0 2270 1222 1.0 .1549 0680

Improvement over VSM 82.5% -9.9%

Improvement over GVSM —21.5% -31.9%

7. CONCLUSION

It is noted that there is a lack of a sound theoretical basis for determining term
similarities and for incorporating such data in the retrieval process. A rigorous
modei based on the premises of the vector space theory, caiied the GVSM, is
advanced as a solution. The GVSM involves the derivation of new (fundamental)
concepts from the terms used to index documents in a collection and, subse-
quently, the use of these concepts as the basis vectors of the vector space of
interest. It should perhaps be emphasized here that if the collection changes,
theoretically the representation of each individual document in the entire collec-

tion must be modified. However, the same problem occurs in using IDF weights.
Nevertheless, further investigation to resolve this problem would be beneficial.
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The similarities between the original terms are then obtained by analyzing the
occurrence distribution of the various terms in documents. In the context of the

VCLLUI spa(,e IIIUU.CI, I/Ile uu,urpurauun Ul befﬂ.l wrm mmuariueb lllbU blle rebne\iau
process is straightforward.

Experiments are performed to demonstrate that the GVSM is more effective
than the standard implementation of the vector space model, where terms are
assumed to be pairwise orthogonal. Since the GVSM is computationally quite

intense, two approximations to the GVSM are identified and tested empirically.

These experiments indicate that, using our theoretical framework, IR systems
that are both effective and computationally attractive can be developed.
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