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Recall and precision are often used to evaluate the effectiveness of information retrieval systems. 
They are easy to define if there is a single query and if the retrieval result generated for the query is 
a linear ordering. However, when the retrieval results are weakly ordered, in the sense that several 
documents have an identical retrieval status value with respect to a query, some probabilistic notion 
of precision has to be introduced. Relevance probability, expected precision, and so forth, are some 
alternatives mentioned in the literature for this purpose. Furthermore, when many queries are to be 
evaluated and the retrieval results averaged over these queries, some method of interpolation of 
precision values at certain preselected recall levels is needed. The currently popular approaches for 
handling both a weak ordering and interpolation are found to be inconsistent, and the results obtained 
are not easy to interpret. Moreover, in cases where some alternatives are available, no comparative 
analysis that would facilitate the selection of a particular strategy has been provided. In this paper, 
we systematically investigate the various problems and issues associated with the use of recall and 
precision as measures of retrieval system performance. Our motivation is to provide a comparative 
analysis of methods available for defining precision in a probabilistic sense and to promote a better 
understanding of the various issues involved in retrieval performance evaluation. 

Categories and Subject Descriptors: H.3.0 [Information Storage and Retrieval]: General; 
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval-retrieual models; 
H.3.m [Information Storage and Retrieval]: Miscellaneous-sysreems eualuarion, performance 
measurement 

General Terms: Experimentation, Measurement, Performance, Theory 

Additional Key Words and Phrases: Evaluation measures, expected precision, expected search length, 
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1. INTRODUCTION 

Retrieval system evaluation plays an important role in judging the efficiency and 
effectiveness of the retrieval process. Many evaluation methods have been pro- 
posed and investigated in the past [Z, 3, 8, 11, 13, 14, 17, 20, 21, 24, 28, 30, 311. 
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The most comprehensive and objective approach should take many aspects of 
the retrieval process into consideration. These include, for example, the resources 
used by the system to perform a retrieval operation, the amount of time and 
effort spent by a user to obtain needed information, and the ability of the system 
to retrieve useful items. This approach is hard to realize, if not impossible, 
because it is difficult to obtain all the relevant measurement parameters [21,25]. 
Even if it were possible to have all the information available, how to combine 
them appropriately to obtain a single measure is another question. Consequently, 
it is common practice in research investigations to concentrate mainly on 
measures pertaining to the quality of the retrieval output. 

From the user’s point of view, most people would generally agree to the 
prescription that a retrieval system should behave as follows. “Retrieve as many 
relevant items as possible and as few nonrelevant items as possible in response 
to a request.” Roughly speaking, the former criterion corresponds to the concept 
of Recall, and the latter one pertains to the notion of Precision. 

Recall and precision are often conflicting goals in the sense that if one wants 
to see more relevant items (i.e., to increase recall level), usually more nonrelevant 
ones are also retrieved (i.e., precision decreases). The converse is also true [lo, 
151. The question thus arises as to how we can claim that system A is better than 
system B only on the basis of determining recall and precision. Traditionally, 
system A is assumed to be better than system B if, at every recall point, A’s 
precision value is higher than B’s. If this does not hold, then the precision values 
for selected recall values are averaged and compared. 

Recall and precision are measured after the system determines an ordering on 
the documents in its collection in response to a user’s query. This ordering 
represents the system’s judgment of how well each document relates to the user’s 
need. On the basis of this judgment, the system can then retrieve items that 
receive sufficiently high ranks. Problems arise in two situations. The first one 
occurs when a system generates a weak ordering of the documents as the output. 
This implies that the system “thinks” two or more items are equally close to the 
user’s search request and would give them identical preference. In this case, some 
probabilistic notion of precision has to be introduced. A number of measures for 
this purpose were proposed in the past including, for example, relevance proba- 
bility and expected precision [4, 11, 13, 33, 341. We are interested in establishing 
a correspondence between these measures and in finding out the extent to which 
the performance conclusions reached about retrieval systems on the basis of 
these alternatives agree with each other. 

The second problem arises when a set of queries is involved. If we want to 
evaluate the overall retrieval results based on this given set of queries, some 
technique of interpolation of precision values is needed. A method of interpolation 
based on the use of the ceiling operation was utilized in the past [7,21,34]. With 
this method, the interpretation of precision is difficult and not amenable to 
objective treatment, when all the documents in the final rank are not retrieved. 
We instead propose an interpolation technique that allows the interpolated values 
to be interpreted identically regardless of whether a rank is fully or partially 
retrieved. In addition, experimental results that enable a comparison of these 
two approaches are provided. 
ACM Transactions on Information Systems, Vol. 7, No. 3, July 1989. 
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In Section 2, we give a general introduction to the various concepts and 
definitions needed in the context of evaluating the retrieval process. In addition, 
current approaches for measuring recall and precision, as well as problems 
associated with those are identified. In Section 3, alternatives to the existing 
solutions are advanced and their characteristics are studied. Specifically, in 
Section 3.2, an alternative method with the number of relevant items desired as 
the stopping criterion is developed. In Section 3.3, the implications of using the 
number of items desired as the stopping criteria are considered. In the remainder 
of Section 3, certain important interactions that exist between the definition of 
precision and the choice of stopping criteria are explained. Then, in Section 4, 
we provide experimental comparisons between the alternative approaches under 
consideration and one of the existing methods. Finally, the conclusions of this 
study are presented in Section 5. 

2. BACKGROUND 

An information retrieval (IR) system is designed and built in response to the 
need for retrieving useful bibliographic references or texts. Numerous factors 
contribute to its overall success in satisfying the user population’s information 
requests. In most cases, when a particular search request is presented to a 
retrieval system, the documents in its collection can be conceptually imagined, 
to have been divided into two categories. One consists of the set of relevant 
documents, whereas the other is the set of nonrelevant ones. In fact, irrespective 
of what the IR system does, if a document is judged by the user to be of interest, 
it is relevant. Otherwise, it is nonrelevant. Hence the usefulness of a retrieval 
system is determined to a great extent by how closely it can characterize the 
dichotomy identified above. 

In order for a retrieval system to locate the relevant items from a given 
collection in response to a search request, a measure called the Retrieval Status 
Value (RSV) is computed between each item in the collection and the search 
request. The RSV can be viewed as an indicator of the degree of similarity 
between a document and a request. Many different similarity or distance functions 
have been proposed in the past. Among the commonly known examples are the 
simple matching function and the cosine similarity [25, 321. None of them has 
been proved or observed to be optimal under all circumstances. Consequently, 
the choice of the function for computing the RSVs should be based on the user 
criterion as expressed by relevant judgments and assumptions about how docu- 
ments are represented. In any case, the RSVs are used to obtain a ranking of 
items in order that the system can make decisions as to which items should be 
retrieved. 

Two types of RSV ordering can be distinguished immediately: linear and weak 
ordering. In the case of a linear or simple ordering, every item in the collection 
is assigned a distinct RSV by the similarity function used. However, if more than 
one item is present at the same level, with an identical RSV, it is termed a weak 
ordering [6]. Formally, a linear ordering is reflexive, transitive, antisymmetric, 
and connected (every pair of elements is comparable). In contrast, a weak ordering 
may not satisfy antisymmetry [29]. In other words, a weak ordering reduces to 
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linear ordering as a special case. Linear ordering greatly simplifies the evaluation 
of retrieval results in that it imposes a complete constraint on the retrieval order. 

As we stated earlier, numerous system components (for example, the indexing 
process, internal representation and storage for collection items, the search 
strategy adopted) affect the ultimate retrieval results and hence the outcome of 
the performance evaluation. Six different evaluation criteria, deemed most critical 
to a user population, were pointed out in [9] and [25], namely, recall, precision, 
effort, time, form of presentation, and coverage. Among them, recall and precision 
have received the most attention in the literature. Recall is defined as the ratio 
of the number of relevant documents that are retrieved to the total number of 
relevant documents. Precision is the number of relevant documents retrieved 
divided by the number of retrieved documents. In particular, a recall-precision 
graph is often used as a combined evaluation measure of retrieval systems. Such 
a graph, given an arbitrary recall point, tells us the corresponding precision value. 

Given a document ranking, some kind of stopping criterion should be specified 
for the computation of a pair of recall-precision values. A commonly used 
criterion is to stop after retrieving a given number of relevant documents. If 
there are n relevant documents with respect to a given query and if it is assumed 
that the stopping criterion is the retrieval of h relevant documents, 1 % h f n, 
there are n possible recall levels, that is, l/n, 2/n, . . . , h/n, . . . , (n - 1)/n, 
and 1. 

2.1 Problem of Weak Ordering 

Let NR denote the number of relevant documents that a user desires. For a query 
with n relevant documents, NR ranges between 0 and n. When the ordering 
produced by the similarity function is linear, for any recall point NR/n, precision 
is simply calculated as NR/(NR + NNR), where NNR is the number of non- 
relevant documents being retrieved along with the desired NR documents. But, 
when the ordering is not linear, the above method of finding precision must be 
modified, and some notion of probabilistic precision comes into play in the 
computation. The reason is due to the many possible retrieval orders that may 
be generated by the system to meet the need. The practice in the past for dealing 
with this situation was the following: Given NR relevant documents to retrieve 
(corresponding to a recall level of NR/n), we start the search from the very top 
rank, with the highest RSV, and keep moving down until we reach a rank where 
the request can be satisfied. Suppose that there are r relevant documents and i 
nonrelevant documents at this final rank. It is imagined that the I” relevant 
documents at that rank form r intervals and the i nonrelevant documents at the 
same rank are uniformly distributed among these r intervals. Hence, for every 
relevant document retrieved, i/r nonrelevant documents are expected to be 
retrieved [26, 27, 33, 341. In other words, the total number of nonrelevant 
documents that are estimated to be retrieved (NNR) is given by 

NNR=j+=, 
r 

(2.1) 

where j is the number of nonrelevant documents in ranks completely needed 
(those above the final rank) and s is number of relevant documents wanted from 
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the final rank. As a result, the precision value at recall level NR/n is defined as 

NR 
NR + j + (s . i)/r’ 

(2.2) 

We refer to the evaluation method given in eq. (2.2) as the PRECALL method in 
the remainder of this paper. 

The problem associated with this practice is that the validity of the guess 
concerning the typical distribution of relevant and nonrelevant documents at the 
final rank is questionable. This point will be further explained in Section 3.2.1. 

2.2 Problem of Multiple Queries 

The recall-precision graph is initially defined for a single query. However, in 
practice, an evaluation result based on a single query is usually not satisfactory. 
This is because performance comparisons should be made on a sufficiently large 
number of queries to arrive at statistically significant conclusions. Consequently, 
assuming an appropriate sample of queries is given, some method of averaging 
the results from these queries is needed. Since each of the queries might have a 
different number of relevant documents, the simple recall levels (i.e., l/n, 2/n, 
. . . , (n - 1)/n, and 1, previously introduced) cannot be used for purposes of 
averaging, and a method of interpolation of precision values at preselected recall 
levels is needed. The conventional choice for these standardized recall levels is 0, 
0.05, 0.1, . . . , 0.95, and 1. The interpolation is done as follows: Each query is 
processed individually and the precision value with respect to each of the simple 
recall points is calculated as explained. Following that, the precision values at 
the various points are scanned in an increasing order, starting from point 2/n. 
Whenever the precision value being checked at a recall point (say h/n, h z 2) 
is greater than the precision at point (h - 1)/n, the precision at point (h - 1)/n 
is changed to the value at point h/n. This can cause a chain effect. That is, the 
precision at each point k/n (1 5 k 5 h - 2) is also changed to be the same as 
the precision value at point h/n in the event that the precision at k/n is less than 
the precision at point h/n. This whole process is repeated until the last recall 
point, that is, 1, has been checked. 

After this stage, the precision value corresponding to each of the standardized 
recall levels (i.e., 0, 0.05, 0.1, . . . , 0.95, and 1) is easily determined. Let x be one 
of the standardized recall levels such that 

h h+l 
-5xX:- and 0 5 h < n. 
n n 

Then the precision value at point x is assigned the value at the simple recall 
point (h + 1)/n. Since the precision value at the point x . n is the same as that 
for TX: . nl, this method is termed the ceiling interpolation. As a result, eq. (2.2) 
becomes 

rx . nl 
rx . nl + j + (s . i)/r. 

(2.3) 

The interpolation process above is performed for each query, and the final 
precision value with respect to each standardized recall is determined by aver- 
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aging the precision values of all queries at that recall point. Although some other 
methods of interpolation have been considered in the literature (e.g., [28]), the 
ceiling method is quite typical of other such methods currently in use. 

We refer to PRECALL with this ceiling interpolation as the ceiling-PRECALL 
in the remainder of this paper. 

2.3 Motivation for Alternative Approaches 

In the remainder of this section we show that the evaluation results obtained 
using PRECALL are difficult to interpret. We demonstrate the problem of 
interpretation by considering the following examples. 

Example 2.1. Suppose we have an ordering 

A=(+---I+++---------). 

There are 13 documents divided into 2 ranks. The first rank consists of 
3 documents, one relevant document denoted by + and two nonrelevant docu- 
ments each of which is denoted by -. The second rank contains 3 relevant and 
7 nonrelevant documents. For the recall level 0.25 the precision value estimated 
by the PRECALL method is 0.333. 

Some authors claim that precision can instead be represented by P(rel 1 retr), 
which is the probability that a retrieved document is relevant. In the next 
example, we illustrate this probability for the recall level 0.25. 

Example 2.2. Let the ordering be the same as in Example 2.1. The recall level 
0.25 corresponds to retrieving one relevant document. Hence the probability that 
a retrieved document is relevant for the recall level 0.25 is equal to the probability 
that a retrieved document is relevant given that we desire one relevant document. 
There are three possible arrangements of the documents in the first rank, each 
of which have the probability of 0.333: + - -, - + -, - - +. We have 

P(reZ 1 retr) = 
P(re1 fl retr) 

P(retr) ’ 
(2.4) 

where 
2 

P(retr) = C P(retr 1 arrangement,)P(arrangement,). 
“=O 

We now obtain 

P(rel fl retr) = +j 

since exactly one relevant document is retrieved. For the three arrangements, let 
arrangement, mean that u nonrelevant items are retrieved with that arrangement 
for getting one relevant item. Then, since u f 1 documents are retrieved altogether 
we get 

U+l 
P(retr ( arrangement,) = 13 . 
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It follows that 

P(retr 1 arrangemento)P(arrangementO) 
0+1 1 1 1 

= 
13 

a - = - . - 
3 13 3’ 

and 

P(retr 

P(retr 

1 arrangementl)P(arrangementl) 
1+1 1 2 1 

= - . - = - * - 
13 3 13 3 

1 arrangementa)P(arrangementz) 
2+1 1 3 1 

= - . - = - * - 
13 3 13 3’ 

Hence, 

1- 
P(relI retr) = r 13 = 0.5. 

13 
.+++.++++ 

We refer to P(re1 I retr) as the Probability of Relevance (PRR) in the remainder 
of this paper. 

Another way to define precision in an average sense is to ask what precision 
we can expect to obtain for the recall level 0.25. In the next example we consider 
this alternative, which is referred to as the Expected Precision (EP). 

Example 2.3. Suppose that the ordering is the same as in Example 2.1. We 
ask now what precision we can expect at the recall level 0.25, or equivalently, 
when we desire one relevant document. Again we have the same three arrange- 
ments, as in Example 2.2. For the first arrangement, the precision is 1, for the 
second it is 0.5, and for the third it is 0.333. Hence, for the expected precision, 
we get 

EP = 1 . + + + . ; + 5 . 5 = 2 m 0.611. 

We have shown that for a given recall point there are at least three possible 
definitions of precision. For our example, precision could be 0.333 or 0.5 or 0.611, 
depending on how we define precision in an average sense. Note also that what 
we call PRECALL is neither PRR nor EP. Thus, the meaning of PRECALL is 
hard to explain. Moreover the situation is further complicated by the fact that 
these precision values can contradict each other. We show that through the 
following two examples. 

Example 2.4. Let A = (+ - - I+ + + - - - - - - -), as before, and let 
A’ = (+ + + - - - - - I+ - - - -) be another retrieval ordering. We again 
compute the precision values for the recall level of 0.25 according to the three 
different definitions. 

PRECALL PRR EP 

A 0.333 0.500 0.611 

A’ 0.375 0.444 0.609 

We see that for recall point 0.25, A’ is better than A when PRECALL is used, 
but A is better than A’ for PRR and EP. 
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In the following example we show that PRR and EP can also contradict at a 
given recall point. 

Example 2.5. Let A = (+ - ] + + + + + - - - - - ] + + + + - - - -), and 
A’ = (+ + + + + + - - - - ] + + - - ) + + - - - -). For the recall level 0.1, 
or equivalently for retrieving one relevant document, we obtain precision values 
for those two definitions as 

PRR EP 

A 0.667 0.750 

A’ 0.636 0.775 

From the examples presented in this section we see that when the retrieval 
output is a weak ordering, there are several ways to define precision for a given 
simple recall point. Depending on these definitions, there are different interpre- 
tations associated with the evaluation results given by recall and precision. 
Furthermore, we believe that there is no simple and intuitively reasonable 
interpretation of precision values, as a function of recall, obtained by the 
PRECALL method. In contrast we find that PRR and EP represent reasonable 
methods for handling weak ordering and are therefore promising alternatives to 
the PRECALL method. However, since PRECALL has a certain historical sig- 
nificance, we should look for ways to interpret those values even if the meaning 
might be somewhat more convoluted. 

3. PROPOSED SOLUTIONS AND THEIR CHARACTERISTICS 

3.1 General Concepts 

In the previous section we introduced two different methods of computing 
precision in an average sense mentioned above, namely, Probability of Relevance 
and Expected Precision. In the developments that follow, each method is inves- 
tigated with respect to two distinct stopping criteria, namely, the number of 
relevant documents that are to be retrieved (NR) and the desired number of 
retrieved documents (ND). Therefore, essentially there are four different possible 
combinations, that is, PRR versus NR, PRR versus ND, EP versus NR, or EP 
versus ND. Other stopping criteria are possible; for example, the number of 
nonrelevant documents that are retrieved (NNR) [Ml. By the way, it should be 
noted that there is an immediate correspondence between NR and one of the 
standardized recall levels described at the end of the previous section. Let us 
suppose there are n relevant documents with respect to a query. Given a 
standardized recall level x, the corresponding NR is simply x . n. Hence, 
depending on x and n, NR is not restricted to integer numbers only. For example, 
if there are 30 relevant documents in response to a query, the 10 predefined NR 
points are 0, 1.5, 3, . . . , 28.5, and 30. 

Before discussing the various properties associated with the above measures of 
evaluation, symbols and notations that are most frequently needed in the re- 
mainder of this paper are introduced next. Some others are explained later as 
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the need arises. Given a search request in terms of the number of relevant 
documents wanted (NR), the retrieval system begins search from the highest 
level (rank l), which by definition contains documents with the highest RSV. It 
continues until the final level (say rank lf ) at which the stopping criterion is 
met. We now define the following notations: 

t : number of documents searched through in ranks 1 through (1, - 1). 

t,: number of relevant documents searched through in ranks 1 through 
(1, - 1). 

j: number of nonrelevant documents searched through in ranks 1 through 
(1, - 1). 

r: number of relevant documents in rank 1,. 
i : number of nonrelevant documents in rank 1,. 

3.2 PRR Versus NR 

3.2.1 Closed Form Expression for PRR. In Section 2 we defined PRR = 
P(re1 1 retr), given that the user requires NR relevant documents. In this section 
we establish the relationship of PRR to the retrieval system performance measure 
introduced by Cooper [ 111, known as the expected search length. Let P, denote 
the probability that u nonrelevant documents are retrieved in 1,. That is, 

P, = P(u nonrelevant documents retrieved 
in lf ] s relevant documents retrieved in 1,). 

(3.1) 

Furthermore, let s denote NR - t,, the number of relevant documents to be 
retrieved at lf. Then Cooper defines expected search length as the number of 
nonrelevant documents the user expects to retrieve in an effort to obtain NR 
relevant items. Notationally we write 

es& = 
2 ( 

j + u)P,. 

Using the definition given above we establish the following theorem: 

THEOREM 3.1 

P(relj retr) = NR yes1 
NR 

(3.2) 

PROOF 

PRR = P(re1 1 retr) = 
P(relI retr) 

P(retr) ’ 

Let N be the number of documents in the collection. Since NR relevant 
documents are retrieved, we obtain 

P(re1 n retr) = +, 
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If u nonrelevant documents are retrieved in rank lf, then 

P(retr ] u nonrelevant documents retrieved in lf) = 
NR+j+u 

N . 

Let P, be as defined in eq. (3.1). P(retr) can be expressed as a function of the 
probabilities of certain components by dividing the event “retr” into a set of 
mutually exclusive subevents. For this purpose, let each subevent correspond to 
the situation that u nonrelevant documents are retrieved in lf. Then 

P(retr) = c P(retr ] u nonrelevant documents retrieved in l,)P, 
u=o 

Hence, we obtain 

NR/N 
PRR = NR/N + (l/N)e& = 

NR 
NR + eslnrR 

From Cooper [ 1 l] we know that 

1 * s 
eslivR = j + - 

r+ 1’ 

From this we finally obtain 

PRR = 
NR 

NR + j + (.i . s)/(r + 1) 
(3.3) 

Although Cooper derives this expression and interprets it as expected precision, 
we show here that it is more correctly interpreted as P(rel 1 retr). On the basis of 
eq. (3.3), Cooper points out that, in computing es1 versus NR, the r relevant 
document should be imagined as forming r + 1 intervals. Note, however, that if 
we replace r + 1 by r, this equation reduces to eq. (2.2). Thus the assumption 
made about the distribution of documents in If is not consistent with that for 
PRR in computing PRECALL. This important observation further strengthens 
our belief that eq. (2.2) may not be used without further justification. 

3.2.2 Multiple Query Evaluation Using PRR. In Section 2, we established the 
need for the interpolation of precision values at standardized recall levels when 
evaluation is to be performed on the basis of many queries. We also explained 
the scheme used in the past to cope with such a situation and the problem 
associated with that scheme. In the remainder of this section, we examine two 
interpolation schemes for PRR versus NR. The first one is the ceiling interpola- 
tion similar to what was described in Section 2. The second one, which is called 
the intuitiue interpolation, is a new proposal that is more natural than the ceiling 
interpolation, yet still allows the interpolated values to have meaning as a 
conditional probability. 

When PRR versus NR is to be calculated under the ceiling interpolation, 
eq. (3.3) instead of eq. (2.3) is used. Specifically, NR in eq. (3.3) is replaced by 
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lx . nl for a given recall level 2~. Except for that change, the interpolation process 
is identical to what we described in Section 2.2. 

The idea behind the intuitive interpolation originated from the possibility that 
we can make use of the functional relationship between a set of recall levels and 
integer values of NR. That is, given a recall level x, the corresponding NR is 
x - n, where n is the total number of relevant documents in response to the given 
query. We can, therefore, determine NR to be associated with an arbitrary x. 
Similarly, we can also consider the functional relationship between es1 and s 
values and then make an appropriate substitution in eq. (3.3). Hence, we propose 
the following expression for 0 < s I r: 

PRR = 
I - n 

x - n + j + (i . s)/(r + 1) ’ 
(3.4) 

Notice that s can be a fractional number with this modification. The above 
expression is formally justified next by generalizing Cooper’s closed form formula 
for es1 for real values of s. From probability theory we know that 

p _ (s - 1 + u)! (r - s + i - u)! 
’ - (s - l)!u! (r - s)!(i - u)! / 

Cr+i 
’ 

for integer s. If we now interpolate all factorials that contain an s with the I 
function we obtain the following lemma. 

LEMMA 3.1. Let es1 be calculated by the r function [16]. Then, 

es1 = j + s for 0 < s 5 r. 

PROOF. A proof of this lemma is given in the Appendix. The method of proof 
is similar to Cooper’s for integer s. 0 

With this result we find a simple formula for es1 for all values of s, and it can 
be used for computing PRR. It is important to note that, irrespective of whether 
s is an integer, we can show 

z P, = 1, 
o=o 

for all s. 

In other words, since the P,‘s remain as probabilities, PRR continues to have 
interpretation as a conditional probability for all interpolated values too. Finally, 
we consider the relationship between the two measures PRR and PRECALL. 

THEOREM 3.2. PRR uersus NR is greater than or equal to PRECALL uersus 
NR. 

PROOF 

PRECALL = 
NR NR 

NR + j + (s . i)/r ~5 NR + j + (s . i)/(r + 1) 
= PRR 0 
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In the intuitive interpolation we provide a method for dealing with a possible 
fractional number s. By the same token we also need to consider a method of 
extrapolation when s is very small. There are two cases to be considered. 

In the first situation we have at least one relevant document in the first rank. 
From eq. (3.4) 

PRR = 
s r+l 

s + (s * i)/(r + 1) = r + i + 1. 

Hence s is not involved in the computation of PRR. 
In the second case there are some ranks that have only nonrelevant documents 

before the first rank containing relevant documents. Let j > 0 be the number of 
those nonrelevant documents. Again from eq. (3.4) 

PRR = 
s 

s + j + (s * i)/(r + 1) * 

Hence, 

lim PRR = 0. 
s-o 

3.3 PRR Versus ND and EP Versus ND 

Following the ideas of Section 3.2, PRR versus ND is defined as 

PRR = P(re1) retr), 

given that the user stops searching after having retrieved ND documents. Let 
the number of documents to be retrieved in 1, in order to meet the stopping 
criterion be denoted by k. That is, k = ND - t. In order to obtain a closed-form 
formula for PRR we introduce the following lemma: 

LEMMA 3.2. Let p be the expected number of relevant documents retrieved in 
lf . We assume r, i, and k to be as defined in Section 3.1. Then 

k-r 
P=- r+ i’ 

PROOF. p is the expected value of a hypergeometrically distributed random 
variable [ 161. Hence, 

k - r 
CL=- r + i’ 

Using the above lemma, we obtain the following theorem: 

THEOREM 3.3 

q 
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PROOF. Let QV denote the conditional probability that u relevant documents 
are retrieved in l,, given that k documents are retrieved from that rank 

PRR = 
P(reZ n retr) 

P(retr) * 

P(retr) = $$. 

P(reZ n retr) = i P(reZ n retr 1 u relevant documents retrieved in l,)QU 
u=o 

Q"=;+-&Q&-+-& 
II=0 

tr 1 k-r 
P(relnretr) =-+-. - 

N N i+r 
by Lemma 3.1. q 

If the stopping criterion is ND, then EP is defined as 

r t -l-u 
EP= c’-- 

“co ND 
Qu. 

Given the definitions of PRR and EP, we now show that EP = PRR. 

THEOREM 3.4. If ND is the stopping criterion, then EP = PRR. 

PROOF 

r t+u 
EP= c ‘-Q”= 

u=,, ND 
l/N CL=0 (tr + u)Q,= PW I retr) = PRR 

WWND P(retr) 
q 

3.4 A Parametric Description of the PRECALL Graph with Intuitive Interpolation 

In Section 2.3 we showed that problems of interpretation arise if we consider 
precision given by PRECALL as a function of recall. Specifically, given the graph 
in Figure 1, p may not be interpreted as either P(re1 1 retr) or as the expected 
precision corresponding to a recall level of r. Thus, explaining the meaning of 
PRECALL is still an open problem. For the examples considered in Section 2.3, 
these problems remain regardless of the type of interpolation used. 

However, we can develop an approach that yields an interpretation of the 
PRECALL Graph with intuitive interpolation by using ND as a common param- 
eter. For the convenience of discussions that follow, this method is referred to as 
intuitiue-PRECALL. Note that in this method eq. (2.2) is applied regardless of 
whether or not NR is an integer. In order to develop an interpretation for the 
intuitive-PRECALL graph, we define P(retr 1 rel) versus ND and expected recall 
(ER) versus ND analogous to the definitions of PRR and EP. Then we can prove, 
in a way similar to that in Theorems 3.3 and 3.4, that 

ER = P(retr 1 rel) = i 
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Fig. 1. Interpretation of PRECALL as a precision for 
a given recall. 

where n is the number of relevant documents in the collection. From eq. (2.2), 
we know that the intuitive-PRECALL method yields the points given by the 
coordinates 

( 
R 

n . R 
n . R + j + (n . R - t,)i/r ) 

for 0 < R % 1. We use this relationship and the expression derived for ER in 
order to establish the connection between EP and ER, under the condition that 
they are both given as a function of ND. 

THEOREM 3.5. Let ER versus ND and EP versus ND be as defined earlier. If 
r 1 1, then (ER, EP) with respect to any given integer ND is a point on the graph 
obtained by the intuitive-PRECALL method. 

PROOF. In order to prove the theorem we have to show that 

EP= 
n . ER 

n . ER + j + (n . ER - t,)i/r * 

This can be seen by substituting 

ER=;(t,+%) 

and 

EP=& tr+s. 
( 1 

0 

We thus obtain the following interpretation of the PRECALL Graph: Given 
any integer ND, for 0 < ND 9 N and r > 1, there exists a point on the graph 
obtained for intuitive-PRECALL whose coordinates are exactly ER and EP. In 
other words, the PRECALL Graph with intuitive interpolation includes every 
(ER, EP) pair obtainable via ND. Hence, one correct way to interpret this graph 
is given in Figure 2. This interpretation of the intuitive-PRECALL graph requires 
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PRECALL 

t 

EP-=- ----- 

)l ~ 

ND 
: 

I 

Fig. 2. Parametric interpretation of the graph ob- 
tained by the intuitiue-PRECALL method. 

ER Recall 

an indirect approach similar to that mentioned in van Rijsbergen [32], where he 
describes Recall and Precision as a function of a common parameter A. 

The above analysis provides an interpretation of points on the graph obtained 
by the intuitive-PRECALL method for one query. When many queries are 
involved, the interpretation can easily be extended if the averaging is done over 
ND. But averaging over NR is still a problem vis-a-vis the meaning that can be 
given to points on the resulting graph. We have not however even been able to 
find such an indirect interpretation for the graph obtained by the PRECALL 
method with ceiling interpolation. 

3.5 Precision as a Function of Recall, Fallout, and Generality 

Robertson [ 191 showed that 

Precision = 
Generality x Recall 

Generality X Recall + (1 - Generality) X Fallout ’ 
(3.5) 

where Generality G is defined as G = n/N and Fallout is the proportion of 
nonrelevant documents retrieved. In what follows we want to discuss how the 
definition of precision as either PRECALL or PRR is compatible with eq. (3.5). 
First let us consider PRECALL. Let R denote recall and F be fallout. Then the 
usual Recall-Fallout Graph is defined by plotting, for every full rank, a Recall- 
Fallout point into the Recall-Fallout plane and then interpolating these points 
linearly [ 191. Hence for any recall R we obtain 

J’=l 
N-n+ 

(n - R - t,)i 
(N - n)r * 

(3.6) 

If we substitute eq. (3.6) in (3.5) we obtain 

G.R n . R 
G e R + (1 - G)F = n . R + j + (n . R - t,)(i/r) . 

Since NR = n . R and s = n . R - t, we find out that GR/(GR + (1 - G)F) is 
precisely PRECALL with intuitive interpolation. Hence we can imagine the 
PRECALL Graph with intuitive interpolation as a mapping from the traditionally 
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defined Recall-Fallout Graph given by eq. (3.6). More specifically, given any 
(R, F) pair, the transformation 

G . R + (1 - 

yields a point on the intuitive-PRECALL Graph and vice-versa. Here PRECALL 
may have some meaning indirectly through the (interpolated) F values given by 
the Recall-Fallout Graph. This depends on whether the proper meaning can be 
given to the interpolated values of fallout as specified in eq. (3.6). This definition 
of the Recall-Precision Graph was proposed by Bollmann [ 11. 

Another possibility is to define Fallout for a given recall as the probability of 
retrieving a nonrelevant document (PRN), rather than the expression in eq. 
(3.6). With this choice we find that 

G.R G.R P(retr 1 rel)P(rel) 
G . R + (1 - G)F = G. R + (1 - G)PRN = P(retr 1 rel)P(rel) + P(nonrel)PRN 

= P(rel fl retr) 
P(retr) 

= P(rel ( retr) = PRR. 

Since F is meaningful at noninteger NR, the resulting precision is interpretable 
as a function of recall. 

Thus we see that, for a given recall, eq. (3.5) establishes a different notion of 
precision depending on how fallout is defined. Furthermore, we face similar 
problems, as in the case of precision, if we want to investigate the meaning of 
fallout, defined in different ways, as a function of recall. In other words, inter- 
polated fallout values given by eq. (3.6) are not interpretable as PRN or as the 
expected value of the ratio of NNR to the number of documents retrieved. 

4. EXPERIMENTAL EVALUATION 

On the basis of the two interpolation methods for PRR and PRECALL, we are 
interested in exploring the answers to the following. Does PRR and PRECALL 
always give us the same conclusions about retrieval performance? Do the two 
different interpolation methods always give us the same conclusions? What 
precautions should be taken in utilizing a particular measure? With the intuitive- 
PRECALL method proposed in Section 3.4 what conclusions can be drawn in 
comparing it to other measures ? Specifically, the following three experiments 
have been carried out to answer such questions. 

(1) The first experiment investigated whether by using the same measure, say 
PRR, claims about the relative performance of systems get reversed if we choose 
different methods of interpolation (i.e., either the ceiling or the intuitive inter- 
polation). In other words, can one measure conclude that retrieval result A is 
better than retrieval result B, while the other measure leads to the opposite 
conclusion? 

(2) The second experiment investigated retrieval performance comparisons 
based on two measures: PRR under intuitive interpolation and PRECALL. To 
compare the two approaches fairly, we bring them to a common ground by using 
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the intuitive-PRECALL method and by computing the average PRECALL over 
different queries at standardized recall values. Note, however, that although this 
method is used for making experimental comparisons, its meaning as a function 
of recall is yet to be determined. 

(3) The third experiment examined retrieval evaluation results based on the 
intuitive-PRECALL method where averaging over queries is done at selected ND 
values. 

In experiments 1, 2, and 3, four document collections are used. They are 
ADINUL, CRN4NUL, CISI, and MEDLARS. The collection characteristics are 
the following: 

-ADINUL is a collection of 82 documents in library science. It consists of the 
full text of papers presented at American Documentation Institute meeting 
held in 1963. There are 35 queries. 

-CRN4NUL has abstracts of 424 documents on aerodynamics, which were used 
by the Cranfield Project. The corresponding query collection involves 155 
queries. 

-CISI consists of 1460 documents on library science and has 35 queries. This 
collection was obtained from Cornell University, where document titles and 
abstracts were key entered for highly cited information science articles iden- 
tified by the Institute for Scientific Information. .? 

-MEDLARS is a collection of 1033 documents in the area of biomedicine and 
has 30 queries associated with it. 

To obtain several different retrieval results, we have employed four similarity 
functions to compute document-query RSVs. The first one is the simple matching 
function. The second one is the standard cosine similarity. The third one, called 
“the best probabilistic term weight,” and the fourth one, termed “the best 
(tf X idf)” were proposed in [22] and [23]. 

For each document collection, retrieval results based on simple matching, 
cosine similarity, best probabilistic term weight, and best (tf x idf) functions are 
obtained. Following that, we use the measures PRR versus recall based on ceiling 
interpolation and PRR versus recall based on intuitive interpolation to evaluate 
the impact of the interpolation scheme. Precision values in each of these two 
measures with respect to recall points 0.1,0.3, 0.5,0.7, and 0.9 are then averaged 
for an overall performance comparison. Tables I, II, III, and IV are the evaluation 
outcomes respectively for ADINUL, CRN4NUL, CISI, and MEDLARS. 

As we can see from these tables, claims do in fact get reversed in some cases. 
For example, in Table I, PRR under ceiling interpolation concludes that the 
average retrieval result for the cosine function is better than that obtained for 
the simple matching function. On the other hand, it gives us the opposite 
conclusion under intuitive interpolation. Other contradictory results occur in the 
case of the CISI collection when comparing “Best probabilistic term weight” 
method of “Best tf X idf ” method (see Table III). From our discussion in previous 
sections, we know that PRR versus Recall (or NR), ignoring the effects of 
interpolation, is actually not much different from the frequently used measure of 
PRECALL versus NR (see Section 3.4). This implies that the validity of conclu- 
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Table I. ADINUL Collection 

PRR under Ceiling Interpolation PRR under Intuitive Interpolation 
- 

Best Best 
Recall Simple 

Cosine 
Probabilistic Best Simple 

Matching Term tf x idf Matching 
Cosine 

Probabilistic Best 
Term tf x idf 

Weight Weight 

.1 .3909 .3787 .5155 .5766 .3522 .2825 .4662 .5598 

.3 .3055 .3095 .4163 .4383 .3071 .2703 .4028 .4481 

.5 .2188 .2466 .3160 .3960 .2233 .2362 .3293 .4333 

.7 .1310 .1357 .1672 .2097 .1326 .1287 .1807 .2390 

.9 .1075 .1099 .1307 .1817 .1122 .1126 .1601 .2295 

Average .2307 .2361 .3091 .3605 .2255 .2061 .3078 .3819 

Table II. CRNlNUL Collection 

PRR under Ceiling Interpolation PRR under Intuitive Interpolation 

Best Best 
Recall Simple Probabilistic Best Simple Probabilistic Best 

Matching 
Cosine 

Term tf X idf Matching 
Cosine 

Term tf X idf 

.l 

.3 

.5 

.7 

.9 

Average 

Weight Weight 

.5306 .6415 .7359 .7103 .5002 .5762 .6847 .6502 

.366* .4515 .5572 .5263 .3664 .4066 .5140 .4812 

.2735 .3253 .3964 .4081 .2740 .3021 .3736 .3884 

.1637 .2062 .2457 .2526 .1755 .1905 .2297 .2377 

.0984 .1249 .1486 .1487 .1059 .1184 .1421 .1421 

.2865 .3499 .4168 .4092 .2844 .3188 .3888 .3799 

Table III. CISI Collection 

PRR under Ceiling Interpolation PRR under Intuitive Interpolation 

Best Best 
Recall Simple Probabilistic Best Simple Probabilistic Best 

Matching 
Cosine 

Term tf X idf Matching 
Cosine 

Term tf x idf 
Weieht Weieht 

.l .2169 .2483 .3448 .3578 .2270 .2195 .3110 .3144 

.3 .1379 .1558 .1825 .1941 .1451 .1521 .1762 .1835 

.5 .lOll .1045 .1289 .1401 .1097 .1057 .1335 .1375 

.7 .0781 .0791 .0922 .0961 .0889 .0849 .1014 .0958 

.9 .0534 .0590 .0634 .0624 .0651 .0674 .0764 .0634 

Average .1175 .1293 .1624 .1701 .1272 .1259 .1597 .1589 

sions reached by earlier studies using PRECALL needs to be questioned and 
reconsidered owing to the fact that the interpolation technique used previously 
is unnatural. At least, it is clear that one may not treat the choice of interpolation 
technique lightly. 

In the second set of experiments, we compare the evaluation results given by 
PRR and PRECALL. From these experiments we see that the evaluation results 
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Table IV. MEDLARS Collection 

PRR under Ceiling Interpolation PRR under Intuitive Interpolation 

Best Best 
Recall Simple Probabilistic Best Simple Probabilistic Best 

Matching 
Cosine 

Term tf x idf Matching 
Cosine 

Term tf x idf 

.1 .6707 .7847 

.3 .5134 .5774 

.5 .3801 .4347 

.7 .2544 .3291 

.9 .1255 .1561 

Weight 

.8561 

.6774 

.5488 

.4019 

.2013 

.8290 .6598 .7287 

.7066 .5209 .5440 

.5676 .3896 .4213 

.4104 .2667 .3222 

.2113 .1345 .1560 

Weight 

.8129 

.6419 

.5323 

.3935 

.2001 

.7589 

.6652 

.5530 

.3993 

.2105 

Average .3888 .4564 .5371 .5450 .3943 .4344 .5161 .5174 

Table V. ADINUL Collection 

Intuitive-PRECALL with Averaging 
by NR PRR under Intuitive Interpolation 

Recall Best Best 
Simple 

Cosine 
Probabilistic Best Simple Probabilistic Best 

Matching Term tf X idf Matching 
Cosine 

Term tf x idf 
Weight Weight 

.l .3302 .2825 .4662 .5598 .3552 .2825 .4662 .5598 

.3 .2780 .2703 .4026 .4481 .3071 .2703 .4028 .4481 

.5 .1872 .2361 .3290 .4333 .2233 .2362 .3293 .4333 

.7 .1193 .1287 .1807 .2390 .1326 .1287 .1807 .2390 

.9 .0982 .1125 .1600 .2293 .1122 .1126 .1601 .2295 

Average .2026 .2060 .2757 .3709 .2255 .2061 .3078 .3819 

Table VI. CRN4NUL Collection 

Intuitive-PRECALL with Averaging 
by NR 

Best 
Probabilistic 

Simple Term Best 

PRR under Intuitive Interpolation 

Best 
Probabilistic 

Simple Term Best 
Recall Matching Cosine Weight tf X idf Matching Cosine Weight tf x idf 

.l .4629 .5762 .6847 .6502 .5002 .5762 .6847 .6502 

.3 .3357 .4065 .5138 .4812 .3664 .4066 .5140 .4812 

.5 .2471 .3020 .3733 .3883 .2740 .3021 .3736 .3884 

.7 .1546 .1903 .2295 .2376 .1755 .1905 .2297 .2378 

.9 .0894 .1177 .1412 .1415 .1059 .1184 .1421 .1421 

Average .2579 .3185 .3885 .3798 .2844 .3188 .3888 .3799 

contradict each other as follows: PRECALL contradicts PRR for ADINUL and 
CISI when comparing Simple matching to Cosine (see Tables V and VII). 

Finally, we consider the evaluation results obtained by intuitive-PRECALL 
with averaging done over ND. These results are summarized in Tables IX-XII. 
The ND values are selected in such a way that the resultant Expected Recall 
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Table VII. CISI Collection 

Zntuitiue-PRECALL with Averaging 
by NR PRR under Intuitive Interpolation 

Recall Best Best 
Simple 

Cosine 
Probabilistic Best Simple 

Cosine 
Probabilistic Best 

Matching Term tf X idf Matching Term tf x idf 
Weight Weight 

.l .2108 .2195 .3109 .3144 .2270 .2195 .3110 .3144 

.3 .1387 .1520 .1761 .1835 .1451 .1521 .1761 .1835 

.5 .1059 .1057 .1333 .1374 .1097 .1057 .1335 .1375 

.7 .0855 .0848 .1012 .0957 .0889 .0849 .1014 .0958 

.9 .0615 .0672 .0761 .0632 .0651 .0674 .0764 .0634 

Average .1205 .1258 .1595 .1588 .1272 .1259 .1597 .1589 

Table VIII. MEDLARS Collection 

Intuitive-PRECALL with Averaging 
by NR 

Recall Best 
Simple 

Cosine 
Probabilistic Best 

Matching Term tf X idf 
Weight 

.l .6412 .7287 .8129 .7589 

.3 .5067 5435 .6418 .6652 

.5 .3738 .4213 .5320 .5530 

.7 .2546 .3218 .3930 .3992 

.9 .1207 .1547 .1988 .2093 

PRR under Intuitive Interpolation 

Best 
Simple 

Cosine 
Probabilistic Best 

Matching Term tf X idf 

.6598 .7287 

.5209 .5440 

.3896 .4213 

.2667 .3222 

.1345 .1560 

Weight 

.8129 

.6419 

.5323 

.3935 

.2015 

.7589 

.6652 

.5530 

.3993 

.2105 

Average .3794 .4340 .5157 5172 .3943 .4344 .5161 .5174 

values are distributed evenly in the range [O.O, 1.01. We get the Expected Recall 
(ER) and Expected Precision (EP) for selected ND values. For ADINUL the 
average performance of Cosine in terms of ER is better than that of Simple 
matching, whereas the average EP for Simple matching is better than that for 
Cosine (see Table IX). We see similar conflicting results when comparing Simple 
matching to Cosine for CISI and Best probabilistic term weight to Best tf x idf 
for both CISI and MEDLARS (see Tables XI and XII). 

By comparing the results of averaged EP by intuitive-PRECALL with averaging 
done over ND with the results of averaged precision by PRR (or intuitive- 
PRECALL with averaging done over NR), we see that the evaluation results 
contradict each other as follows: 

(1) intuitive-PRECALL with averaging done over ND contradicts with intuitive- 
PRECALL with averaging done over NR for ADINUL and CISI when 
comparing Simple matching to Cosine (see Tables V, VII, IX, and XI). The 
same contradiction is also found for CISI and MEDLARS when comparing 
Best probabilistic term weight to Best tf x idf (see Tables VII, VIII, XI, and 
XII). 
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Table IX. ADINUL Collection 

l 225 

ND 
Simple 

Matching 

ER EP 

2 .1036 .2646 
10 .3113 .1509 
22 .5077 .llll 
40 .7114 .0854 
68 .9119 .0647 

Average .5092 .1353 

Cosine 

ER EP 

.I227 .2429 

.3573 .1429 
5216 .1078 
.6758 .0829 
.9173 .0647 

Best 
Probabilistic 
Term Weight 

ER EP 

.2002 .3571 

.4569 .1800 

.6214 .1279 

.7963 .0914 

.9646 .0681 

Best 
tf x idf 

ER EP 

.2430 .4000 

.4891 .2057 

.6522 .1286 

.8128 .0936 

.9542 .0672 

.5189 .1282 6079 .1649 .6303 .1790 

Table X. CRN4NUL Collection 

ND 
Simple 

Matching 

ER EP 

Cosine 

ER EP 

Best 
Probabilistic 

Term Weight 

ER EP 

Best 
tf x idf 

ER EP 

4 .2123 .3112 .2424 .3484 .2882 .4097 .2933 .4177 
13 .4058 .1879 .4499 .2056 .4995 .2320 .4903 .2318 
38 .6031 .0984 .6690 .1078 .6914 .1123 .6976 .1149 
65 .7076 .0682 .7625 .0728 .7652 .0738 .7869 .0754 

210 .9058 .0276 .9236 .0280 .9117 .0278 .9211 .0280 

Average .5669 .1387 .6095 .1525 .6312 .1720 .6378 .1736 

Table XI. CISI Collection 

ND 
Simple 

Matching 

ER EP 

Cosine 

ER EP 

Best 
Probabilistic 
Term Weight 

ER EP 

Best 
tf x idf 

ER EP 

15 .1003 .2129 .0866 .1848 .1205 .2686 .0863 .2800 
146 .3664 .1095 .3799 .1173 .4304 .1348 .4315 .1374 
292 .5298 .0840 .5583 .0903 .5988 .0991 .6232 .1015 
584 .7529 .0624 .7685 .0645 .7946 .0670 .7941 .0671 

1314 .9812 .0372 .9812 .0372 .9812 .0372 .9812 .0372 

Average .5461 .1012 .5549 .0988 .5851 .1213 .5833 .1246 

(2) intuitive-PRECALL with averaging done over ND contradicts PRR for CISI 
and MEDLARS when comparing Best probabilistic term weight to Best 
tf x idf (see Tables VII, VIII, XI, and XII). 

We have drawn the following conclusions from an analysis of the results of 
these experiments: 

(a) One should be aware of the fact that it is possible for evaluation results 
produced by PRECALL and PRR to contradict each other. 
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Table XII. MEDLARS Collection 

ND 
Simple 

Matching 

ER EP 

Cosine 

ER EP 

Best 
Probabilistic 
Term Weight 

ER EP 

Best 
tf X idf 

ER EP 

4 .1204 .6083 .1354 .6667 .1483 .7500 .1370 .6917 
14 .3136 .4738 .3383 5036 .3886 .5841 .3961 5976 
35 .5024 .3155 5447 .3443 .6308 .3935 .6490 .4114 

103 .6986 .1515 .7732 .1717 .8118 .1800 .8297 .1845 
210 .9095 .0512 .9263 .0521 .9341 .0525 .9325 .0525 

Average .5080 .3201 .5436 .3477 .5827 .3920 .5889 .3875 

(b) The selection of the method of interpolation is very important since it is 
possible to reach different conclusions just because of the interpolation 
technique adopted. Moreover, the proposed intuitive interpolation techniques 
should be preferred to the so-called ceiling method because of the formal 
developments given in Section 3. 

(c) One should analyze ER and EP values at the same time for intuitiue- 
PRECALL with averaging done over ND in order to draw the proper conclu- 
sions. Deciding an appropriate set of ND values is also a problem. 

5. CONCLUSIONS 

Two interesting problems that arise, when using recall and precision as measures 
of retrieval system performance, are due to the weak ordering of output and the 
need for handling multiple queries. The seriousness of these problems is also 
determined by the choice of the stopping criterion (e.g., the number of relevant 
documents retrieved (NR) or number of documents retrieved (ND)). 

With respect to the problem of weak ordering, two different notions of proba- 
bilistic precision are considered: Probability of Relevance (PRR) and Expected 
Precision (EP). Although these notions entail the possibility of combinatorial 
explosion in assessing the various orderings of outputs, it is shown that PRR 
versus ND and PRR versus NR can be handled by relatively efficient computa- 
tional procedures. 

The problem associated with the averaging of precision over a number of 
queries arises only when NR is chosen as the stopping criterion. To handle this 
problem, a method of interpolation that allows the computation of precision for 
nonintegral values of NR is needed. For PRR versus NR an interpolation 
technique that is natural and has a sound formal justification is advanced. 

Experiments comparing PRR versus NR with the method currently well 
accepted (referred to in this paper as PRECALL) are performed and those results 
are discussed in detail in Section 4. But, as an overall conclusion, we believe that 
PRR versus Recall (or, equivalently, NR) has the advantage of having a well- 
defined meaning. Furthermore, it is closely related to expected search length [ 111 
and lends itself to efficient computation. 

In contrast, the ceiling-PRECALL method is not amenable to any reasonable 
interpretation. The problem is caused not only by the fact that averaging results 
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for multiple queries is done over NR but also by the fact that the method of 
interpolation is ad hoc. However, we are able to show that the intuitiue- 
PRECALL method yields a graph that can be given a sound interpretation if ND 
is viewed as the parameter through which recall and precision are defined. Thus, 
our results here suggest that the intuitive-PRECALL method, for averaging 
purposes, should take precision values over many queries at fixed ND (and not 
NR). However, even though intuitive-PRECALL gives a sound interpretation, it 
may have practical difficulties in the selection of NDs as follows. When the 
number of documents in a collection is very large, we must select several NDs 
for which ERs and EPs are obtained. When ND is incremented by fixed intervals, 
one may not get desired ER points that cover a whole range of possible values 
(i.e., ER values may be so close together that one may have difficulty using these 
as criteria for comparison) since relevant documents are likely to be unevenly 
distributed among the various ranks. However, with well-selected NDs one can 
use this measure very meaningfully. The question of how to interpret intuitiue- 
PRECALL with averaging over NR is yet to be addressed. In this paper we also 
identify the origin of the intuitive-PRECALL method and its connection to the 
Recall-Fallout Graph defined by Robertson [ 191. 

With respect to the other measure EP, we show that EP versus ND coincides 
with PRR versus ND. However, the problem of computing EP versus NR needs 
to be given a treatment similar to that of PRR versus NR. More specifically, the 
equations of how to obtain a closed-form formula for EP as well as what is a 
natural method of interpolation for EP are still being addressed. We will provide 
some answers in these directions in [5]. 

It is hoped that this investigation contributes to a better understanding of 
precision defined as a function of NR or ND as methods of evaluation and that 
it helps in the systematic selection of techniques to deal with problems of weak 
ordering and multiple queries. 

APPENDIX: PROOF FOR LEMMA 3.1 

The proof of this lemma is a generalization of Cooper’s proof [12] in the sense 
that we use the F function here. I’(X) is related to the Beta function [16] by 

r(x)r(Y) = S l 

r(x+Y) o 
t’“-“(l - t)(r-l) dt = B(X, y) for x > 0, y > 0. (A.l) 

And we get for 0 < s I r 

“iO t; + U)P” = j + r(s)r(rrl s + 1) j. UC’ 
r(s + u)r(i + r - u - s + 1) 

r(r + i + 1) 

Putting s + v and i + r - u - s + 1 to x and y in Equation (A.l), respectively, we 
obtain 

“;. (j + U)P” 

r! S 
1 

=j+ 
r(s)r(r - s + 1) o 

tb-“(1 _ t)(r-s) i uCitu(l _ t)(i-u) dt. 
[ lJ=o 1 
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By the binomial theorem we get 

Therefore, 

c u=o 
Putting s + 1 

i . t = c &y(l - t)‘i-“‘* u=o 

s 
1 

(j + U)P” = j + 
r!i 

r(s)l?(r - s + 1) 0 
P(l - t)-) dt. 

and r - s + 1 for x and y in Equation (A.l), we have 

r(s + l)l?(r - s + 1) = 
s 

l 

r(r + 2) 
ts(l - t)“-“’ dt. 

0 

Finally, we get 

jot j + U)P” = j + J$ = es1 for 0 < s 5 r. q 
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