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CHAPTER 1

CONTENT AND LINK STRUCTURE ANALYSIS FOR
SEARCHING THE WEB

Kemal Efe, Vijay Raghavan, and Arun Lakhotia

Center for Advanced Computer Studies
University of Louisiana, Lafayette LA 70504

Finding relevant pages in response to a user query is a challenging task.
Automated search engines that rely on keyword matching usually return
too many low quality matches. Link analysis methods can substantially
improve the search quality when they are combined with content analy-
sis. This chapter surveys the mainstream work in this area.

1. Introduction

Automated search engines continuously discover, index, and store infor-
mation about web pages. When a user issues a query, this repository is
searched to find a result set of most relevant pages. An ideal search scheme
must satisfy two basic requirements: high recall, and high precision. Re-
call measures the ability of an algorithm to find as many relevant pages as
possible. Precision measures the ability of an algorithm to reject as many
nonrelevant pages as possible. An ideal search algorithm should find all of
the relevant pages, rank them by relevance to the user query, and present
a rank-ordered result to the user.

The earlier generations of search engines relied solely on keyword match-
ing to perform the search. Unfortunately this approach didn’t work very
well. Too many nonrelevant pages were returned along with relevant ones,
and their rankings rarely agreed with users’ interests. Since user queries
are short, usually consist of 2-3 words,2? the problems associated with syn-
onyny and polysemy make it particularly difficult to evaluate which pages
will be of interest to a user.

The user is more likely to be interested in a page if it contains au-
thoritative information on its subject and it is relevant to the user query.
Authoritative pages are usually cited by others frequently, and the link
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structure around these pages constitute certain special graph patterns. In
modern search schemes a keyword matching algorithm initially identifies
“potentially” relevant pages based on content analysis. Link analysis (of-
ten combined with further content analysis) is then applied to improve the
search precision by focusing the search within the graph neighborhoods
of these pages. This chapter provides a survey of such approaches. Other

related tutorials can be found in.7»29:24,21,32,33,40

2. Intuitive Basis for Link Structure Analysis

A link on a web page provides valuable and readily available information.
The person who created that link must think, or even recommend, that the
cited page is related to the citing page. The term “collective intelligence”
refers to an unorchestrated outcome from independent web page creators
citing one another. Collective intelligence must surely play an important
role in the formation of collective preferences which would manifest itself
in the form of special graph patterns (or signatures) around authoritative
sources in the web graph. By searching for (or computing) these patterns
we could try to identify the authoritative pages.

M.utual Co-citation
reinforcement o

- = o
o— —eo .

Bibliographic coupling Transitive endorsement

.//° ® ® ®

Fig. 1. Basic patterns formed by two directed edges.

To build an intuitive understanding of link structure analysis, consider
Figure 1 which shows all possible connected graph patterns containing ex-
actly two links. Each of these patterns has a corresponding interpretation:
Mutual reinforcement occurs when two pages cite each other, reinforcing
our intuition that the two pages are related to each other. Co-citation oc-
curs when a page cites two other pages. In bibliometric studies®? it has been
observed that related papers are often cited together. Conversely, papers
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that are cited together are likely to be related. Bibliographic coupling is the
situation where two independent documents cite the same page. From this
pattern we infer that the two pages are related to each other since they
cite the same document. Finally transitive endorsement occurs when page
p1 links to p2 which in turn links to p3. Transitively p; may be considered
to endorse p3. However this is a weak endorsement and is rarely a sign
of true relation between pages (generally the notion of “related to” is not
transitive). We included it in Figure 1 only to cover all possible patterns
involving exactly two links.

Statistical evidence observed in recent research validates these intuitive
assertions.'%1443 However there is a significant percentage of cases when
these assertions are violated. This is because human judgement applied to
web citation is generally subjective and noisy. Also, if topic of discussion
changes on a page, citations at different regions of a page may link to pages
not related to each other. Because of these reasons we consider the above
assertions as weak assertions. After all, for a graph containing only two
links, it is hard to talk about collective intelligence.

F G

Complete bipartite graph  NK-clan with N=2, K=10

Fig. 2. Complex patterns that are indicative of related pages.

In the web graph, these basic structures can blend together to form more
complex patterns of multiple links that further reinforce the implicated
relationships among a set of web pages. For example consider the complete
bipartite graph in Figure 2. In this graph the nodes are divided into two
subsets F' and G such that each node in F' links to every node in G. Above
we have seen that co-cited pages are likely to be related to each other. In
the case of directed complete bipartite graph any two pages x,y in G are
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co-cited by all the pages in F. That is, creators of all of the pages in F
independently thought that x and y were related to each other. Similarly,
by also considering the concept of bibliographic coupling, the aggregation
of links in a complete bipartite graph constitute a strong evidence for the
associated pages to be related to each other. Similar arguments can be
applied to the NK-clan graph in Figure 2 also.

A number of researchers reported successful results from searching for
various pre-defined, special patterns in the web graph by graph-theoretical
methods. These included methods that search for directed complete bipar-
tite graphs,3?4” NK-Clan graphs,®’ and sets of pages that have more links
to members than to non-members.!?® These approaches work well when
searching for a cluster of related pages. Searching for well chosen patterns
often achieve a high precision in the set of pages returned. However, these
methods suffer from poor recall. From a graph-theoretical viewpoint, the
problem of subgraph isomorphism is NP-complete, and there is no guar-
antee that all occurrences of the specified patterns will be found. Also,
there may be high quality pages in other patterns that resemble but not
necessarily identical to the specified pattern being searched. As a result,
many highly authoritative pages may be missed. More flexible techniques
are needed that are general enough to find clusters with known patterns
even if the pattern lacks a few links, as well as detecting clusters with
unknown patterns.

3. Link Structure Analysis

The more successful approaches for determining authoritative pages are
based on computing, rather than searching for graph patterns. These in-
clude authority flow models and random walk models.

3.1. Authority flow models

In this approach, we consider edge creation as a way of creating a channel
through which authority can flow from the citing page to the cited page.
The larger the number of citations received, the geater the authority flowing
into a page. We can compute the authority ranks of pages iteratively as a
function of the amount of authority flow they receive. Consider the graph
in Figure 3 and its adjacency matrix A. Let r be the rank vector that
represents authority ranks of all pages. The amount of authority flown into
each page can be computed by
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Fig. 3. Flow of authority into a page.

r=AT xr.

In this equation the amount of authority pumped out of a page depends
on its rank. Since the rank changes after this computation we are inter-
ested in the final rank values after several iterations, provided the iterative
computation

r(i+1) = AT x r(3) (1)

converges as the iteration count ¢ tends to infinity.

This computation assumes that a page ¢ with authority rank r,(¢) at
iteration ¢ is able to pump all of its current authority weight at each of
its outgoing link. We can modify this computation so that a page divides
its authority equally between its outgoing links. Let a2, be the number of
outgoing links on page q. Let W be the matrix obtained by dividing row ¢
of A by x, for all rows. The above equation becomes

r(i+1) =W xr(i)
or, equivalently
rp(i+1) = Z rq(i)/ 4. (2)
Vg;q—p

When this computation converges, the total authority pumped out of a
page equals the total authority it receives. The final authority value is used
as the rank of a page. A more elaborate version of this computation is used
in Google search engine,* as we will see in section 5.1.
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3.1.1. Correlated Citations

Equations 1 and 2 (or their real-life versions discussed in Section 5) don’t
have any built in mechanism to tell if an authoritative page belongs to
a cluster of pages. An authoritative page on a subject is likely to be co-
cited with other authoritative pages on the same subject, making it part of
an authoritative group. Therefore it is reasonable to augment the authority
rank of a page based on the degree that it is co-cited with other authorities.

To better explain this notion consider a directed graph G and its ad-
jacency matrix A as shown in Figure 4. The matrix product AT A, called
the co-citation matriz,®® has been known in bibliometric studies for a long
time. Observe the following properties of the co-citation matrix.
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Fig. 4. Co-citation matrix and its properties.
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e An entry (p,q) in AT A represents the number of joint cocitations
received by pages p and ¢; i.e. among the pages that cite p the
number that cite ¢ also.

e The diagonal term in row p of AT A is equal to the in-degree of
page p; i.e. the special case when q = p.

e Excluding the diagonal term, the sum of values in row p is the total
number of times the page p is co-cited with other pages.

For the directed complete bipartite graph of Figure 2, all of the non-zero
terms in a row of the co-citation matrix would be equal to the diagonal
term. This is because any page that cites a page x in G also cites all of
the other pages in G. Consequently, number of citations to a page = equals
to its number of co-citations with y for each z,y in G. Now define a new
iterative equation for the computation of authority ranks as follows:

ali + 1] = (AT A) x ali] (3)

Due to the diagonal term in the co-citation matrix a page p receiving
a large number of citations receives a large amount of authority inflow.
Due to the non-diagonal terms, this authority inflow is strengthened by the
degree that page p is co-cited with other pages. In fact, as the reader can
easily verify, co-citations of a page can help improve its authority weight
much more than the mere number of its citations.

3.1.2. Hubs Versus Authorities

If the concept of authority can be measured by in-degrees of pages, is there
a symmetric case for out-degrees? Imagine for the sake of argument that
surfers always follow the links in the backward direction. This is not possible
physically, because web pages don’t have reverse links to the pages citing
them. But if it were possible to go in the reverse direction of links, which
pages would be visited by the most number of surfers?

It turns out that this is a meaningful question with practical implica-
tions. While the reader may find it amusing to write the reverse equations
paralleling those of 1-3 above, we will only consider the case for equation
3. In this case we have the matrix product AAT which is called the bib-
liographic coupling matriz.?6 As ilustrated in Figure 5 the bibliographic
coupling matrix has the following properties:

e An entry (p,q) in AAT represents the degree of bibliographic cou-
pling of pages p and ¢; i.e. the number of pages jointly cited by p
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Fig. 5. Properties of the bibliographic coupling matrix.

and q.

e The diagonal term in row p of AAT is equal to the out-degree of
page p; i.e. the special case when ¢ = p.

e Excluding the diagonal term, the sum of values in row p gives the
total number of times that pages cited by p are also cited by other

pages.

These properties imply that if we define a new equation such as

hli +1] = (AAT) x hli] (4)

we compute the ability of a page to cite good sources. This ability has
two components: Due to the diagonal term in AA”, equation 4 gives higher
weights to pages with larger out-degrees. Due to the non-diagonal terms the
weight of a page is increased proportional to its ability to cite well-cited
pages. This is precisely the ability needed in knowledgeable pages that are
aware of good sources on the web.

In his paper?” Kleinberg called these pages as “hubs.” Internet users
are likely to be interested in both authority pages and hub pages. While a
good authority page may provide valuable content a good hub page may
lead the user to a variety of good authority pages to select from.

3.2. Random Walk Models

In a random walk model, the surfer can be seen as walking on the web
graph, making random decisions about where to go next while at a web
page. Some of the equations in the previous sections admit random walk
interpretations while others don’t. For example equation 1 does not admit a
random walk interpretation since a page pumps out an amount of authority
equal to its own out of every link it has. It would imply that a random surfer
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splits itself into as many copies as the number of outgoing links at each new
page so that each copy of the surfer takes a different path.

Equation 2 avoids this problem by dividing the authority weight of a
page equally between the outgoing links. In this interpretation a surfer is
required to choose one of the outgoing links of the current page to click.
Consequently, the probability of leaving a page, which is equal to one, is
the sum of probabilities for following different outgoing links. It follows,
therefore, that the rank of a page represents the probability of reaching a
page by following the links of the web graph.

To better explain, consider a user who clicks on the links at random.
While at page q assume that the user clicks on the outgoing links with equal
probability. If page ¢ has x, outgoing links, the probability that a user will
click on any of the outgoing links is 1/x,. Then the probability that a page p
is reached by following the links is just the summation term in equation 2. A
modified version of this computation has been used in Google’s PageRank
algorithm.* In pageRank a surfer has two options: either click on one of
the outgoing links or jump to an unrelated page. We discuss PageRank
algorithm in more detail in Section 5.1.

For equations 3 and 4, a random walk model is not applicable. The
situation here is similar to that of Equation 1 where a surfer would have
to split itself into several copies at each new page. Population explosion
of surfers makes this computation less stable than equation 2. Kleinberg’s
HITS algorithm, which uses equations similar to those of equations 3 and
4, normalizes the weight vectors a and h at each iteration to force the
convergence.

The reader will notice that the computations of hubs and authorites in
equations 3 and 4 are derived from equation 1. It is possible to derive these
computations from equation 2 instead, which is the probabilistic version of
equation 1. In particular, let W be the matrix obtained from the adjacency
matrix A by dividing each non-zero term in a row by the number of non-zero
terms in that row. Then the corresponding equations

a=WTWa

h=WWwWTh

represent a random surfer who is allowed a zig-zag walk going forward and
backward on the links of the web graph.3” Considering the directed bipartite
graph of Figure 2, the equation a = W Wa computes the probability that
surfers reach an authority page from other authority pages after a two-step
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zig-zag walk. The diagonal terms in W7 W measure the in-degrees of pages
while non-diagonal terms measure the frequency that a page is co-cited
with other pages. These co-citation edges serve to bring a surfer from one
authority page to another. Similarly, the equation h = WWTh represents
corresponding calculations for hub pages. If the graph is not bipartite, the
computed weights will be dominated by the in/out-degrees of pages. For
pages that are in a bipartite component, the computed weights may be
dominated by zig-zag walkers.

A more general model is obtained by defining different weights for diago-
nal terms and non-diagonal terms in the above computations. If the weights
of non-diagonal terms are set as zero, then the authority ranks of pages de-
pend on their in-degrees alone. Conversely, if the weights of diagonal terms
are set as zero, the computed ranks depend on co-citation frequencies alone.
Similar statements can be made for hub weights also. Without the influ-
ence of diagonal terms, these equations can be used for clustering web pages
based on their membership status in bipartite subgraphs of the web graph.
By adjusting these weights, the model can be made to behave more like the
PageRank algorithm or more like the HITS algorithm.!”

4. Content Analysis Based Retrieval

Link analysis schemes can identify important pages in the web graph but
they cannot tell if a page is relevant to the user query. This task is performed
by content analysis. As we discuss in Section 5, most search schemes start
with content analysis to determine a candidate subset of relevant pages,
and apply link analysis in the graph neighborhood of these pages.

The most basic tool used in various content analysis tasks in information
retrieval is a measure of similarity between two documents. In the case of
web search the user query replaces one of the documents and the other
document is a web page. There are crude but computationally efficient
measures based on vector space models. These measures (see for example,*”
page 318) are all based on computing the inner product of term-frequency
vectors x,y derived from two documents. A popular method is the Cosine
similarity given by

t
Dic1Ti X Yi
T 7
(Ooia @ X 2o Y2
where ¢ is the length of the vectors x and y. This equation can be used for
clustering documents on similar topics.
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In this equation every term has equal weight, meaning that every word
is assumed to have the same descriptive power in determining the topic of a
document. When the user query consists only of a few words, as in a typical
internet search query, inverse document frequency is a more informative
measure of a term’s value as a discriminator. Terms that do not occur
with high frequency are highly useful for distinguishing documents in which
they occur from those they do not occur. Let ¢f; be the total number
of occurrences of term 7} in N documents. Then the inverse document
frequency idf;, defined as idf; = log%, is an indicator of T); as a document
discriminator. Let tf; ; denote the frequency of term j in document 7. The
product w; ; = tfi)jlog%_ can be used as a weight for term j in the above
computation so that seldom used words are given higher weights if they are
found on a given page.

Other variations of the above similarity measure have been defined. For
example the Okapi measure?? takes into account the length of a document in
comparison to the average document length. Three Level Scoring (TLS)?°
is another variation where different weights computed for subqueries of
different lengths are combined together. Cover Density Ranking (CRD)!
is a method where a hit for the whole query has higher weight than a hit
for any subset of query terms regardless of frequency of occurrence. In a
recent comparison,3® these four methods showed no significant performance
difference when they were combined with an improved version of the HITS
algorithm. However, these variations show improvements over the simple
cosine similarity.*”

Other sources of difficulties in relevance measuring of documents are
synonymy and polysemy; many words can have similar meanings while a
word can have several meanings. Synonymy causes many related pages to
be missed while polysemy causes many unrelated pages to be declared as
being authority on a subject. Latent Semantic Analysis (LSA)3%16 and the
Generalized Vector Space Model (GVSM)?3 are the two approaches that are
frequently credited for successfully addressing these problems in informa-
tion retrieval. In these models words are not treated as being independent
from one another; their usage patterns are taken into account as well by
computing an orthogonal vector of terms across documents. In a compara-
tive study®® these schemes were found to facilitate better document classi-
fications, document search, and relevance ranking. It is also noted that the
GVSM model is more efficient and more stable across various parameter
values than the LSA model. A recent review of related indexing methods
in information retrieval has been given in.*®
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Another related issue is where on the page to search for the user query
terms. A web document has a title and a body, both of which contain po-
tential sources of information. Research articles also contain an abstract as
an identifyable section but beyond these most web pages lack any semantic
structure to guide the search algorithms. Brin* notes that searching in the
title alone returns astonishingly good matches. In addition the body text
of the page can be mined for more detailed information about its relevance
such as term frequencies for the query as well as its subqueries. Other use-
ful information includes distance between subquery terms, the fonts, any
highlighting used such as boldface or italic, and others.

Besides these, the anchor text associated with a link that points to
a page provides quite accurate information about the content of a page.
McBryan®! was the first to observe that the anchor text often describes the
content of a cited page better than the page itself. In the opinion of the
person who created that link, the best source for the query in the anchor
text is the cited page. Thus if the user query matches the anchor text,
the pointed page must be an authoritative source for the user query. For
some pages (e.g. the ones that mainly contain images, programs, databases)
there may be no text in the page itself. In such cases, we are limited to the
information in the title of a page and the anchor text associated with the
links pointing to it.

5. Retrieval Techniques Combining Content and Link
Structure Analysis

Google’s PageRank algorithm and Kleinberg’s HITS (Hyperlink Induced
Topic Search) are two of the best known algorithms for topic search. Here
we consider these algorithms and several of their variations proposed in the
literature.

5.1. PageRank Algorithm

Google’s web crawlers continuously search the web to collect new pages
and update the old ones. These pages are stored in a data repository. The
link structure of these pages are stored separately from other information
to represent the web graph. This graph is used for computing page ranks
by using the PageRank Equation off-line.

Google’s PageRank algorithm considers a random surfer who has two
options: either click on a forward link or jump to an unrelated page. Let d
represent the probability that while at page g a surfer chooses to click on
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one of the outgoing links instead of jumping to another page. Then (1 — d)
represents the probability of jumping while at page q. If the surfers select
the jump destinations with equal probability for all pages, then (1 —d) also
represents the aggregate probability that a surfer reaches a given page p
by jumping from any of the other pages. Accordingly the probability that
Google’s random surfer reaches a page p is given by the equation:

rp=(1-d)+d Z Tq/%q (5)

Vq;q—p

where initial page ranks are chosen such that their sum equals to unity. By
appropriately choosing d in the range 0 < d < 1 the above computation
is guaranteed to converge because the parameter d dampens the author-
ity inflow to keep it from growing indefinitely (other modifications to this
computation for eliminating the effects of short loops are discussed in.*%)

When a user issues a query, Google initially uses a keyword matching
scheme to find a set of candidate pages. These pages are then ordered
by their ranks before presenting to the user. This is not a simple case
of sorting the pages by their ranks from equation 5. Rather, the rank of
a page is a complex combination of weights and scores defined on various
parameters, one of them being the static rank obtained from equation 5. The
keyword frequency, position of keywords on the page, fonts, capitalization,
the distance between component words of a multi-word query are examples
of factors that contribute to the rank of a page.*

Google stores the anchor text associated with a link together with the
cited page. During keyword search on a page, these pieces of text are also
considered, and matches found in the anchor text contribute to the rank of
the cited page. A hit on a page has different weights depending on whether
the keyword is found on the title of the page, in the body text, or in the
anchor text of an incoming link. Google also attributes different weights
for links depending on who is citing a page. Citations by reputable sources
such as Yahoo's directory service are weighted more heavily than others.

5.2. Topic Sensitive PageRank

In the original PageRank algorithm a single authority weight is computed
for each page independent of any particular search query. To yield more
accurate results, Haveliwala?? proposed to compute a vector of page ranks
for each page, corresponding to the importance of a page for each category
in a preselected set of topics.
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The main difference here is the way jump probabilities are computed. In
equation 5 above, the probability of jumping is assumed to be same for every
possible destination. In topic sensitive PageRank, jumping probabilities are
computed for each topic.

Let there be N pages in total, of which T pages belong to topic j. In
equation 5, the probability that a surfer jumps to page p is equal to 1/N.
In topic sensitive PageRank this probability is computed as 1/T; if page
p is in topic j. Otherwise the probability of jumping to page p is zero for
category j. The rest of the ranking equation is similar to the PageRank
algorithm.

By using topic-dependent jumping probabilities, different page ranks
are computed for each page, one rank value for each topic. When a user
issues a query, all topics represented in the query are identified. The rank
of a page is computed as the sum of its category ranks for each of these
topics.

5.3. HITS Algorithm

Kleinberg’s HITS algorithm tries to identify hubs and authorities by using
the equations:

h = Aa (6)

a=ATh (7)

which are equivalent to equations 3 and 4. Hub and authority vectors
are normalized before every iteration such that squares of their respective
weights sum to unity. Kleinberg proved that the a vector converges to the
principal eigenvector of AT A and the h vector converges to the principal
eigenvector of AAT. At steady state, pages on a common topic and with
the largest hub and authority weigths are highly likely to represent pages
of a graph resembling the directed bipartite graph in Figure 2.

This algorithm has two major steps: sampling and weight-propagation.
The sampling step uses a keyword-based search to select around 200 pages
by using one of the commercially available search engines. This set of pages
is called the root set. This root-set is then expanded into a base set by
adding any page on the web that has a link to/from a page in the root set.
(These same steps were used earlier in WebQuery system® where authors
called these sets of pages as “hit set” and “complete neighbor set.” Web-
Query ranks pages in the complete neighbor set in decreasing order of their
connectivity, i.e. the number of incoming plus outgoing links). The base set
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typically contains a few thousand pages. The pages in the base set may or
may not constitute a connected graph but at least it has a large connected
component.?3

The weight-propagation step of HITS algorithm computes the hub
weights and authority weights for the pages in the base set by using equa-
tions 6 and 7. The output of the algorithm is a short list of pages with the
largest hub weights and a list of pages with the largest authority weights.
The implementation typically outputs 10 from each group as the final list.
Gibson et al.2® reported that HITS algorithm is very effective in finding
clusters of related pages.

The work of Bharat and Henzinger? showed that a straight implemen-
tation of the HITS algorithm does not work well for topic search. More suc-
cessful implementations depended on using additional heuristics to tackle
the observed causes of poor performance.?® For example Chakrabarti et
al.? observed that when the topic of discussion varies on different parts of a
page, the outgoing links also point to different topics. A page with a large
out-degree will award the same authority weight to each page with which it
links on the subject of the user query. However, these cited pages may not
even be on the same topic. To solve this problem they used a page splitting
heuristic. If large documents are split into several small documents, there
is a smaller probability for the cited pages to be unrelated to one another.
The authors reported significantly improved results with this heuristic.

Li et al.3® present another improvement of the HITS algorithm where
hub weights of pages are increased depending on their authority weights.
A hub page with many incoming links has a higher hub weight than a hub
page with fewer or no incoming links. This is intuitively appealing because
a good hub is likely to be cited, i.e. it must a good authority at being a
hub.

Another problem observed with the HITS algorithm is the Tighyly Knit
Community (TKC) effect. Examples include the Nebraska tourist informa-
tion page being returned in response to a query for skiing in Nebraska,? and
pages on “computational linguistics” dominating the returned pages when
searching for authoritative pages on “linguistics.”2? In both cases HITS has
converged to regions of the web graph with the considerably greater density
of linkage.

Other researchers'?13 observed that the TKC effect of HITS algorithm
is related to its convergence to the principal eigenvectors. Ideally the rank
of a page in the root set should reflect the likelyhood of it being cited in its
community. In HITS algorithm a popular page would be deemed unimpor-
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tant if it is part of a smaller community. For example the root set returned
in response to the query “jaguar” may contain pages on the automobile, on
the animal, on the Atari Jaguar product, or anything else that has the word
“jaguar” in its name. The set of pages represented in the principal eigen-
vector would be dominated by one of these categories completely ignoring
other pages that are rightfully popular in their respective communities.

An improvement over the HITS algorithm eliminating its TKC effect
should then manifest itself in its ability to include popular pages from each
community in the same base set. Cohn and Chang proposed a probabilis-
tic model of citations called the PHITS algorithm where the rank of a
page is supposed to represent the probability of its citation within its own
community rather than within the entire base set. Borodin et. al.? present
comparisons of several variations of the HITS algorithm. Interesting ob-
servations are reported about differences in the sets of pages returned by
different variations of HITS algorithm.

In another implementation, HITS algorithm was used for finding pages
related to a given web page.'® Here the algorithm starts with a seed URL
and finds pages that are related to it. This is similar to the “What’s Re-
lated” facility in Netscape.** In this implementation the base set required
by the HITS algorithm is obtained from the seed URL by including its
parents (the pages that link to it), its children (the pages that it links to),
children of its parents, and parents of its children. At the end of the itera-
tive computations the algorithm outputs 10 of the highest ranked authority
pages. The authors found that instead of a full implementation of the HITS
algorithm, a simpler approach performs much better: Given the seed page,
find the pages that link to it, and then determine “who else” they link to.
The algorithm outputs 10 of the pages that are most frequently co-cited
with the seed URL.

A search engine that needs to respond to thousands of queries per sec-
ond cannot be expected to run complex content analysis algorithms. For
this reason, simple ideas that work are immensely valuable. One such idea
first introduced by McBryan*! is to perform limited content analysis in
the anchor text of links in the citing page. This idea has sound intuitive
basis since the anchor text complements the citation. Creator of that link
says: “here is the most relevant page for the query in the anchor text.” As
mentioned in section 5.1, PageRank algorithm makes use of this concept.

In the CLEVER project, %19 this idea was implemented by comparing
the user query against the text around the link. A relevance weight is com-
puted for each link. The weight w(p, q) is just the number of matches found
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on page p around the link pointing to ¢. This yields a modified adjacency
matrix where the entries are computed as z(p,q) = 1+ w(p, q). Thus if
target page is not related to the search topic, the anchor text should assign
a small weight to the link. Small link weights work as filters that block
transfer of authority toward unrelated pages. The authors report that the
results of the CLEVER algorithm produced substantially improved results
over the HITS algorithm. In fact, in user evaluations, pages returned by
this implementation achieved higher approval than the manually compiled
Yahoo directory.

Another approach! focused on controlling the influence of pages rather
than the individual links in them. Since users only type a few key words, it is
difficult to compute a meaningful similarity measure between the key words
and web documents. Thus the researchers constructed a query document by
combining together the first 1000 words from each document in the root set.
Then they computed the cosine-normalized similarity of this reference page
with all the pages in the base set. This computation yielded the relevance
weights of different documents. These weights are used to dampen the hub
weights and authority weights of pages before each iteration is started.
Authority weight of a page p is computed as a, = a, X r, where 7, is the
relevance weight of page p. This algorithm effectively weeds-out irrelevant
pages in the base set and adjusts the weight of other pages depending on
their similarity with the reference page. The result was much better than a
straight implementation of HITS algorithm.

6. Conclusions and Future Directions

Due to space limitations, much of the ongoing works in related areas are
left out of the scope of this tutorial. Here we briefly mention some of the
potentially useful areas that can further improve the existing search algo-
rithms. For example, more accurate mathematical models may be obtained
by using the observed frequencies of link usages instead of treating all out-
going links of a page with equal weight as in the PageRank algorithm or in
the topic sensitive PageRank. Some work in modeling a non-random surfer
has been reported.® More research in this direction could focus on efficient
implementation of such a non-random surfer model.

Other related research focuses on utilizing user feedback to fine-tune
search parameters. Fundamental techniques for relevance feedback have
been discussed in.?!*® Independently, researchers at the NEC Research In-
stitute have developed several techniques for representing and utilizing user
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context to guide the search schemes.343¢ These schemes are based on tai-
loring and augmenting the query terms to improve keyword matches. Other
work involves creating metasearch engines on the fly to determine the im-
portance of a page depending on the number of search engines containing
it along with its rank in each.3%42

Another significant development is the ongoing work in XML (Exten-
sible Markup Language) standards. A major difficulty in web search is
extracting semantic structure in existing web documents. Web pages writ-
ten in HTML only describe how documents should look on the computer
screen. The markup tags in XML specify the meaning of each attribute in
the data and facilitate searching for specific information in a document.?%-%%
The ongoing work on XML'® is aimed at providing web page designers a
suite of tools to develop semantically meaningful hyperlinked text. As a
whole, XML’s set of tools allow creating, organizing, indexing, linking, and
querying data on the web. Future work can focus on more effective con-
tent analysis algorithms in XML pages. More information about XML is

available online at www.w3.org/XML.
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