References

[1] E. Selberg, and O. Etzioni. Multi-Service Search and Comparison Using the MetaCrawler. 4th Interna-
tional World Wide Web Conference, December 1995.

[2] L. Gravano, and H. Garcia-Molina. Generalizing GIOSS to Vector-Space databases and Broker Hierar-
chies. International Conferences on Very Large Data Bases, 1995.

[3] L. Gravano, and H. Garcia-Molina. Merging Ranks from Heterogeneous Internet Sources. International
Conferences on Very Large Data Bases, 1997.

[4] W. Meng, K.L. Liu, C. Yu, X. Wang, Y. Chang, and N. Rishe. Determining Text Databases to Search
in the Internet. International Conferences on Very Large Data Bases, New York City, 1998.

[5] C. Yu, W. Meng, K. Liu, W. Wu, and N. Rishe. Efficient and Effective Metasearch for a Large Number
of Text Databases. 8th ACM International Conference on Information and Knowledge Management

(CIKM’99), November 1999.

Cross Reference:

Distributed Information Retrieval see Metasearch Engine.
Text Resource Discovery see Metasearch Engine.
Collection Fusion see Metasearch Engine.

sented using a rough description, such as a few words or a few paragraphs. Usually, the database
representatives are formed manually. ALIWEB and Search Broker are example metasearch en-
gines using this approach. This type of approach is very scalable to the size of individual databases
and to the number of these databases. But its precision is usually low.

Detailed representative approach: Such an approach represents the content of a database using
rather detailed statistical information. Typically, the representative of a database contains some
information about each term in the database such as the document frequency of the term and the
average weight of the term among all documents that have the term. Detailed statistics allow
more accurate estimation of database usefulness with respect to any user query. Scalability of
such approaches is an important issue due to the amount of information that need to be stored
for each database. Several metasearch engines, including gGlOSS [2], CORI Net and D-WISE,

employ various detailed representative approaches for database selection.

Learning-based approach: In such an approach, the knowledge about which databases are likely to
return useful documents to what type of queries is learned either through training queries and/or
users’ reactions to the returned documents of their previous queries. Such knowledge is then
used to determine the usefulness of databases for future queries. SavvySearch and ProFusion are
example metasearch engines that employ learning-based database selection method.

Quantitative Approaches: These approaches are similar to the qualitative approaches using detailed
database representatives. The main difference is that in a quantitative approach, the database selection
algorithm estimates a quantity that can more explicitly and directly reflect the usefulness of a database
with respect to a query than a ranking score. One such quantity is the number of documents in a
database whose global similarity with a query is higher than a given threshold [4]. Another quantity is
the global similarity of the most similar document with a query in a database [5]. The latter quantity
can be used to rank databases optimally [5].

Collection Fusion

Various heterogeneities exist among individual search engines as they are likely to be developed indepen-
dently. These heterogeneities include different term weighting schemes and different similarities functions.
As a result, document selection and result merging should not be based on local document similarities alone
as these similarities are often not comparable. Indeed, many search engines do not even provide local docu-
ment ranking scores or similarities. Furthermore, search engines are often autonomous and would not reveal
how local documents are scored or ranked.

To overcome the above problems and to enable collection fusion to be performed in a meaningful way,
several measures can be taken. First, a global standard such as a global similarity function can be defined to
reflect the user’s intention as perceived by the metasearch engine. Second, knowledge discovery techniques
could be used to estimate approximately how local search engines score or rank their documents against
user queries. One way to accomplish this is to submit carefully designed probing queries to local search
engines and analyze the results (the set of documents that are returned as well as the order in which they
are displayed for each probing query). Such knowledge can provide insight on the relationship between the
global similarities and the local similarities of documents from local search engines. The above insight or
relationship can help the metasearch engine perform collection fusion in a number of ways. For example, a
good local similarity threshold for a local search engine may be determined. By retrieving from this search
engine only those documents whose local similarities are higher than this threshold, we can maximize the
return of desired documents while minimize the return of useless documents. Finally, the ranking scores or
ranks of documents provided by independent search engines can be combined to produce a global score or
rank. Intuitively, that a document is ranked high by several search engines with different ranking techniques
increases the likelihood that the document is relevant to the user and therefore deserved to be ranked high

globally.

User

query / \result

‘ User Interface ‘

Database Selector

1

Document Selector

Result Merger

Query Dispatcher

Search Search

Engine Engine

Figure 1: Metasearch Software Component Architecture

from the global similarity function which reflects the user’s intention as perceived by the metasearch engine.
The metasearch engine can have a document selection module for choosing the documents to retrieve from
a search engine and for deciding which of the retrieved documents are to be returned to the metasearch
engine. Document selection and result merging together determine for each query which documents from
which database should be displayed to the user and are known as collection fusion. A reference software
component architecture of a metasearch engine is shown in Figure 1.

Database Selection

Each search engine underneath a metasearch engine has a tezt database that is defined by the set of documents
that can be searched by the search engine. Database selection is to identify for each given query the text
databases that are likely to contain useful documents to the query. Database selection is sometimes also
known as text resource discovery. As mentioned above, database selection is very important to the efficiency
of a metasearch engine when the number of underlying search engines is large. The basic idea of performing
database selection is as follows. First, some characteristic information about each database is obtained
to indicate the approximate content of the database. The characteristic information is also known as the
database representative. Next, when a user query is received, it is compared with the representative of each
database to determine which database is likely to contain useful documents to the query.

Many database selection approaches exist. They range from choosing all underlying databases to selecting
only useful databases based on some usefulness measure. These approaches can be classified into the following
categories.

Naive approach: This approach does not measure the usefulness of underlying databases. The query
dispatcher simply sends each user query to all underlying search engines indiscriminately. MetaCrawler
is a metasearch engine employing this approach [1]. Naive approach is suitable when the metasearch
engine has a very small number of underlying search engines.

Qualitative approaches: For a given user query, such an approach assigns a ranking score to each under-
lying database using the database representatives. Often, the ranking score reflects the quality of a
database with respect to a query, but it may be difficult for ordinary users to interpret the meaning
of such a score. Most database selection methods fall into this category and these approaches can be
further classified into the following subcategories.

Rough representative approach: In such an approach, the content of a local database is repre-

METASEARCH ENGINE *

Clement Yu' and Weiyi Meng?
! Dept. of EECS, University of Illinois at Chicago, Chicago, IL 60607
2 Dept. of Computer Science, SUNY — Binghamton, Binghamton, NY 13902

Nowadays, millions of people all over the world use the World Wide Web to acquire needed information
everyday. A very popular way to find desired information from the Web is to use a search engine, such
as Altavista and Lycos. Upon receiving a user query which is usually in the form of a set of keywords or
a natural language sentence, a search engine finds documents which match all or a significant portion of
the keywords in the user query. Usually, a search engine can only evaluate queries against the collection of
documents that it has preprocessed/indexed in advance.

The size of the Web has been increasing very rapidly. It was estimated that by the end of 1999, there were
over one trillion publicly indexable Web pages. One consequence of this phenomenon is that no single search
engine can keep up with the Web expansion. The relative coverage of the Web by individual search engines
has been declining steadily. One effective way to increase the coverage of the Web is to combine the coverages
of individual search engines. Incidentally, desired documents of a user are often scattered in a number of
search engines. It is rather inconvenient for such a user to find all search engines that may contain useful
documents to his/her query, to submit the query to all these search engines and to finally search through
the results returned by these search engines to find desired documents. The task of combining the coverages
of individual search engines and the task of allowing a user to submit a single query to invoke multiple
search engines can both be achieved by the use of a metasearch engine. A metasearch engine is a layer of
software (and possibly involving some hardware) which lies between the user and the different underlying
search engines. Its function is to make a user feel like he/she is interacting with a single search engine but
this software layer is capable of searching information from the union of the underlying search engines. In
this article, we sketch techniques which are used to build metasearch engines.

Architecture

A metasearch engine may have a number of modules. Its user interface module accepts the user’s query
which will be forwarded by the query dispatcher module to the various search engines. When necessary,
the query dispatcher will format the user query to satisfy the format requirement of each underlying search
engine. When the search engines return the sets of retrieved documents to the metasearch engine, these
sets are merged by the result merger module into a single ranked list of documents. Certain number of the
top documents from this list are displayed to the user. When the number of search engines underlying a
metasearch engine is large, forwarding each user query to every search engine is very inefficient. Often for a
given query, many search engines do not contain any desired documents. Sending the query to these search
engines not only incurs unnecessary network traffic but also causes these search engines to waste their local
computing resources. Furthermore, these search engines may still return some (eventually useless) results
to the result merger module of the metasearch engine, incurring additional communication cost and the
effort to merge the results. To overcome these problems, a database selection module can be included in
the metasearch engine and the function of this module is to identify for each user query the search engines
that are likely to return useful documents to the user. With the help of this module, the query dispatcher
forwards each user query to only those search engines that are likely to return useful results. Even when
a search engine contains some useful documents, it may have to retrieve substantially more documents in
order to guarantee that the desired documents are included in the result. This is due to the fact that each
search engine may utilize a similarity function to retrieve documents and this similarity function is different

*Work supported in part by the following NSF grants: CCR-9816633, CCR-9803974, 11S-9902872, 11S-9902792.

