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The Vector Space Model (VSM) has been adopted in information retrieval as a means of coping with 
inexact representation of documents and queries, and the resulting difficulties in determining the 
relevance of a document relative to a given query. The major problem in employing this approach is 
that the explicit representation of term vectors is not known a priori. Consequently, earlier researchers 
made the assumption that the vectors corresponding to terms are pairwise orthogonal. Such an 
assumption is clearly unrealistic. Although attempts have been made to compensate for this assump- 
tion by some separate, corrective steps, such methods are ad hoc and, in most cases, formally 
inconsistent. 

In this paper, a generalization of the VSM, called the GVSM, is advanced. The developments 
provide a solution not only for the computation of a measure of similarity (correlation) between 
terms, but also for the incorporation of these similarities into the retrieval process. 

The major strength of the GVSM derives from the fact that it is theoretically sound and elegant. 
Furthermore, experimental evaluation of the model on several test collections indicates that the 
performance is better than that of the VSM. Experiments have been performed on some variations 
of the GVSM, and all these results have also been compared to those of the VSM, based on inverse 
document frequency weighting. These results and some ideas for the efficient implementation of the 
GVSM are discussed. 

Categories and Subject Descriptors H.3.1 [Information Storage and Retrieval]: Content 
Analysis and Indexing-indexing methods; thesauruses; H.3.3 [Information Storage and Re- 
trieval]: Information Search and Retrieval-retricual models; search process 

General Terms: Design, Experimentation, Languages, Theory 

Additional Key Words and Phrases: Boolean algebra, document representation, generalized vector 
space, retrieval strategy, term cooccurrence, vector space theory 

1. INTRODUCTION 

Information Retrieval (IR) systems are designed with the objective of providing, 
in response to a user query, references to documents that would contain the 
information desired by the user. In other words, the system is intended to identify 
which documents the user should read in order to satisfy his (her) information 
requirements. 
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In this environment, the information items to be searched are not simply 
“records” or “tuples” as in conventional database management systems. Instead, 
we have a collection of documents (e.g., books, journal articles, technical reports, 
etc.). In order to identify which documents the user should read with respect to 
his information requirements, some method for the representation of what the 
documents are about (i.e., knowledge representation of documents) is needed. 
Since any knowledge representation of a set of objects provides only partial and 
imprecise characterization of the perceived reality, the representation in the 
system as to the contents of the documents cannot be expected to be entirely 
satisfactory. 

Another problem which is closely related to the difficulty in representing 
the contents of documents is that of characterizing the user need. Although the 
query language used can be very precise relative to the method of representation 
chosen, it is unlikely that the actual user need can be exactly specified by the 
language. 

An additional problem in this context is one of making an assessment as to 
whether or not a document meets the actual needs of the user. That is, not only 
does the system have to represent the documents and user needs, but it must 
also provide a characterization of the process by which the user comes to a 
particular decision concerning relevance. A document may or may not be relevant 
to a user query depending on many variables concerning the document (e.g., its 
scope, how it is written) as well as numerous user characteristics (e.g., why the 
search is initiated, user’s previous knowledge). In any case, whatever the 
information retrieval system does, if a document is judged by the user to be of 
interest, it is relevant; it is nonrelevant otherwise. Since many factors may 
influence the judgement concerning relevance in a complex way, it is easy to see 
that designing an IR system within this frame of reference is very challenging. 
In fact, it is impossible to come up with a “perfect” scheme for representation 
and retrieval whereby only and all relevant documents are retrieved. 

Finally, even if one manages to adopt a “perfect” scheme for representation, 
and a query language with full expressive power, the user may still have difficul- 
ties. From a practical point of view, any such system would be too complex for a 
typical user to master. 

It is due to all these reasons that IR researchers take the view that the system 
should adopt fairly simple methods of representation and seek approaches that 
facilitate the ranking of documents in the order of their estimated usefulness to 
a user query. 

One well-known approach for the design of an IR system, with the above goals 
and constraints, models documents and queries as elements of a vector space 
[6, 9, 111. First, a representation as a vector is developed for each document 
in the collection. This would require the application of some automatic or manual 
indexing technique to the full text or some surrogate (e.g., abstract) of the 
documents in order to identify the index terms or keywords to be used in their 
representation. Second, each index term involved is assumed to correspond to a 
vector, and these vectors together are assumed to generate the vector space of 
interest. The effect of this is that one can express any document as a linear 
combination of these term vectors. Similarly, when a query is presented, it is also 
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put through the indexing process and a vector representing the query is con- 
structed. 

In addition to the representation of documents and queries as vectors, one 
needs to introduce some notion of closeness or similarity between a document 
and a query, between terms, and so on. A natural way to determine closeness 
between these items in the vector space model is to define a scalar product 
between the corresponding vectors. The matching of documents against the 
query, then, consists of computing the scalar product between the respective 
vectors. Finally, the documents are presented to the user in the decreasing order 
of this measure. 

2. MOTIVATION 

Typically, the end result of putting a document collection through the indexing 
process is a document-by-term matrix, where the (i, j)th element of the matrix 
corresponds to the frequency of occurrence of term j in the ith document [6]. Let 
this p X n matrix be denoted by the symbol W, and its elements by wij. 

The most common implementation of the vector space model involves 

(a) the interpretation of the rows of matrix W as the component of document 
vectors along the direction of the various term vectors, and 

(b) t_he tssumption that terms are pairwise orthogonal. That is, scalar product 
ti . tj of any two (normalized) term vectors equals 1 if i = j and equals 0 
otherwise. 

It is well known that the orthogonality assumption is too restrictive. However, it 
has been considered acceptable as a first order of approximation, and many 
useful and interesting results have been obtained despite such a simplifying 
assumption [6, 9, 111. 

While there may be good justification for starting an investigation with a 
simpler model (which is a special case), it is important to clearly understand the 
general model. In Raghavan and Wong [4], it is pointed out that earlier work 
with the vector space model does not fully explain the various concepts and 
interactions that are critical and this, in turn, has led to some misunderstandings 
and inconsistent usage of the model. 

For example, in order to relax the assumption that terms are pairwise orthog- 
onal, term cooccurrence information has been used, and certain methods of 
computing term correlations suggest that the columns of W can be viewed as 
vectors corresponding to the terms, that is, ii = (wii, wzi, . . . , wmi). However, it 
is easily shown that representing terms as columns of W is not consistent with 
representing documents as the rows of W. In other words, if columns of W are 
interpreted as components of terms along document vectors, then the rows 
cannot, at the same time, be used to represent document vectors [4]. 

Raghavan and Wong [4] introduced and explained the various notations and 
definitions necessary for the understanding of vector space model in the context 
of information retrieval. While the difficulties involved in the generalization, to 
the situation where term vectors are not assumed to be orthogonal, were explained 
in detail, approaches to resolve such difficulties were considered only in passing. 
In the current work, a particular approach is thoroughly explored. 
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Two main aspects of dealing with nonorthogonality are 

(i) the definition of what it means to say that two terms are orthogonal, and a 
method of computing the degree of similarity (or correlation) between non- 
orthogonal terms; 

(ii) the incorporation of this information into the retrieval strategy. 

As has been the case in the past, the first aspect of computing the term-term 
correlations is based on cooccurrence data. However, the specific scheme we 
propose for dealing with nonorthogonality leads to a natural and rigorous frame- 
work for identifying a set of orthogonal basis vectors that spans the subspace of 
interest. As for the second aspect, given the premises of the vector space model, 
it can be readily shown how the term-term correlations ought to be incorporated 
into the retrieval process. Thus, in this paper, both of these important phases 
are given a clean, theoretical justification. In contrast, certain methods reported 
earlier have been, for the most part, heuristic and without adequate formal 
support [3, 7, 121. 

Because of the emphasis in this work on a theoretical foundation for utilizing 
term cooccurrence data, it is believed that the significance of our results is 
comparable to that of several recent investigations on term cooccurrence 
[2, 10, 131. This paper is organized as follows. In Section 3, we introduce notions 
and definitions that are needed for subsequent discussions on the vector space 
model. In Section 4, an overview of the steps involved in the proposed generali- 
zation of the vector space model is provided. Section 5 contains the specific 
details of the generalized model and the justification for the various prescriptions. 
The proposed model and a few of its variations are experimentally tested and 
these results are discussed in Section 6. In the final section, the conclusions of 
this investigation are summarized. 

3. NOTATIONS AND BASIC DEFINITIONS 

The basic premise in the vector space model is that the various items of interest 
in the information retrieval environment are modeled as elements of a vector 
space. Specially terms, documents, queries, concepts, and so on are all repre- 
sented as vectors in a vector space. 

Let tl, tZ, . . . , t, be the terms used to index the documents in a collection. 
Corresponding to each term, ti, suppose there exists a vector ii in a vector 
space. For the general case of the model, we consider the set of term vectors, 
16 1 1 5 i 5 n), to be the generating set of the subspace of interest. Thus, any 
vector in the subspace can be expressed as a linear combination of the ils. 

Let dl, d2, . . . , dp denote the documents in a collection and let ((i, = 
bal, 4r2, - * * , %) I1 5 (Y 5 p) be the set of vectors representing the documents, 
where a,i’s are real numbers. More precisely, a,i is the component of & along the 
direction of the term vector t’i. It follows then, that 

& = i U,i&. (3.1) 
i=l 
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Definition 3.1. A set of vectors {i&, . . . , iik) is linearly dependent if there exist 
some scalars cl, c2, . . . , ck not all zero, such that 

e . Cl& + c2u2 + * * - &i&z = 6. 

Clearly, if the set {&, i2, . . . , ;,,I is linearly independent, then this set of vectors 
is also a basis for the subspace of interest, the subspace is of dimension n, and 
the expansion of & given in Eq. (3.1) is unique. In contrast, if the set of vectors 
Vl, t2, - - *, t,,) that spans the vector space is linearly dependent, then the 
dimension of the vector space is n’, for some n ’ C n, since a set of linearly 
independent vectors consisting of n’ vectors can always be selected from 
{t;, i2, . . . , in). 

Definition 3.2. Given a vector space V, the scalar product ii - v’ of any two 
vectors ii, 6 E V, is given by 1 ri 1 . 1 ii 1 cos 0, where 1 ii 1 and 1 u’ I are the lengths 
of the vectors and 0 is the angle between Li and ii. 

-Two term vectors, ii and 4, a:e orthogonal if t’i . 4 = 0. If every pair of vectors 
(ti, tj) for i # j in the set (tl, t2, . . . , t,,) is orthogonal, then the set is linearly 
independent and forms a basis for the subspace_under consideration. The con- 
verse, however, is not true. That is, the set ( tl, t2, . . . , in) may be linearly 
independent, but not necessarily pairwise orthogonal. From the above discus- 
sions, it should be clear that, when adopting the vector space model, one cannot 
assume that term vectors are necessarily pairwise orthogonal. 

Now let us consider the issue of ranking documents with respect to a 
query as a part of the retrieval process. The fact that the set of term vectors 
$1, ti, . . * , &) is considered a generating set implies that not only the documents, 
but also the queries, can be represented as a linear combination of the &‘s. 
A query vector t can, therefore, be expressed by 

i&.t;. 
j=l 

(3.2) 

Given the expression in (3.1) and (3.2), and assuming that the scalar product 
between two normalized vectors is a measure of their similarity (cosine similarity 
function), we have 

ci, - i = i i a,iCJjii * i$, where (Y = 1, 2, . . . , p. (3.3) 
j=l i=l 

We can, then, rank the documents relative to i in terms of the values of the 
above similarity function. Thus, for our purposes, we need to know arri)s, the 
components of documents along the various term_vec!ors as well as the similarity 
between every pair of term vectors expressed as ti . tja Note that we may or may 
not know the vector representation for the 6’s explicitly. 

4. OVERVIEW 

In this section an overview of how we propose to resolve the problems and issues 
associated with the use of the vector space model is presented. More specifically, 
we identify the assumptions or hypotheses needed, the kinds of data in the 
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physical problem that are considered as given, and the mapping of these data to 
the elements of the vector space model. The last issue mentioned above concerns 
the interpretation of the objects and relationships in the physical problem to the 
formal objects and components of the model. 

As mentioned in the introduction, it is common to start with a document-by- 
term matrix IV, which has been obtained from a document collection through a 
process of indexing. The matrix element w,i of W is the occurrence frequency of 
term ti in document d,. In the context of the vector space model, there are a few 
different options for interpreting the elements of W [4]. For the purposes of this 
paper, w,i is interpreted as the component of the document vector & along term 
vector 6. That is, arri = w,i. It follows from Eq. (3.1) that 

i=l 

We further assume that the components of a query vector along the various term 
vectors is determined in a similar fashion. However, from the point of view of 
computing the document-query similarity defined by Eq. (3.3), the term-term 
similarities are still unknown. 

On the one hand, one could side-step this issue by assuming that there does 
not exist any correlation between terms. In other words, the assumption is that 
the terms are pairwise orthogonal. This is, clearly, not satisfactory. On the other 
hand, a prescription for obtaining term-term similarity measures can be proposed. 
Our aim is to take the latter route. In doing so, we would like to also ensure that 
the prescription is a natural and rigorous extension of the conventional vector 
space model. 

Before we can measure term-term similarity, there must first be a determina- 
tion of what we want to mean by saying that two terms are similar. Alternatively, 
we may ask under what condition can two terms be considered not similar or, 
using the terminology of the model, orthogonal. The answer to this question is 
crucial since whatever notion one applies at this stage will essentially dictate the 
meaning attached to the similarity between any two vectors within the model. 
Once a meaning is selected, it remains fixed for all subsequent computations of 
similarity between vectors. The real question, then, is to what aspect of the 
physical problem do we want to map the formal concept of orthogonality, which 
is a part of the model. 

A review of earlier work in interpreting term-term similarity suggests various 
directions: 

(i) words in the language can be analyzed from a linguistic point of view to 
obtain synonyms, antonyms, relationships leading to hierarchical structure, 
and so on; 

(ii) term-term relationships can be based on pseudoclassification, where the 
term relationships are obtained by analyzing the way in which document 
representations and similarity computations must be adjusted to obtain 
retrieval results desired by the user [5,8]; 

(iii) term cooccurrence data can be used to determine if the presence of one term 
implies the presence of another, and this fact can be used for obtaining 
term-term similarity [2, 10, 131. 
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It is interesting to note that the direction one chooses also has implication for 
the extent to which terms are imagined to exist, independently of the document 
collection at hand. In the first case above, terms are considered to have meaning 
and relationships between each other, essentially, without particular reference to 
what documents we have in a collection or how they are indexed. In contrast, the 
third case views concepts that correspond to the terms and their relationships 
totally within the context of the particular document representations at hand. 
That is, the meaning of terms are formal notions specified with respect to the 
given collection of documents. 

The specific choice made for the developments in this paper bases the com- 
putation of term similarities on cooccurrence data. In this connection, the 
following hypotheses’ are made: 

Hypothesis 1. A concept (an index term is a special case) is characterized by a 
set of documents. More precisely, a concept corresponds to the maximal subset 
of documents such that every document in the set contains the concept. 

Hypothesis 2. A concept i is unrelated to another concept j if the set of 
documents characterizing concept i does not intersect with the set of documents 
characterizing concept j. 

Hypothesis 3. The greater the overlap between the document sets character- 
izing two different concepts, the more similar are the two concepts. 

The important contribution of the current work is the realization of the vector 
space model in a way that is consistent with the hypotheses given above. The 
model then forms a basis for verifying the validity of the hypotheses as measured 
by the retrieval performance. 

In summary, the investigation of these hypotheses involves the following 
correspondences between model elements and the physical problem: 

(i) vectors representing concepts are such that if sets of documents correspond- 
ing to two different concepts are disjoint, then the associated vectors are 
orthogonal; 

(ii) the scalar product between vectors associated with two different concepts, 
essentially, becomes larger as the amount of overlap between the correspond- 
ing sets of documents increases; 

(iii) the determination of the basis vectors involves the identification of a set of 
fundamental concepts (denoted by C’s in subsequent sections) that are, 
together, complete and are pairwise orthogonal; 

(iv) terms contained in documents are represented as a linear combination of 
vectors associated with the fundamental concepts; 

(v) finally, documents and queries are represented as a linear combination of 
terms, which as mentioned in (iv), are in turn a linear combination of 
fundamental concepts. 

1 These hypotheses are not really new [3,7,12], but they have often not been explicitly identified as 
such. 
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5. DEVELOPMENT OF THE MODEL 
In this section the essential features of the model being proposed are developed 
and justified. The resulting model is referred to as the Generalized Vector Space 
Model (GVSM). The justification for the GVSM is provided both by considering 
how the limitations associated with Boolean retrieval can be removed and by 
showing that it is a theoretically sound generalization of the conventional vector 
space model for handling term correlations. The measure of term correlation is 
based on term cooccurrence information. The first step in the development is to 
explain how the elements of Boolean algebra may be modeled as vectors in a 
vector space. It is then pointed out how terms that are represented as Boolean 
expressions in a Boolean retrieval system can be modeled as vectors in a vector 
space. In the vector space corresponding to the Boolean retrieval model, if 
documents are not identical then they are, by our definition, orthogonal. Finally, 
these concepts are generalized to handle nonorthogonality and the situation 
where documents and query are represented by weighted terms. 

5.1 Vector Representation of Elements of a Boolean Algebra 

Let xl, x2,. . . , xn be n literals used to generate the free Boolean algebra, denoted 
BP. Any Boolean expression composed of these literals (using operators AND, 
OR, or NOT) is an element of the algebra. 

What we desire is to identify a vector space such that every Boolean expression 
in BP” corresponds to a vector in the vector space. In a vector space it is necessary 
to specify a set of vectors that form a basis. If a basis is known, then any vector 
in the space can be expressed as a linear combination of the basis vectors. Since 
the intent is to obtain a way of expressing every possible Boolean expression, it 
is appropriate to have the set of basis vectors correspond to a set of fundamental 
expressions which can be combined to generate any element of the algebra. We 
therefore employ the notion of an atomic expression. 

An atomic expression, or a minterm, in the n literals x1, ~2, . . . , x,, is a 
conjunction of the literals where each xi appears exactly once and is either in 
complemented or uncomplemented form. Clearly, there are 2” minterms in all. 
It is well known that the conjunction of any two minterms is always zero (false) 
and that any Boolean expression in the literals x1, x2, . . . , X, can be uniquely 
expressed as a disjunction of minterms. The representation obtained in this way 
is the well-known disjunctive normal form. 

Let (77~~)~” denote the set of minterms in Bzn. In order to characterize a vector 
space in which these correspond to the basis vectors, we define a set of 
2”dimensional vectors I&). These vectors constitute an orthonormal basis 
of the vector space in R2” as follows: 

_ ml = (1, 0, 0, . . . ) 0) 
e 

m2 = (0, 1, 0, . . . , 0) 
& = (0, 0, 1, . . . , 0) 

(5.1) 

e 
m2n = (0, 0, 0, . . . , 1) 
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Given these, it is easily seen that the vector representation of any Boolean 
expression is given by the vector sum of the basis vectors which correspond to 
the minterms in the disjunctive normal form of the expression. 

The assertion that, for any two vectors r& &j, the scalar product & - r;ti is 
zero corresponds to the fact that the conjunction of atomic expressions mi and 
mj is zero. In general, if two vectors are not orthogonal, then the corresponding 
Boolean expressions have at least one minterm in common. 

5.2 Vector Representation of Terms Assuming No Weights 

The ideas developed in Section 5.1 can be applied to an information retrieval 
environment and each index term can be given an explicit vector representation. 
Let the indexing vocabulary consist of terms ti, tZ, . . . , t,. Any literal can appear 
in a Boolean expression either as 6 or tip depending on whether it needs to 
be complemented or not. In particular, conjunctive expressions, where every 
literal appears in either uncomplemented or complemented form are the atomic 
expressions. 

Let (mk)p denote the set of all atomic expressions in the literals ti, tz, . . . , t,,. 

Then, since each ti is itself an element of the Boolean algebra generated, ti can 
be expressed in its disjunctive normal form: 

ti = mi, OR mi, . . . OR mi,, (5.2) 

where the m,;‘s are minterms in which ti is uncomplemented. Let the set of 
minterms in Eq. (5.2) be denoted by (ml’. We can now define basis vectors 
analogous to Eq. (5.1) and the term ti can be written in the vector notation as 

t’i = 1 ?iih. (5.3) 
m&{m)i 

Alternatively, 

(5.4) 

where 

1; 
GA= 0 

-i 
if mk E (m)’ 

f otherwise. 

That is, the term vectors are a linear combination of the &h’s, the basis vectors, 
and the vector sum operator is mapped to the Boolean operator OR of Eq. (5.2). 
Furthermore, the scalar product between any two basis vectors is zero, corre- 
sponding to the fact that the ANDing of two minterms is “false.” 

5.3 The Generalized Vector Space Model (GVSM) 

In this section we review the essential features of the GVSM [14,15]. This model 
is the result of incorporating the idea developed in Section 5.2 into the framework 
of the conventional vector space model. One of the main steps in this process 
involves the generalization of the term vector representation in such a way that 
the expansion coefficients in Eq. (5.4) are not binary. The determination of these 

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987. 



308 l S. K. M. Wong et al. 

coefficients is, however, closely tied in with our hypothesis of what is meant by 
two terms being not orthogonal (or correlated). This is because, once the coeffi- 
cients are specified, the scalar product between any two nonbinary vectors 6 and 
6 is defined. Since scalar product being zero implies orthogonality, a nonzero 
value must represent a measure of nonorthogonality. 

53.1 Document and Query Representation in GVSM. From Eq. (3.1), it is seen 
that in the VSM the representation of a document is taken to be a sum of term 
vectors. In the GVSM we continue to use the vector sum operator and hypothesize 
that a document should be expressed as the vector sum of the associated term 
vectors. More precisely, 

Jo= _ Walt1 + w& + - - * wanin 

= i W&ii. 
i=l 

(5.5) 

Since the term vectors are of the form specified in Eqs. (5.4) and (5.5) implies 
that the documents can be represented as a vector sum of the rit’s. That is, 

J2 = ii, G&9 (5.6) 

where the tits are yet to be specified. Although the use of Eq. (5.6) for obtaining 
a vector representation of documents can be taken simply as a hypothesis, the 
following points are noted in support of that choice. 

Let da be a document indexed by terms (&, taz, . . . , t,,). Imagine also that we 
are working in a strict Boolean environment where each query is a Boolean 
expression in ti)s, the literals associated with the terms. Then d, should be 
retrieved for a query q, if the disjunctive normal form of q includes the minterm 
in which precisely the literals trill , ta2, . . . , tar are not negated and all other literals 
are negated. Now, if this case is modeled by our vector model, we would have 

ci, = liii,, 

such that mC = tml AND t,z AND t -.a OIr AND t,,+l AND . . . AND Fah,. Let mi, 
be referred to as the dominant atom of c&. Since a query can be a vector sum of 
Ijt’s, we have the correspondence that d, is retrieved for query q if and only if 
da ’ tj = 1. It is clear from the foregoing discussion that representing d, by its 
dominant atom is a special case of Eq. (5.6). We however observe that this 
representation is inflexible in the sense that the condition for retrieval is too 
strict. Furthermore, in this case, if two documents are not identical, then they 
are orthogonal. Thus, Eq. (5.6) has the effect of relaxing the retrieval criterion 
and broadening the scope of the document. 

Our choice of representatior (Eq. (5.6)) can also be justified from another 
point of view. The point is that this kind of broadening of representation is a 
natural way in which to reflect the effect of term similarities. In earlier studies 
involving the use of term-term similarities, the approach employed had some 
parallels. For example, both Minker et al. [3] and Sparck-Jones [12] proposed 
certain algorithms to construct clusters of terms. Then, the incorporation of 
these clusters into the retrieval process consisted of either expanding queries 
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with terms which belong to the same cluster as those already in the query [3], or 
by replacement of the original terms in documents and queries by the new, 
broader concepts (corresponding to the clusters) of which they are a part. In our 
case, we propose to represent each document by a disjunction of certain funda- 
mental concepts. The idea of having m’s other than the dominant atom in 
representing a document can be illustrated with the following example. 

Let us consider a situation involving just three terms, ti, t2, t3. Suppose a 
document d contains terms ti and t3. Furthermore, let there be many documents 
in our collection that contain exactly t1 and t2, implying that we may conclude 
that d’s description should include t2 as well. We make d’s description include t:! 
by letting d be represented by more than one basis vector. More precisely, d is 
represented not just by the dominant atom mi = tl AND i’z AND t3, but also by 
the m; = tl AND t2 AND t3. That is, d is a linear combination of the corresponding 
basis vectors & and fij. We believe that this is an alternative way of incorporating 
the effect of term dependencies; it is well suited to the premises upon which the 
GVSM is based. 

In a general sense, expressing documents as a combination of k’s can also be 
seen as a way to model another aspect of the physical problem. For instance, it 
is well known that there is certain variability in the way trained indexers describe 
the same document [ 161. If several descriptions are equally valid, then, clearly, 
building a system based on just one of them may bias the representation towards 
certain kinds of users. Thus our approach can be seen as a means associating 
more than one description (m’s) with each document and, additionally, having a 
certain measure of importance accorded to each such description. In fact, this 
line of thinking is central to a recent paper by Gordon [l], in which the generic 
algorithm is used as a basis for determining alternative descriptions and corre- 
sponding measures of usefulness for each document. 

It is also necessary to specify the way in which a query will be represented. 
Givenq=(q,,q2,.. . , q,,), we propose that the query be represented as the vector 
sum of the r?i’s involved. That is, 

(5.7) 

This choice is made for the same reason that documents are represented as a 
vector sum of terms. 

Using these prescriptions, both documents and queries can be expressed as a 
linear combination of the rii’s, and the computation of & - 4 is straightforward. 
All that still remains is to show how Eq. (5.4) is generalized to express the .?s as 
a vector sum of rii’s in terms of nonbinary expansion coefficients. As mentioned 
earlier, this requires the meaning of term correlations to be made precise. 

5.3.2 Vector Representation of Terms Using Term Occurrence Frequencies. 
First, a simple example is presented to motivate the approach adopted. 

Example 5.1. Let D be a set of documents indexed only by two terms, tl and 
t2. Let DF be the maximal subset of documents satisfying F, where F is a Boolean 
expression in the t’s. 
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We can identify the following disjoint subsets forming a partition of D: 

Dt,r, = Dt, n & 
D tlt2 = Dt, n D,, 
Dr,t, = Dt, n D,. 

where D,,r,, D,,,,, and so on, correspond respectively to Dt,AND tz, DtlANDt2, and so 
on. (The ANDs are dropped for convenience.) D, denotes the set complement of 
D, (i.e., Dti is the subset of documents not containing ti). 

Based on intuition, we argue that the correlation between any two index terms 
depends on the number of documents in which these two terms appear together. 
This sort of argument based on term cooccurrence information has been the 
basis for measuring term correlation in earlier studies [2, 10, 131. 

Let c(Dp) denote the cardinality of the set DF. For reasons of clarity, the 
cardinality c(D& of the subset Dtlt2 = D, n Dt, (which denotes the number of 
documents containing ti and tz) is first taken as the measure of the “unnormal- 
ized” correlation between ti and t2. We develop a finer measure of term correlation 
using nonbinary weights in the latter part of this section. 

e In-terms of vector notation, the correlation between ti and tz, denoted by 
h * t2, can be conveniently expressed as the scalar product of two normalized 
term vectors, ii and &,, namely, 

-. 
t1 * i; = c2(Dt,t,) 

[c2(Dt,~J + ~~(D,,,,)ll’~[c~(Dtl~~) + ~~(Dt,t,)l~‘~ ’ 
where 

s c(Dt~Jtil + c(Dt,t,)IjZz 

" = [c2(D,,g) + ~~(Dt,t,)]~'~ ' 

t’ = 
c&&2 + c(Dtlt2)& 

[c2(Dt,tJ + c2(~t,t,)l”2 - 
and &, &, and & are the orthonormal basis vectors. 

It is evident from the above example that terms can be meaningfully expressed 
as linear combinations of 5~‘s. Clearly, &, 6r 2, and & correspond respectively 
to the atomic expressions tl F2, tl t2, and F1 t2. In the example, only the presence 
or absence of a term in a document is considered. This limitation is reflected in 
the assertion that c(D& is a measure of the correlation between F1 and F2. 
Furthermore, this example helps in convincing oneself that the expansion of a 
term vector, say E, need not have a nonzero coefficient for all vectors correspond- 
ing to minterms in (ml’. This is due to the fact that term cooccurrence, and the 
cardinalities of other sets used as normalization factors, depend on the particular 
collection of documents at hand. For instance, if tl and t2 do not cooccur in a 
given collection, then the expansion of neither ii nor i2 will involve fi2, 
and & . & will be zero. 

More generally, given terms tl, t2, . . . , t, and a collection of documents of 
cardinalityp, the number of “active” minterms is a subset of all possible minterms, 
which we denoted as (mj2n. Since, in the worst case, each document can corre- 
spond to a different minterm, the number of active basis vectors is at most p. 
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Thus, the expansion of t’i, 1 c: i I n, involves only those basis (atomic) vectors 
restricted to the set of active minterms. It is understood, in subsequent discus- 
sions, that (ti 1’ refers to this subset of active basis vectors. 

Another issue raised in the discussion above is the limitation of using only the 
cardinalities. A natural generalization, which considers the importance of a term 
to the documents (i.e., term weights), should be developed. For this purpose the 
following expression for (unnormalized) t’i is proposed: 

(5.8) 

where the unnormalized form of ci, is given by 

The above concepts are illustrated by the following example. 

Example 5.2. Given a set of documents D = {dl, dz, da, d4) indexed by the set 
of terms T = ( tl, tZ, t3). The weights of each term in the documents are given by 
the following matrix: 

h tz Q 

d, 2 0 1 
W= dz 1 0 0 I 1 d3 0 1 3 

d4 2 0 0 

There are eight fundamental products or minterms, (ml = tl t&, m2 = tl t2t3, 

m3 = tlt2t3, m4 = tlt2t3, m5 .= tlt2t3, m6 = tlTt;F2, m7 = tzt2F3, m6 = 

F1&F3), generated by the literals tl, t2, and t3. In vector notation, these 
minterms can be represented explicitly by the following set of orthonormal 
basis vectors: 

c-l1 = (1, 0, 0, 0, 0, 0, 0, 0) 
& = (0, 1, 0, 0, 0, 0, 0, 0) 
It;3 = (0, 0, 1, 0, 0, 0, 0, 0) 
rii4 = (0, 0, 0, 1, 0, 0, 0, 0) 
&i = (0, 0, 0, 0, 1, 0, 0, 0) 
iij = (0, 0, 0, 0, 0, 1, 0, 0) 

rjt, = (0, 0, 0, 0, 0, 0, 1, 0) 
& = (0, 0, 0, 0, 0, 0, 0, 1) 

Each ti E T can be expressed in a disjunctive normal form as follows: 

tl = tl AND (tz OR t,) AND (t3 OR &) 
= [(tl AND tz) OR (tl AND &)I AND (t3 OR F3) 

= (tl AND tz AND t3) OR (tl AND F2 AND t3) OR 
(tl AND tz AND t,, OR (tl AND t2 AND &3) 

= m4 OR ml OR m5 OR m2, 

tz = t2 AND (tl OR tl> AND (t3 OR ir3) 

= m4 OR m3 OR m5 OR m7, 
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and 
Q = t3 AND (tl OR rli;, AND (tz OR t,, 

= m4 OR ml OR 1713 OR m6. 

From Eqs. (5.8), (5.9), and the above document matrix W, we obtain the following 
normalized term vectors: 

t; = 
2r&+ (1 -t 2)& + 0623 _ * 

[22 -t 32]l’2 
= 0.55ml + 0.83m2, 

t’ 
2 

=o?i& +(0 + O)& + 1623 

[12]1’2 
= rii3, 

t’ 
3 

= I& + (0 + O)& + 3fi3 

[P + 371’2 
= 0.32& + 0.95&. 

By substituting the above expressions for term vectors into Eq. (5.5), it follows: 

ci, = 2& + t3 = 2(0.55&l f 0.83&J + (0.32fi.1 + 0.95&J 
= 1.42& + 1.66& + 0.95&, 

d2 = t; = 0.55& + 0.83C2, 
(i3 = t’, + 3t3 = fi3 + 3(0.32&l + 0.95&) 

t * 
= 0.96ml + 3.85m3, 

Ci, = 2il = 2(0.55& + 0.83&) = 1.1&l + l.66&. 

Similarly, we can transform, for example, the query vector, { = & + i2, into a 
linear combination of atomic vectors, that is, 

cj = (0.55&l + 0.8362) + (its) 
= 0.55&l + 0.83&z + Gz3. 

Then the cosine similarity si = Cii - * d/l di 1 1 i 1 between the normalized document 
d, and the query q can be computed as follows: 

(1.42)(.55) + (1.66)(.83) + (.95)(l) 
” = [1.422 + 1.662 + 0.952]“2[0.552 + 0.832 + 12]1’2 = o’g234’ 

(.55)(.55) + (.83)(.83) + (O)(l) 
” = [0.552 + 0.832] “2[0.552 + 0.832 + 12]1’2 = o*7056’ 

(.96)(.55) + (0)(.83) + (3.85)(l) 
” = [0.962 + 3.852]“2[0.552 + 0.832 + 12]1’2 = o’78lg’ 

(1.1)(.55) + (1.66)(.83) + (O)(l) 
” = [1.12 + 1.662]“2[0.552 + 0.832 f 12]1’2 = o’7056. 

Based on these similarity values (sl > s3 > s2 2 s4), dl will be retrieved first, 
d3 second, and so on. 

Before concluding this section, we relate the formulation presented above to 
earlier work. It should be noted that in Eq. (5.9) the ci,‘s are obtained as the sum 
of term frequency weights, w,i’s, over those documents belonging to D,,. When 
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the cardinality of D,, equals one, Eq. (5.8) can be rewritten as 
t’pc - ULimk. 

m&Im’l 
(5.10) 

In this special case, we obtain the following expression for term correlation: 

(5.11) 

which is in fact similar to the formulas adopted in the experiments at Cornell 
161. Thus, we provide a rigorous framework in which the method of computing 
term correlations used many years ago can be justified. However, the question of 
how to incorporate this information into the retrieval process is answered very 
differently in this work (see Eq. (3.3)). 

6. EXPERIMENTAL RESULTS 

6.1 General Specifications 

Four document collections are used for these experiments: ADINUL, CRN4NUL, 
MEDNUL, and MEDLARS. The collection characteristics are the following: 

-ADINUL is a collection of 82 documents in library science. It consists of the 
full text of papers presented at American Documentation Institute meeting 
held in 1963. There are 35 queries. 

-CRN4NUL has abstracts of 424 documents on aerodynamics, which were used 
by the Cranfield Project. The corresponding query collection involves 155 
queries. 

-MEDNUL is a collection of 450 documents and 30 queries. The documents are 
in the area of biomedicine. 

-MEDLARS is a collection with 1,033 documents, also in biomedicine, and has 
30 queries associated with it. 

The indexing of the first three collections is done automatically in the SMART 
system [6], using the word-stem method. The last two collections are subsets of 
documents prepared by the National Library of Medicine. The query collections 
include, for evaluation purposes, information as to which documents are relevant 
to each query. 

The standard recall and precision measures are used for comparing the per- 
formance of different strategies for weighting index terms. Recall is defined as 
the proportion of relevant documents retrieved and precision is the proportion 
of the retrieved documents actually relevant. The overall performance of a 
strategy is determined by processing the queries with that strategy and computing 
the average precision over all the queries for recall values 0.1, 0.2, . . . , and 1. 
The algorithm for averaging is consistent with that implemented in the SMART 
system. 

The comparison of one method with another is accomplished by presenting 
the percentage improvement of both relative to a base strategy. The standard 
COSINE matching technique, where both documents and queries are weighted 
and terms are assumed to be pairwise orthogonal, is used as the base. In the 
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tables consisting of experimental results, the set of precision values corresponding 
to the base method are labelled VSM. 

6.2 Evaluation of the GVSM 

As mentioned in Section 4, the term occurrence frequency data are the basis for 
prescribing the document vectors. Specifically, the ath document is given by 

where wai, the component of Ci, along t’i, is the number of times term ti appears 
in the c&h document. Equations (5.8) and (5.9) are used to obtain a vector 
representation for each term ti. That is, each & is expressed as a linear combi- 
nation of the orthonormal basis vectors (Ijt)Zn. Given the term vectors, term-term 
similarities are computed in a straightforward manner (as the scalar product), 
and these are incorporated in the retrieval process, for ranking purposes, by using 
Eq. (3.3). 

The retrieval performance, when this approach is used, is compared to 
that of the VSM in Tables I(a), I(b), I( c , ) and I(d) respectively for ADINUL, 
CRN4NUL, MEDNUL, and MEDLARS collection. The column of precision 
values for the proposed scheme is labelled GVSM. 

Significant improvement over the standard implementation of the vector model 
is observed. The GVSM gives consistently better results in that the precision 
values are higher for every recall level and for all four collections tested. The 
ADINUL, CRN4NUL, and MEDLARS collections yield, respectively, average 
improvements of 29%, 20.5%, and 31.7%. For the MEDNUL collection, the 
improvement is an impressive 150.9%. 

Although the standard vector model with COSINE similarity is often used as 
the base strategy, it may not be a fair comparison in our context since the 
standard model ignores term similarities. Unfortunately, there seems to be very 
little one can do to correct this. For one thing, any of the methods in earlier 
literature is not nearly as sound as the proposed scheme from a theoretical 
viewpoint. Moreover, earlier experiments based on term cooccurrence data have 
not led to worthwhile improvements in performance. For example, Minker et al. 
[3] conclude that, when retrieval is carried out using their scheme for query 
expansion, the only significant changes observed in overall performance are 
degradations, although some small improvements over limited portions of “recall” 
range can be realized in a few isolated instances. Salton has also noted that the 
utility of fully automatic methods of thesaurus construction is marginal at best, 
[7]. More precisely, automatic refinement of manually constructed thesaurus is 
believed to be the most promising. Consequently, earlier proposals for incorpo- 
rating term-term similarities are not included for comparison. 

There are, however, other well-known approaches in the literature that perform 
better than our base strategy. An example of such a method is to use the term 
frequency weights in combination with inverse document frequency (IDF) 
weights. We therefore use this kind of a weighting scheme for comparative 
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Table I (a) and (b). VSM versus GVSM 

ADINUL (82 DOCS 35 QUES) CRNINUL (424 DOCS 155 QUES) 

Precision Precision 

Recall VSM GVSM Recall VSM GVSM 

315 

0.1 .3786 .4587 0.1 
0.2 .3434 .4253 0.2 
0.3 .3094 .3433 0.3 
0.4 .2587 .3289 0.4 
0.5 .2465 .3104 0.5 
0.6 .1887 .2613 0.6 
0.7 .1357 .1993 0.7 
0.8 .1283 .1879 0.8 
0.9 .1092 .1361 0.9 
1.0 .1082 .1353 1.0 

.6415 

.5540 

.4514 

.3621 

.3249 

.2726 

.2059 

.1241 

.1179 

.5246 

.4459 

.4040 

.3251 

.2502 

.2084 

.1574 

.1492 

Improvement 29.0% 20.5% 

Table I (c) and (d). VSM versus GVSM 

MEDNUL (450 DOCS 30 QUES) 

Precision 

Recall VSM GVSM 

0.1 .4975 .7918 
0.2 .3577 .7187 
0.3 .3047 .6462 
0.4 .2548 .6061 
0.5 .2186 .5898 
0.6 .1934 .5210 
0.7 .1642 .4467 
0.8 .1326 .3658 
0.9 .0996 .3100 
1.0 .0755 .2270 

MEDLARS (1033 DOCS 30 QUES) 

Precision 

Recall VSM GVSM 

0.1 .7824 .8280 
0.2 .6931 .7685 
0.3 .5879 .6931 
0.4 .5450 .6358 
0.5 .4409 .5907 
0.6 .3821 .5263 
0.7 .3296 .4469 
0.8 .2706 .3866 
0.9 A547 .2841 
1.0 .0832 .1549 

Improvement 150.9% 31.7% 

purposes. The specific form of IDF weight adopted is as follows: 

IDFij = Wij . [log;+ 11, 

where 

N = the total number of documents in the collection, and 
nj = the total number of documents that contain term j. 

In both VSM (IDF) and GVSM (BQ) methods, the query terms are assumed to 
be unweighted. The performance results in Tables II(a) and (b) and II(c) and (d) 
show that VSM (IDF) is better than VSM (see Tables I(a)-(d)) for each collection. 
Although GVSM (BQ) is not always better, in three out of the four collections 
GVSM gives a better retrieval performance over VSM. The percentage of 
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Table II (a) and (b). VSM(IDF) versus GVSM using Binary Queries 

ADINUL (82 DOCS 35 QUES) CRN4NUL (424 DOCS 155 QUES) 

Precision Precision 

Recall VSM(IDF) GVSM(BQ) Recall VSM(IDF) GVSM(BQ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

.4714 

.4523 

.3453 

.3038 

.2230 

.2143 

.1842 

.1825 

.4572 0.1 .6817 

.4237 0.2 .6129 

.3631 0.3 .4973 

.3290 0.4 .4107 

.3090 0.5 .3690 

.2607 0.6 .3050 
A906 0.7 .2269 
.1831 0.8 .1804 
.1406 0.9 .1359 
.1397 1.0 .1287 

.5324 

.4456 

.4026 

.3239 

.2507 

.2078 

.1563 

.1482 

Average improvement -12% +10% 

Table II (c) and (d). VSM(IDF) versus GVSM using Binary Queries 

MEDNUL (450 DOCS 30 QUES) MEDLARS (1033 DOCS 30 QUES) 

Precision Precision 

Recall VSM(IDF) GVSM(BQ) Recall VSM(IDF) GVSM(BQ) 

0.1 .8247 .8199 0.1 .8511 .8400 
0.2 .7339 .7497 0.2 .7682 .x68 
0.3 .6455 .6714 0.3 .6848 .7194 
0.4 .5239 .6416 0.4 .5965 .6454 
0.5 .4759 .6199 0.5 .4954 .6026 
0.6 .3966 .5474 0.6 .4183 .5345 
0.7 .3592 .4584 0.7 .3531 .4398 
0.8 .2586 .3577 0.8 .3010 .3751 
0.9 .2010 .2967 0.9 .1848 .2746 
1.0 .1450 .2200 1.0 .0865 .1576 

Average improvement +26% +24% 

improvement is computed by comparing the average precision over all recall 
values of a given strategy with the corresponding average of the base strategy. 
The improvement in the average precision can be imagined as an approximation 
of the percentage change in the area under the respective precision-recall curves. 
That is, the average improvement for GVSM is 10% in CRN4NUL, 26% in 
MEDNUL, and 24% in MEDLARS. The reason for the behavior in the ADINUL 
collection is possibly explained by the collection statistics presented in the 
subsequent sections. 

In summary, we find the proposed scheme to determine term-term similarities 
and to incorporate them for ranking purposes to be very effective. Although the 
performance improvement achieved is ‘very encouraging, the approach does 
involve a price in the form of computing resources. First, there is the cost 
associated with starting from the term distributional data and obtaining the 
vector representation of each document in terms of the G’s, the fundamental 
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Table III. Distribution of Atoms in the Document Vectors 

Coefficient 
Total number of atoms 

of atom ADINUL CRN4NUL MEDNUL MEDLARS 

0.00-0.05 2,027 144,747 133,321 879,485 
0.05-0.10 3,744 23,886 7,881 32,632 
0.10-0.20 830 4,164 2,078 5,903 
0.20-0.30 23 309 298 593 
0.30-0.40 0 90 59 90 
0.40-0.50 0 105 14 95 
0.50-0.60 2 106 15 173 
0.60-0.70 25 89 29 271 
0.70-0.80 36 54 99 306 
0.80-0.90 19 14 197 163 
0.90-1.00 0 2 107 28 

ATOMS c .05 30% 83% 93% 96% 

concepts. This is not a major concern, since it is a one-time cost. Second, there 
is an increase in the retrieval time, which is due to the fact that the similarity 
computation, as denoted by Eq. (3.3), is more complicated. This effect, in our 
implementation, comes through by way of increase in the number of nonzero 
coefficients in the typical document. That is, the document-by-fundamental- 
concept matrix is not as sparse as W. Since a substantial increase in retrieval 
time with respect to individual queries is not attractive, we perform some 
experiments that represent an approximation of the GVSM. 

6.3 Experimental Evaluation of GVSM Approximations 
6.3.1 Component Approximation. Although the document-by-fundamental- 

concept matrix is not sparse, we expect that many of the matrix elements to be 
extremely small. If this is the case, then by ignoring coefficients that are 
considered to be too small, the retrieval process can be speeded up. Conceptually, 
this is a way of approximating term correlations, which is somewhat analogous 
to the use, for example, of tree dependence in the context of probabilistic models 
[2, 131. Thus our approach to the approximation of the GVSM consists of 
including only those ti’s having sufficiently large coefficients in the expansion 
of a document. 

In order to determine the cut-off value where a certain component is small 
enough to be dropped, a frequency distribution of the values in the document- 
by-fundamental-concept matrix is computed. These values, for the four collec- 
tions, are presented in Table III. 

A careful study of the figures in Table III, as well as the data it is derived from, 
shows that a vast majority of the matrix elements are small. In the case of 
ADINUL, there is a distinct gap in the value of the coefficient of the domain 6 
in any document versus the other fi’s. This is seen by the fact that there are 
exactly 82 coefficient values that are greater than 0.5. The values less than 0.3 
correspond to nondominant rii’s. While the separation is less distinct in other 
collections, it is seen that a much higher percentage of values is small in the 
larger collections. From the distribution, it is decided that 0.05 is a reasonable 
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Table IV (a) and (b). Component Approximation versus GVSM 

ADINUL (82 DOCS 35 QUES) CRNINUL (424 DOCS 155 QUES) 

Precision Precision 

RWXll GVSM C-Approx. Recall GVSM C-Approx. 

0.1 .4587 .4315 0.1 .7005 .6855 
0.2 .4253 .4162 0.2 .6250 .6132 
0.3 .3433 .3380 0.3 .5246 .5181 
0.4 .3289 .3254 0.4 .4459 .4241 
0.5 .3104 .3066 0.5 .4040 .3877 
0.6 .2613 .2545 0.6 .3251 .3032 
0.7 .1993 .1897 0.7 .2502 .2356 
0.8 .1879 .1708 0.8 .2084 .1955 
0.9 .1361 .1234 0.9 .1574 .1475 
1.0 .1353 .1227 1.0 .1492 .1406 

Improvement over VSM 22.8% 15.0% 
Improvement over GVSM -4.7% -4.5% 

Table IV (c) and (d). Component Approximation versus GVSM 

MEDNUL (450 DOCS 30 QUES) MEDLARS (1033 DOCS 30 QUES) 

Precision Precision 

Recall GVSM C-Approx. Recall GVSM C-Approx. 

0.1 .7918 
0.2 .7187 
0.3 .6462 
0.4 .6061 
0.5 .5898 
0.6 .5210 
0.7 .4467 
0.8 .3658 
0.9 .3100 
1.0 .2270 

.7846 

.7016 

.6403 

.5817 

.5706 

.5101 

.4413 

.3589 

.2061 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

.7685 

.6931 

.6358 

.5907 

.5263 

.4469 

.8322 

.7527 

.7149 

.6503 

.5908 

.5296 

.4654 

.3847 

.2779 

.1517 

Improvement over VSM 143.8% 
Improvement over GVSM -27.0% 

37.4% 
4.0% 

value of cut-off. The bottom row of the table shows that for the CRN4NUL, 
MEDNUL, and MEDLARS collections, the percentage of coefficients dropped 
is respectively 83, 93, and 96. This approximation would therefore cut down the 
retrieval time drastically, and the amount of savings is expected to increase with 
the size of the collection. In particular, the three larger collections should speed 
up the retrieval time by a factor of 8 to 10. 

Table IV (a, b, c, and d) presents the performance results with the above 
approximation. For these experiments, the document representations are 
renormalized after coefficients below 0.05 are ignored. The columns of precision 
values for the approximation are labeled C-Approx. For ADINUL, CRN4NUL, 
MEDNUL, and MEDLARS, the C-Approx. is better than VSM by respectively 
22.8%, 15%, 143.8%, and 37.4%. Furthermore, the approximation results are not 
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significantly different from those of the GVSM. The differences vary, for the 
four collections, from -4.7% to +0.4%; very small indeed. As far as retrieval time 
is concerned, it is expected that cut-off can be small enough to achieve a speed 
comparable to, if not better than, VSM. Consequently, we believe that the 
proposed scheme is not only effective but can also be made very efficient. 

6.3.2 Dominant-Atom Approximation. It is mentioned in Section 6.3.1 that we 
can associate a particular A, the dominant fi, with each document. The dominant 
fi is expected to receive the largest coefficient in the vector representation of the 
document. If each document is represented as a linear combination of several 
&‘s, then we have the situation where document-document similarities are 
assumed to exist. In contrast, if each document is simply represented just by a 
single rit, then the effect is to assume documents as being uncorrelated (just as a 
matter of convenience or simplification). 

When such a simplification is made, the queries can still be handled as before. 
That is, term cooccurrences can still be used to obtain term-term similarities and 
to determine query vectors. Thus we have the special case of the GVSM where 
term similarities are not ignored, but documents are deemed orthogonal to each 
other. 

This special case is very attractive from a computational point of view, because 
now the matrix (document-by-fundamental-concept) is diagonal. This means 
each document is described by a single fi and the scalar product between a 
document and a query is simply the coefficient of that fi in the query vector. It 
is easy to see that query-document similarity computation will be decreased 
drastically, assuming that the (one time) preprocessing to represent the index 
terms in terms of fi’s has been done. 

The retrieval performance, when each document is represented only by the r& 
with the largest coefficient, is summarized in Table V. The columns of precision 
values are labelled DA-Approx. 

Naturally, the retrieval performance of DA-Approx. is not good in comparison 
to the GVSM, except in the case of the ADINUL collection. The ADINUL 
collection is a special case where, in our sense, documents indeed are almost 
orthogonal to each other. The more interesting result is that, for ADINUL and 
MEDNUL, DA-Approx. is better than the VSM by 28.3% and 82.5%, respectively. 
For the other two collections, DA-Approx. is only slightly worse (by about 10%). 
These results lead us to believe that DA-Approx. can be very attractive in order 
to provide a first-cut retrieval very quickly. Such a result can then be refined 
using relevance feedback techniques [6, 9, 111. 

DA-approximation is not only interesting in terms of its computational econ- 
omy, but also because of its theoretical connection to strict Boolean retrieval 
systems. In Section 5.2 it is mentioned that the rii’s comprise the basis of our 
vector space and that they are pairwise orthogonal. It follows, then, that 
DA-approximation is precisely the special case (with respect to Eq. (5.6) 
of GVSM) in which documents are deemed orthogonal. In a related paper [14], 
where an approach for extended Boolean queries is developed, the mapping of a 
strict Boolean system to our vector space results in each document being 
represented by its dominant atom. 
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Table V (a) and (b). Dominant-Atom Approximation versus GVSM. 

ADINUL (82 DOCS 35 QUES) CRN4NUL (424 DOCS 155 QUES) 

Precision Precision 

Recall GVSM DA-Approx. Recall GVSM DA-Approx. 

0.1 .4587 .4840 0.1 .7005 .6325 
0.2 .4253 .4339 0.2 .6250 .5371 
0.3 .3433 .3528 0.3 .5246 .4172 
0.4 .3289 .3369 0.4 .4459 .3367 
0.5 .3104 .3233 0.5 .4040 .3003 
0.6 .2613 .2720 0.6 .3251 .2366 
0.7 .1993 .1673 0.7 .2502 .1748 
0.8 .1879 .1608 0.8 .2084 .1288 
0.9 .1361 .1425 0.9 .1574 .0996 
1.0 .1353 .1414 1.0 .1492 .0932 

Improvement over VSM 28.3% -11.7% 
Improvement over GVSM 0.0% -26.4% 

Table V (c) and (d). Dominant-Atom Approximation versus GVSM 

MEDNUL (450 DOCS 30 QUES) MEDLARS (1033 DOCS 30 QUES) 

Precision Precision 

Recall GVSM DA-Approx. Recall GVSM DA-Approx. 

0.1 .7918 
0.2 .7187 
0.3 .6462 
0.4 .6061 
0.5 .5898 
0.6 .5210 
0.7 .4467 
0.8 .365S 
0.9 .3100 
1.0 .2270 

.7190 

.6521 

.5670 

.5150 

.4687 

.3919 

.3257 

.2240 

0.1 .8280 
0.2 .7685 
0.3 .6931 
0.4 .6358 
0.5 .5907 
0.6 .5263 
0.7 .4469 
0.8 .3866 
0.9 .2841 
1.0 .1549 

.7094 

.6355 

.5502 

.4793 

.4132 

.3439 

.2872 

.2400 

.1484 

Improvement over VSM 82.5% 
Improvement over GVSM -21.5% 

-9.9% 
-31.9% 

7. CONCLUSION 

It is noted that there is a lack of a sound theoretical basis for determining term 
similarities and for incorporating such data in the retrieval process. A rigorous 
model based on the premises of the vector space theory, called the GVSM, is 
advanced as a solution. The GVSM involves the derivation of new (fundamental) 
concepts from the terms used to index documents in a collection and, subse- 
quently, the use of these concepts as the basis vectors of the vector space of 
interest. It should perhaps be emphasized here that if the collection changes, 
theoretically the representation of each individual document in the entire collec- 
tion must be modified. However, the same problem occurs in using IDF weights. 
Nevertheless, further investigation to resolve this problem would be beneficial. 
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The similarities between the original terms are then obtained by analyzing the 
occurrence distribution of the various terms in documents. In the context of the 
vector space model, the incorporation of term-term similarities into the retrieval 
process is straightforward. 

Experiments are performed to demonstrate that the GVSM is more effective 
than the standard implementation of the vector space model, where terms are 
assumed to be pairwise orthogonal. Since the GVSM is computationally quite 
intense, two approximations to the GVSM are identified and tested empirically. 
These experiments indicate that, using our theoretical framework, IR systems 
that are both effective and computationally attractive can be developed. 
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