
Building an Intelligent Web: Theory and Practice 1

Chapter 2 Information Retrieval

Chapter 2

Information Retrieval

2.1 Introduction

The provision of appropriate navigation facilities is an essential requirement for any

Website. These navigation facilities may include well-designed hyperlink structure,

menus, and site maps. However, it is difficult to predict all possible navigational patterns,

and provide corresponding navigation paths. The problem is even more complicated for a

dynamically growing Website in which documents are deposited by several personnel.

Any site of sufficient complexity should provide a search facility to simplify the

navigation. There are many generic commercial and non-commercial search engines.

Sometimes, installation of these generic search engines will satisfy the requirements of a

Website. Other times, it may be necessary to develop a site-specific search engine. Such a

search engine can be developed from scratch or assembled using various software

components tuned to satisfy the needs of your Website. Whether one uses a generic or

customized search engine, it is important to evaluate its retrieval performance on a

regular basis. This chapter provides a detailed introduction to Information Retrieval (IR)

that can be useful for the development, implementation, and evaluation of a search

engine. The knowledge of information retrieval process may also help Web developers

create innovative navigation tools, such as dynamically changing search engines.

For over 4000 years, humans have been designing tools to improve information

storage and retrieval. Table of contents and the index table of a book are examples of

Building an Intelligent Web: Theory and Practice 2

Chapter 2 Information Retrieval

some of the early efforts. With the increasing collection of documents, various databases

have been created for the summarization, searching, and indexing of these documents.

The foundation of the modern information retrieval is credited to the 1945 paper “As We

May Think” published by Vanover Bush, who visualized an imaginary IR machine called

Memex. The SMART (System for the Manipulation and Retrieval of Text), conceived at

Harvard University and flourished at Cornell University under the leadership of Gerald

Salton, provided the first practical implementation of an IR system. The basic theoretical

foundations of SMART still play a major role in today’s IR systems. The four major

components of an IR process are:

• document representation,

• query representation,

• ranking the documents by comparing them against a query using a retrieval model,

and

• evaluation of the quality of retrieval.

This chapter will discuss the theoretical foundations of these four components, along with

algorithms, their implementations, and descriptions of non-commercial information

retrieval software.

2.2 Document Representation

The documents on the Web consist of a variety of different formats and the information

may consist of text, graphics, audio, and video. This chapter deals with traditional text

based information retrieval. Multimedia information retrieval is still in its infancy. Some

initial attempts are discussed in Chapter 7. The IR process described here will be based

Building an Intelligent Web: Theory and Practice 3

Chapter 2 Information Retrieval

on text extracted from different types of documents. We will look at some of the tools

that make it possible for us to retrieve text from various document formats. Traditional IR

represents documents using keywords. In some cases, a keyword may consist of multiple

words. Reducing text to a list of keywords is a simplistic representation of a document, as

it ignores the semantics in the document. Chapter 3 will look at some of the early

attempts of incorporating semantics in our searches.

Figure 2.1 shows the typical steps involved in transforming a document into a list

of keywords with associated frequencies or weights. The first step in the transformation

of a document is simply listing all the words in a document by removing spaces, tabs,

new line characters, and other special characters such as a comma, period, exclamation

mark, and parentheses. The second step is the removal of some of the most commonly

occurring words. Words that appear in, for example, more than 80% of documents will

not be very useful in discriminating documents. These words are usually referred to as

stopwords. Natural candidates for stopwords are articles, prepositions, and conjunctions.

They are filtered out from the list of potential keywords. Another advantage of

eliminating stopwords is the reduction in the size of the document representation.

Figure 2.2 gives a partial list of typical stopwords in the English language. A

more complete list of stopwords can be found on the CD-ROM under Chapter 2. Figure

2.3 shows an example of a document collection with four documents that will be used for

illustrating the theory and implementation of information retrieval systems.

The CD-ROM contains Java classes that will help us create a simple information

retrieval system. Clicking on the “Simple Information Retrieval System” link will reveal

various links related to the IR system. One of the folders, “java”, contains Java classes

Building an Intelligent Web: Theory and Practice 4

Chapter 2 Information Retrieval

(source and class files) used for development of the system. Let us look at the first class

called TokenizedDoc. The class is used for creating a list of words (also referred as

terms, index terms, or tokens) from a file. The words are listed in alphabetical order and

exclude stopwords.

Readers who are not familiar with Java can skip the highlighted

paragraph below.

The link javadoc provides documentation for all the Java classes used in

Chapter 2. Figure 2.4 shows the information about the constructor and

methods of the TokenizedDoc class. The class only has one

constructor, which takes three parameters. The first parameter is a

document represented as a string, the second parameter is the list of

characters in addition to the white spaces that may be used as word or

token separators, and the third parameter is the name of the file

containing stopwords. The function getTokens returns the vector of

words/tokens in the document. The main function in the class shows an

example of how to call the constructor. The main program can be used

to make standalone use of the class.

Before testing the class, let us copy all the relevant files to a directory or folder called IR.

We will assume basic understanding of using command line interface under windows

and/or Linux. We will use the Linux conventions for directory specifications. Windows

users should substitute / with \, whenever it is appropriate. At the command prompt,

change your directory to IR/fig2.3. This directory contains electronic copies of four

Building an Intelligent Web: Theory and Practice 5

Chapter 2 Information Retrieval

documents from Figure 2.3. The first document from Figure 2.3 is called d1.txt. The

class TokenizedDoc can be run for the file d1.txt using the following command:

java -cp ../java TokenizedDoc d1.txt "\!\?\[\].,;-" ../misc/stopwords.txt (Command 2.1)

The command java is used to run a java class file.

• The option –cp is used to specify the class path, i.e., where the java class files can

be found. In our case, the class path of ../java (second argument) is a

subdirectory java under the main directory IR.

• The third argument TokenizedDoc specifies the name of the class.

• The fourth argument gives the name of the document to be d1.txt.

• The fifth argument specifies the additional (non-white) characters that should be

used as word separators. A backslash, used before !, [, and], ensures that these

characters are not treated as special characters.

• The sixth argument, ../misc/stopwords.txt, mentions that the file containing

stopwords is called stopwords.txt and is located in the subdirectory misc

under the main directory IR.

The list of documents using (Command 2.1) will be printed on the screen. If you wish to

store the documents in a file, you should redirect the output as shown:

command > output-file-name

For example, appending > Tokenized-d1.txt to the (Command 2.1) as:

java –cp ………… > Tokenized-d1.txt

will allow us to store the list of tokens from d1.txt into a file called

Tokenized-d1.txt. The file Tokenized-d1.txt is in the IR/fig2.3

Building an Intelligent Web: Theory and Practice 6

Chapter 2 Information Retrieval

directory on the CD-ROM and is also shown in Figure 2.5. The list is alphabetically

sorted to make it easy to count the frequency of each word. It also underscores the fact

that keyword based retrieval tends to ignore the semantic structure of documents. The

files d2.txt, d3.txt, d4.txt under the subdirectory fig2.3 can be used to

create a similar list of words for the rest of the documents from Figure 2.3 (see Exercise

section).

2.2.1 Stemming

A given word may occur in a variety of syntactic forms, such as plurals, past tense or

gerund forms (a noun derived from a verb). For example, the word “connect”, may

appear as “connector”, “connection”, “connections”, “connected”, “connecting”,

“connects”, “pre-connection”, and “post-connection”. A stem is what is left after its

affixes (prefixes and suffixes) are removed. In our example, “ed”, “s”, “or”, “ed”, “ing”,

and “ion” are prefixes, while “pre-” and “post-” are prefixes that will be removed to form

the stem “connect”. It can be argued that the use of stems will improve retrieval

performance. The users rarely specify the exact forms of the word they are looking for.

Moreover, it seems reasonable to retrieve documents that contain a word similar to the

one included in a user request. For example, a document containing the word

“connection” may be relevant to a user request that includes the word “connect”.

Reducing words to stems also reduces the storage required for a document representation

by reducing the number of distinct index terms.

Researchers have conflicting opinions about the value of stemming in an

information retrieval process. Some of the search engines do not use stemming in their

Building an Intelligent Web: Theory and Practice 7

Chapter 2 Information Retrieval

document representations. Nevertheless, stemming is an important part of document

preparation in information retrieval, and hence, we should study it in more detail.

There are several stemming strategies. For example, one can simply maintain a

table of all the words and corresponding stems. Stemming in that case will involve a

simple table lookup. This strategy will require significant storage, assuming that data on

every word in the language is available. Other strategies include successor variety based

on structural linguistics, or N-grams based on term clustering. These strategies can be

relatively complex. Affix removal is one of the simplest stemming strategies that is

intuitive and can be easily implemented. We will study affix removal in greater detail. It

may be desirable to combine affix removal with table lookup for those words that cannot

be easily stemmed.

While affixes mean prefixes and suffixes, suffixes appear more frequently than

prefixes. There are a few suffix removal algorithms. The most popular algorithm was

proposed by Martin Porter (Porter, 1980). The Porter algorithm is known for its

simplicity and elegance. Even though the algorithm is simple, the stemming results from

the Porter algorithm compare favourably to more sophisticated algorithms. The following

is a detailed description of the Porter algorithm.

2.2.1.1 Porter’s Stemming Algorithm

Martin Porter maintains an official page for the algorithm at:

http://www.tartarus.org/~martin/PorterStemmer/index.html. The information in this

section includes verbatim description of the five steps of the algorithm (Figures 2.6-2.10)

from Porter’s website. The explanation used here is also provided from the website.

http://www.tartarus.org/~martin/PorterStemmer/index.html

CVCV ... C

CVCV

...

V

VCVC

...

C

VCVC

...

V

Building an Intelligent Web: Theory and Practice 8

Chapter 2 Information Retrieval

In order to understand the algorithm, we need to define a few terms. Letters A, E,

I, O or U are vowels. A consonant in a word is a letter other than A, E, I, O or U, with the

exception of Y. Letter Y is a vowel if it is preceded by a consonant otherwise it is a

consonant. For example, Y in “SYNOPSIS” is a vowel, while in “TOY”, it is a

consonant. A consonant in the algorithm description is denoted by c, and a vowel by v.

A list ccc... of length greater than 0 will be denoted by C, and a list vvv... of length

greater than 0 will be denoted by V. Any word, or part of a word, therefore has one of the

four forms:

(2.1)

Square brackets are used to denote optional presence of a sequence. Therefore, the four

forms shown in Eq. (2.1) can be represented by the single form:

[C]VCVC ... [V] (2.2)

The braces {} are used to represent repetition. For example, (VC){m} means VC

repeated m times. Therefore, Eq. (2.1) or (2.2) can also be written as:

Building an Intelligent Web: Theory and Practice 9

Chapter 2 Information Retrieval

[C](VC){m}[V] (2.3)

Here, m will be called the measure of any word or word part. For a null word m = 0.

The following are some of the examples of various values of the measure:

m = 0 TR, EE, TREE, Y, BY.

m = 1 TROUBLE, OATS, TREES, IVY.

m = 2 TROUBLES, PRIVATE, OATEN, ORRERY.

The strings for m = 0, match [C][V]. The strings for m = 1, have only one

occurrence of (VC) between [C][V], and so on. The rules for removing a suffix in

Figures 2.6-2.10 are given in the form:

(condition) S1 -> S2

The condition is usually given in terms of m. If the stem before S1 satisfies the

condition, then replace S1 by S2. For example, in the rule

(m > 1) EMENT ->

S1 is “EMENT” and S2 is null. The above mentioned rule would, for example, map

“REPLACEMENT” to “REPLAC”, since “REPLAC” is a word part for which m = 2.

The condition part may also contain the following expressions:

*S - the stem ends with S (and similarly for the other letters).

v - the stem contains a vowel.

*d - the stem ends with a double consonant (e.g., -TT, -SS).

*o - the stem ends cvc, where the second c is not W, X or Y

(e.g., -WIL, -HOP).

Finally, the condition part may also contain expressions with logical operators and, or,

and not. For example,

Building an Intelligent Web: Theory and Practice 10

Chapter 2 Information Retrieval

(m > 1 and (*S or *T))

matches a stem with m > 1 ending in S or T. Similarly, in the condition,

(*d and not (*L or *S or *Z))

a stem will end with a double consonant other than L, S or Z.

In a set of rules that follow each other, only the one with the longest matching S1

for the given word is obeyed. For example, consider the following sequence of rules

(with null conditions):

SSES -> SS

IES -> I

SS -> SS

S ->

The word “CARESSES” stems to “CARESS”, since “SSES” is the longest match for S1.

Similarly, “CARESS” stems to itself (S1= “SS”) and “CARES” to “CARE” (S1= “S”).

Now we are ready to look at the five steps of the Porter algorithm. Figures 2.6-

2.10 show the rules used in the Porter algorithm in every step. Applications of the rules

are given on the right in lower case. Step 1 given in Figure 2.6 deals with plurals and past

participles. The subsequent steps 2-4, given in Figures 2.7 to 2.9, show the relatively

straightforward stripping of suffixes. Step 5 (Figure 2.10) is used for tidying up. Complex

suffixes are removed in several stages. For example, GENERALIZATIONS is stripped as

follows:

Step 1: GENERALIZATION

Step 2: GENERALIZE

Step 3: GENERAL

Step 4: GENER

Building an Intelligent Web: Theory and Practice 11

Chapter 2 Information Retrieval

Similarly, OSCILLATORS is stripped as follows:

Step 1: OSCILLATOR

Step 2: OSCILLATE

Step 4: OSCILL

Step 5: OSCIL

The algorithm does not remove a suffix when the length of the stem, given by its measure

(m), is small. For example, consider the following two lists:

list A list B

------ ------

RELATE DERIVATE

PROBATE ACTIVATE

CONFLATE DEMONSTRATE

PIRATE NECESSITATE

PRELATE RENOVATE

The words from List A have small measures, hence -ATE is not removed. However -ATE

is removed from the words from List B, which have larger measures.

In an experiment reported on Porter’s site, a vocabulary of 10,000 words reduced the

words in various steps, as shown in Figure 2.11. After reduction, there were 6370 stems

left in the list. That is, the suffix stripping process using Porter’s algorithm reduced the

size of the vocabulary by 36%. Figure 2.16 (details of the figure will be discussed a little

later) shows the list of stems left after eliminating the stopwords and stripping the words

from document d1 in Figure 2.3. The original document contained 184 words. After the

elimination of stopwords and duplicate stems, there were 73 distinct words found in

Figure 2.3. The aforementioned document was a summary course description. A longer

Building an Intelligent Web: Theory and Practice 12

Chapter 2 Information Retrieval

document would have resulted in additional reductions. The two numbers after each stem

in Figure 2.16 represent the frequency and normalized frequency of the stem in the

document (discussed later).

2.2.1.2 Stemmer Software

The Porter algorithm has been implemented in a variety of programming languages. The

original implementation of the algorithm was in BCPL, an ancestor of C. The official site

of the Porter Stemming Algorithm (http://www.tartarus.org/~martin/PorterStemmer/)

provides links to its implementation in C, Java, Perl, PHP, C#, Python, Common Lisp,

Visual Basic, Ruby, and Javascript. The links to these versions can be found under

Chapter 2 on the CD-ROM. A Java version (Stemmer.java) and its class file

(Stemmer.class) are also available on the CD-ROM. The compilation and execution of

the stemmer can be done at the command prompt (Windows, UNIX, or MacOS). First,

change the directory to IR/porter. The Java file can then be compiled using the

command:

javac Stemmer.java

This command will produce the class file that can be run using the command:

java Stemmer input.txt

It is assumed in the command above that you have a file with a list of words. The

program will go through the list and output the stemmed versions of the word. The file

voc.txt contains a sample of vocabulary from the official site of the Porter algorithm.

The corresponding output is given in vocoutput.txt. The files Stemmer.java,

Stemmer.class, voc.txt, and vocoutput.txt are stored under a subdirectory

http://www.tartarus.org/~martin/PorterStemmer/

Building an Intelligent Web: Theory and Practice 13

Chapter 2 Information Retrieval

called porter in the IR directory. Duplicate copies of files Stemmer.java and

Stemmer.class are also stored in the java subdirectory. Readers should see the

effects of running the Stemmer on Tokenized-d1.txt from the subdirectory

fig2.3 by typing the following command:

java –cp ../java Stemmer Tokenized-d1.txt (Command 2.2)

The results of redirecting the output from (Command 2.2) appear in the file

Stemmed-d1.txt in the subdirectory fig2.3.

2.2.2 Term Document Matrix

Term document matrix (TDM) is a two dimensional representation of a document

collection. The rows of the matrix represent various documents, and the columns

correspond to various index terms. The values in the matrix can be either the frequency or

weight of the index term (identified by the column) in the document (identified by the

row). Figure 2.12 shows an abstract representation of a document collection. It is

assumed that the document collection contains 7 documents: D0 to D6. These documents

are represented by 7 keywords: K0…K6. We use the C-array convention for numbering

lists. For a list of n items, the numbering starts at 0 and ends at n-1. The cell values

denote the frequency of the keywords in the documents. For example, in Figure 2.12, the

keyword K2 appears in document D0 5 times. Similarly, the keyword K3 appears 7 times

in document D3.

Usually, the number of keywords is large. For example, in our document

collection from Figure 2.3 with four very short documents, the number of keywords is

172. Most of the documents do not contain every one of these keywords. Hence, the

Building an Intelligent Web: Theory and Practice 14

Chapter 2 Information Retrieval

term-document matrix is usually sparse, i.e., many of its entries are zeroes. In order to

save storage, usually only non-zero entries are stored. One of the popular representations

of a sparse matrix uses triplets (row, column, value) for non-zero entries. For example,

the term-document matrix from Figure 2.12 will be represented using the triplet as shown

in Figure 2.13. There were 49 entries in Table 2.12. Only 24 of those entries need to be

stored in table 2.13. In this example, since we are storing three values for each non-zero

entries, we end up storing 72 numbers. If we had created separate storage for each

document, we could have eliminated the need to store the first number corresponding to

the document number. Each non-zero entry in this case will be represented using a pair

(column,value). We can use a line character to distinguish the rows/documents. This will

give us the representation of our document collection as shown in Figure 2.14. In this

case, we store 48 numbers to represent 49 values from our original matrix. Our abstract

example does not illustrate the reduction in storage very well. For the document set from

the four short documents in Figure 2.3, with 173 keywords, we will require 172*4=688

entries in the term-frequency matrix. However, there are only 195 non-zero entries. If we

use a triplet (row,column,value), we will need 195*3=585 numbers. The savings

correspond to 103 integers or 14.97%. If we use a pair, we will need 195*2=390 number.

In this case, the savings will be 298 numbers or 43.31%. The savings are even more

noticeable in larger and more diverse document collections.

Usually, the raw frequency values are not useful for a retrieval model. Many

retrieval models prefer normalized weights, usually between 0 and 1, for each term in a

document. Dividing all the keyword frequencies by the largest frequency in the document

ij

Building an Intelligent Web: Theory and Practice 15

Chapter 2 Information Retrieval

is a simple method of normalization. Mathematically, we can write the equation for

calculating the weight of a term in a document as:

w =
freqij

,

ij m

MAX freqik
k =1

(2.4)

where w
ij

is the weight , and freq is the frequency of the j
th

 keyword in i
th

 document. It

is assumed that there are m terms in a document collection. That is, the number of

columns in the TDM is m. Figure 2.15 shows the normalized version of the term

document matrix from Figure 2.12. Whenever necessary, we will qualify the term

document matrix with either frequency or weight. For example, the matrix given in

Figure 2.12 is the term document frequency matrix, while the one in Figure 2.15 is the

term document weight matrix.

The java subdirectory under the IR directory contains a class called DocVector

that can be used to create each row of a term document matrix. Each element of the row

is represented as a triplet (word, frequency, normalized frequency). It should be noted

that the class creates a representation that takes a little more space than an efficient

implementation requires. For example, a word could be stored by its index similar to

Figure 2.14, and only frequency or normalized frequency needs to be stored for a given

information retrieval model. In fact, the Boolean retrieval model requires neither the

frequency nor the normalized frequency, only the presence or absence of a term, which

can lead to a very efficient storage. However, the document representation created by

DocVector is more readable and easy to use in simple implementations of a variety of

Building an Intelligent Web: Theory and Practice 16

Chapter 2 Information Retrieval

information retrieval models. The class DocVector is run essentially the same way as

the class TokenizedDoc.

java -cp ../java DocVector d1.txt "\!\?\[\].,;-" ../misc/stopwords.txt (Command 2.3)

The redirected output from (Command 2.3) is stored in the file Vector-d1.txt also

shown in Figure 2.16. Readers are encouraged to run the same command for the other

three text files from Figure 2.3 (see the Exercise section). Unlike Figure 2.14, the triplets

from a document vector appear as one per line. In order to store the entire term document

matrix, we need separators. Following the convention from the SMART collections, we

will use a line starting with ‘.I’ followed by document ID to identify the beginning of the

file. In fact, the file Vector-d1.txt begins with the line .I d1.txt. The vector

representations of the remaining three documents from Figure 2.3 can be created

similarly using a variation of (Command 2.3). The concatenation of resulting files can

then be used as a term document matrix (see the Exercise section).

Readers who are not familiar with Java can skip the following

highlighted paragraph.

Figure 2.17 shows information about the constructor and methods of

the DocVector class. The class has two constructors. One of them is

a default constructor that does not initialize any fields. The other

constructor takes two parameters: Vector of the words in the

document, and document’s ID. The constructor then uses two private

functions to

Building an Intelligent Web: Theory and Practice 17

Chapter 2 Information Retrieval

• stem the word,

• eliminate duplicates, and

• calculate frequency and normalized frequency of the stemmed

words.

One member function, getVector(), returns the vector

representation of the documents as a Vector of objects of type

Term, a triplet (word, frequency, normalized frequency). The class

Term is discussed at the end of this paragraph. The other member

function getID() returns the ID of the document. The functions

starting with “set” make it possible to set the values of the two fields

in the class. The constructor expects the file processing is done

elsewhere (TokenizedDoc class). The main function in the class

shows an example of how to use the TokenizedDoc class before

calling the constructor of the DocVector class. The main program

can be used to make standalone use of the class. Figure 2.18 shows

relevant portions of the main function. The program segment between

the try and catch block reads a document as a string. The string

representing a document is then passed along with another string

containing separators, and the name of the stopwords file to construct

an object of the type TokenizedDoc. The Vector of words/tokens

from the TokenizedDoc is then used to construct the vector

representation of documents using the triplet (word, frequency,

Building an Intelligent Web: Theory and Practice 18

Chapter 2 Information Retrieval

normalized frequency). The triplet is represented using a Java class

called Term. It consists of three fields:

• word: A string representing the actual term.

• freq: The number of times the term appears in the document.

• normalizedFreq: Given by Eq. (2.4).

Figure 2.19 shows the summary of constructors and various methods

to access the fields of the class Term. The constructor needs the value

of word in order to construct an object of type Term. The functions

beginning with “get” are used to get the value of a field. Similarly,

functions beginning with “set” are used to change the value of a

field.

2.2.3 Standard Document Collections

The experiments described so far are based on a document set with four very short

documents given in Figure 2.3. For any significant experimentation, one needs to work

with a larger number of documents with more significant contents. This section describes

some of the standard document collections that are available for experimentation. These

collections are widely used by IR researchers and therefore also provide a good means of

conducting comparative studies. Many of these document collections are too large to be

provided on the CD-ROM accompanying this textbook. Therefore, the URLs for these

collections appear both on the CD-ROM, as well as in this section. Additionally, the CD-

ROM contains smaller document collections that can be used for preliminary

experimentation.

Building an Intelligent Web: Theory and Practice 1

Chapter 2 Figures Information Retrieval

Create a list of words

Remove stop words

Stem words

Calculate frequency of

each stemmed word

Figure 2.1 Transforming text document to a weighted list of keywords

Building an Intelligent Web: Theory and Practice 2

Chapter 2 Figures Information Retrieval

I a

about

an

are

as

at

be

by

com

de

en

for

from

how

in

is

it

la

of

on

or

that

the

their

there

this

to

was

were

what

when

where

who

why

will

won’t

with

within

without

und

www

Figure 2.2 A partial list of stopwords

Building an Intelligent Web: Theory and Practice 3

Chapter 2 Figures Information Retrieval

Data Mining has emerged as one of the most exciting and dynamic fields in computing

science. The driving force for data mining is the presence of petabyte-scale online

archives that potentially contain valuable bits of information hidden in

them. Commercial enterprises have been quick to recognize the value of this

concept; consequently, within the span of a few years, the software market itself

for data mining is expected to be in excess of $10 billion. Data mining refers to

a family of techniques used to detect interesting nuggets of

relationships/knowledge in data. While the theoretical underpinnings of the field

have been around for quite some time (in the form of pattern recognition,

statistics, data analysis and machine learning), the practice and use of these

techniques have been largely ad- hoc. With the availability of large databases to

store, manage and assimilate data, the new thrust of data mining lies at the

intersection of database systems, artificial intelligence and algorithms

 that efficiently analyze data. The

distributed nature of several databases, their size and the high complexity of many

techniques present interesting computational challenges.

This course will expose the students to research in applied sciences.

The objectives of the course will be achieved through various active learning

sessions that involve critical review of papers from scholarly journals and

conferences. The activities will also include the preparation and

presentation of annotated bibliographies, literature reviews, thesis

 abstracts, and research project outlines. Students are also

required to provide feedback to their colleagues. It is hoped that students will

refine their own presentation skills through critically reviewing other

presentations. In addition to the regular class activities, students must

attend and submit written reports for a total of six (three per semester)

external seminars.

This course is designed to extend the student’s knowledge of, and

provide additional hands-on experience with, the programming language encountered

in CSC

226, in the context of the structured data types provided by that language, and

within the larger contexts of abstract data types and more complex problem-solving

situations. Techniques for managing file input and output in the current language

will also be studied. A number of classical algorithms and data structures for the

storage and manipulation of information of various kinds in a computer’s internal

memory will be studied. The student will acquire the knowledge that comes from

actually implementing a non-trivial abstract data type and the experience

that comes from having to make use, as a client programmer, of an abstract type

that has already been implemented.

This course consists of a study of general language design and evaluation. The

course will include examination of the design issues of various language

constructs, design choices for these constructs in various languages, and

comparison of design alternatives. Students will program in a variety of

programming languages (FORTRAN, Pascal, C, C++, Java, C#, Lisp, and Prolog) to gain

a better understanding of the theoretical discussion. In addition, students will

get exposure to other languages ranging from Algol-60 to Ada-95.

Figure 2.3 A sample document collection = {d1, d2, d3, d4}

Building an Intelligent Web: Theory and Practice 4

Chapter 2 Figures Information Retrieval

Constructor Detail

TokenizedDoc

public TokenizedDoc(java.lang.String doc,

java.lang.String separators,

java.lang.String stopWordFile)

Parameters:

doc - represented as a single string

separators - String of characters used as separators, e.g. "!?[](),;.?"

stopWordFile - name of the file containing stopwords, e.g. "stopwords.txt"

Method Detail

getTokens

public java.util.Vector getTokens()

Returns:

A vector of words/tokens.

main

public static void main(java.lang.String[] args)

Parameters:

args - An array of Strings, e.g. d1.txt "\!\[\](),;.?" stopwords.txt

Figure 2.4 Methods for TokenizedDoc class
(Suitable for Java programmers)

Building an Intelligent Web: Theory and Practice 5

Chapter 2 Figures Information Retrieval

ad

algorithms

analysis

analyze

archives

artificial

assimilate

availability

billion

bits

challenges

commercial

complexity

computational

computing

concept

data

data

data

Data

data

data

data

data

database

databases

databases

detect

distributed

driving

dynamic

efficiently

emerged

enterprises

excess

exciting

expected

family

field

fields

force

form

hidden

high

hoc

information

intelligence

interesting

interesting

intersection

large

largely

learning

lies

machine

manage

market

mining

mining

mining

mining

mining

nature

nuggets

online

pattern

petabyte

potentially

practice

presence

present

quick

recognition

recognize

refers

relationships

scale

science

size

software

span

statistics

store

systems

techniques

techniques

techniques

thrust

time

underpinnings

valuable

years

Figure 2.5 List of words in d1 after deleting stopwords

Building an Intelligent Web: Theory and Practice 6

Chapter 2 Figures Information Retrieval

Step 1a

SSES -> SS caresses -> caress
IES -> I ponies -> poni
 ties -> ti
SS -> SS caress -> caress
S -> cats -> cat

Step 1b

(m>0) EED -> EE feed -> feed

agreed -> agree

(*v*) ED -> plastered -> plaster

bled -> bled

(*v*) ING -> motoring -> motor

sing -> sing

If the second or third of the rules in Step 1b is successful, the following is

done:

AT -> ATE conflat(ed) -> conflate
BL -> BLE troubl(ed) -> trouble
IZ -> IZE siz(ed) -> size
(*d and not (*L or *S or *Z))

-> single letter
hopp(ing) -> hop
tann(ed) -> tan
fall(ing) -> fall
hiss(ing) -> hiss
fizz(ed) -> fizz

(m=1 and *o) -> E fail(ing) -> fail
fil(ing) -> file

The rule to map to a single letter causes the removal of one of the double

letter pair. The -E is put back on -AT, -BL and -IZ, so that the suffixes

-ATE, -BLE and -IZE can be recognised later. This E may be removed in step

4.

Step 1c

(*v*) Y -> I happy -> happi
 sky -> sky

Figure 2.6. First step in the Porter algorithm (http://www.tartarus.org/~martin/)

http://www.tartarus.org/~martin/

Building an Intelligent Web: Theory and Practice 7

Chapter 2 Figures Information Retrieval

Step 2

(m>0) ATIONAL -> ATE relational -> relate
(m>0) TIONAL -> TION conditional -> condition
 rational -> rational
(m>0) ENCI -> ENCE valenci -> valence
(m>0) ANCI -> ANCE hesitanci -> hesitance
(m>0) IZER -> IZE digitizer -> digitize
(m>0) ABLI -> ABLE conformabli -> conformable
(m>0) ALLI -> AL radicalli -> radical
(m>0) ENTLI -> ENT differentli -> different
(m>0) ELI -> E vileli - > vile
(m>0) OUSLI -> OUS analogousli -> analogous
(m>0) IZATION -> IZE vietnamization -> vietnamize

(m>0) ATION -> ATE predication -> predicate

(m>0) ATOR -> ATE operator -> operate

(m>0) ALISM -> AL feudalism -> feudal

(m>0) IVENESS -> IVE decisiveness -> decisive

(m>0) FULNESS -> FUL hopefulness -> hopeful

(m>0) OUSNESS -> OUS callousness -> callous

(m>0) ALITI -> AL formaliti -> formal

(m>0) IVITI -> IVE sensitiviti -> sensitive

(m>0) BILITI -> BLE sensibiliti -> sensible

Figure 2.7. Second step in the Porter algorithm (http://www.tartarus.org/~martin/)

http://www.tartarus.org/~martin/

Building an Intelligent Web: Theory and Practice 8

Chapter 2 Figures Information Retrieval

Step 3

(m>0) ICATE -> IC triplicate -> triplic
(m>0) ATIVE -> formative -> form
(m>0) ALIZE -> AL formalize -> formal
(m>0) ICITI -> IC electriciti -> electric
(m>0) ICAL -> IC electrical -> electric
(m>0) FUL -> hopeful -> hope
(m>0) NESS -> goodness -> good

Figure 2.8. Third step in the Porter algorithm (http://www.tartarus.org/~martin/)

http://www.tartarus.org/~martin/

Building an Intelligent Web: Theory and Practice 9

Chapter 2 Figures Information Retrieval

Step 4

(m>1) AL -> revival -> reviv
(m>1) ANCE -> allowance -> allow
(m>1) ENCE -> inference -> infer
(m>1) ER -> airliner -> airlin
(m>1) IC -> gyroscopic -> gyroscop
(m>1) ABLE -> adjustable -> adjust
(m>1) IBLE -> defensible -> defens
(m>1) ANT -> irritant -> irrit
(m>1) EMENT -> replacement -> replac
(m>1) MENT -> adjustment -> adjust
(m>1) ENT -> dependent -> depend
(m>1 and (*S or *T)) ION -> adoption -> adopt
(m>1) OU -> homologou -> homolog
(m>1) ISM -> communism -> commun
(m>1) ATE -> activate -> activ
(m>1) ITI -> angulariti -> angular
(m>1) OUS -> homologous -> homolog
(m>1) IVE -> effective -> effect
(m>1) IZE -> bowdlerize -> bowdler

Figure 2.9. Fourth step in the Porter algorithm (http://www.tartarus.org/~martin/)

http://www.tartarus.org/~martin/

Building an Intelligent Web: Theory and Practice 10

Chapter 2 Figures Information Retrieval

Step 5a

(m>1) E -> probate -> probat
 rate -> rate
(m=1 and not *o) E -> cease -> ceas

Step 5b

(m > 1 and *d and *L) -> single letter

controll -> control
roll -> roll

Figure 2.10. Fifth step in the Porter algorithm (http://www.tartarus.org/~martin/)

http://www.tartarus.org/~martin/

Building an Intelligent Web: Theory and Practice 11

Chapter 2 Figures Information Retrieval

Number of words reduced in step 1: 3597

" 2: 766

" 3: 327

" 4: 2424

" 5: 1373

Number of words not reduced: 3650

Figure 2.11. Suffix stripping of a vocabulary of 10,000 words

(http://www.tartarus.org/~martin/)

http://www.tartarus.org/~martin/

Building an Intelligent Web: Theory and Practice 12

Chapter 2 Figures Information Retrieval

 K0 K1 K2 K3 K4 K5 K6
D0 0 0 5 2 0 1 2
D1 4 1 1 0 0 0 0
D2 0 3 0 0 4 2 7
D3 2 2 0 7 1 0 0
D4 0 0 0 5 2 1 1
D5 7 0 2 0 0 0 3
D6 0 0 0 0 2 3 0

Figure 2.12 An abstract term-document matrix

Building an Intelligent Web: Theory and Practice 13

Chapter 2 Figures Information Retrieval

(0,2,5) (2,4,4) (4,4,2)
(0,3,2) (2,5,2) (4,5,1)
(0,5,1) (2,6,7) (4,6,1)
(0,6,2) (3,0,2) (5,0,7)
(1,0,4) (3,1,2) (5,2,2)
(1,1,1) (3,3,7) (5,6,3)
(1,2,1) (3,4,1) (6,4,2)
(2,1,3) (4,3,5) (6,5,3)

Figure 2.13 Representation of sparse term-document matrix using triplets

Building an Intelligent Web: Theory and Practice 14

Chapter 2 Figures Information Retrieval

(2,5)(3,2)(5,1)(6,2)

(0,4)(1,1)(2,1)

(1,3)(4,4)(5,2)(6,7)

(0,2)(1,2)(3,7)(4,1)

(3,5)(4,2)(5,1)(6,1)

(0,7)(2,2)(6,3)

(4,2)(5,3)

Figure 2.14 Representation of sparse term document matrix using pairs

Building an Intelligent Web: Theory and Practice 15

Chapter 2 Figures Information Retrieval

 K0 K1 K2 K3 K4 K5 K6
D0 0 0 1 0.4 0 0.2 0.4
D1 1 0.25 0.25 0 0 0 0
D2 0 0.43 0 0 0.57 0.29 1
D3 0.29 0.29 0 1 0.14 0 0
D4 0 0 0 1 0.4 0.2 0.2
D5 1 0 0.29 0 0 0 0.43
D6 0 0 0 0 0.67 1 0

Figure 2.15 Normalized term document weight matrix

Building an Intelligent Web: Theory and Practice 16

Chapter 2 Figures Information Retrieval

ad 1 0.125

algorithm 1 0.125

analysi 1 0.125

analyz 1 0.125

archiv 1 0.125

artifici 1 0.125

assimil 1 0.125

avail 1 0.125

billion 1 0.125

bit 1 0.125

challeng 1 0.125

commerci 1 0.125

complex 1 0.125

comput 2 0.25

concept 1 0.125

data 8 1.0

databas 3 0.375

detect 1 0.125

distribut 1 0.125

drive 1 0.125

dynam 1 0.125

effici 1 0.125

emerg 1 0.125

enterpris 1 0.125

excess 1 0.125

excit 1 0.125

expect 1 0.125

famili 1 0.125

field 2 0.25

forc 1 0.125

form 1 0.125

hidden 1 0.125

high 1 0.125

hoc 1 0.125

inform 1 0.125

intellig 1 0.125

interest 2 0.25

intersect 1 0.125

larg 2 0.25

learn 1 0.125

li 1 0.125

machin 1 0.125

manag 1 0.125

market 1 0.125

mine 5 0.625

natur 1 0.125

nugget 1 0.125

onlin 1 0.125

pattern 1 0.125

petabyt 1 0.125

potenti 1 0.125

practic 1 0.125

presenc 1 0.125

present 1 0.125

quick 1 0.125

recogn 1 0.125

recognit 1 0.125

refer 1 0.125

relationship 1 0.125

scale 1 0.125

scienc 1 0.125

size 1 0.125

softwar 1 0.125

span 1 0.125

statist 1 0.125

store 1 0.125

system 1 0.125

techniqu 3 0.375

thrust 1 0.125

time 1 0.125

underpin 1 0.125

valuabl 1 0.125

year 1 0.125

Figure 2.16 Vector representation of document d1

Building an Intelligent Web: Theory and Practice 17

Chapter 2 Figures Information Retrieval

Constructor Detail

DocVector

public DocVector()

Default Constructor

DocVector

public DocVector(java.util.Vector wordVector,

java.lang.String initID)

Creates a vector of Term using the words/tokens from the wordVector.

Parameters:

wordVector - A Vector of words

initID - A string used to identify the document

See Also:
Term

Method Detail

getVector

public java.util.Vector getVector()

Returns:

A vector of Term: a triplet consisting of stemmed words, frequency, and normalized

frequency.

See Also:
Term

getID

public java.lang.String getID()

Returns:

A string identifying the document

setVector

public void setVector(java.util.Vector initVector)

See Also:
Term

setID

public void setID(java.lang.String initID)

Parameters:

initID - A string identifying the document

main

public static void main(java.lang.String[] args)

Parameters:

args - An array of Strings, e.g. d1.txt "\!\[\](),;.?" stopwords.txt

Figure 2.17 Methods for DocVector class
(Suitable for Java programmers)

Building an Intelligent Web: Theory and Practice 18

Chapter 2 Figures Information Retrieval

try

{

……
String s = in.readLine();

while(s != null)

{

test += s + "\n";

s = in.readLine();

}

}catch(IOException e){}

Vector wordVector = new TokenizedDoc

(test, args[1], args[2]).getTokens();

DocVector documentVector = new DocVector(wordVector, args[0]);

Vector cdv = documentVector.getVector();

System.out.println(".I "+documentVector.getID());

for(int i = 0; i < cdv.size(); i++)

System.out.println(cdv.get(i));

Figure 2.18 Code snippet from the main of DocVector class
(Suitable for Java programmers)

Building an Intelligent Web: Theory and Practice 19

Chapter 2 Figures Information Retrieval

Constructor Summary

Term(java.lang.String initWord)

Method Summary

int getFreq()

double getNormalizedFreq()

java.lang.String getWord()

void setFreq(int f)

void setNormalizedFreq(int n)

void setWord(java.lang.String w)

java.lang.String toString()

Figure 2.19 Methods for Term class

(Suitable for Java programmers)

