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Abstract 

Based on the concept of user preference, we investigate the linear structure in 
information retrieval. We also discuss a practical procedure to determine the 
linear decision function and present an analysis of term weighting. Our experi- 
mental results seem to demonstrate that our model provides a useful framework 
for the design of an adaptive system. 

1. Introduction 

Recently, Bollmann and Wong[BOLL87] have proposed an adaptive linear retrieval 

model. One of the main objectives of their work is to establish a theoreticat basis for 
adopting linear models in information retrieval. Although they investigated the necessary 
and sufficient conditions for the existence of a linear retrieval function based on measure- 

ment theory, some of the important issues have not been fully explored. 

In this paper, we focus more on the performance issues of a linear system and use an 
iterative algorithm (a gradient descent procedure) to compute the coefficients of a linear 

function. In particular, as an example for illustrating the usefulness of our approach, we 
present an analysis of term weighting for auto-indexing and show that some of the earlier 
results[SALT;Il, SALT83, RIJS79] can perhaps be better understood based on the linear 
structure. Our experimental results seem to demonstrate that our linear model provides a 
useful framework for designing an adaptive system for information retrieval. 
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The paper is organized as follows. In Section 2. we first review the concept of user 
preference which forms the basis of our discussion.. Then we concentrate on the study of a 
linear system in Section 3. En Section 4, we show how to construct a linear decision func- 
tion by adopting an acceptab’le ranking strategy and compare our results with those 
obtained by other methods. The experimental results are summarized in Section 5. The 
main objectives of our experiments are to demonstrate the linear structure of some test 
document collections and to evaluate the performance of our method. 

2. IJscr Preference 

Given any two documents in a collection, we assume that a user would ~@ZV- one to 
the other or regard both of them as being equivalent with respect to his information needs. 
In other words, it is assumed that the user’s judgment on a set of documents D can be 
described by a (strict) preference relation c* , namely, 

d <* d’ c=> the user prefers d’ to d , d,dER. (2.1) 

This reIation implies that there also exists an indifference relation - defined by: 

d-d’ c=> (notI:d<o6),not(d’<od)) . f2.2) 

A preference relation <* which po:ssesses the asymmetric and negatively transitive 
properties: 

(i) If d<- d, then not (d* =c* d) , 

(ii) If not (d c* 6) and not (d C- &) , then not (d <* d") , (2.3) 

is called a weak order[FISH70, ROBS76:I. It can be seen that the indifference relation is 
an equivalence relation if the preference relation is a weak order. 

Fig. 2.1 depicts a preference relation satisfying the axioms (2.3) of a weak order. 
Documents in the same level (rank) belong to the same equivalence class of the 
indifrcrence relation - , and documents in the higher ranks are preferred to those in the 
lower ones. 
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Figure 2.1 A (weak order) preference relation 

3. The Linear Structure 

It has been shown[BOLL87, FISH70, ROBS76, WONG88] that if a user preference 
relation is a weak order satisfying some additional conditions one can represent such a 
relation by a linear decision function. Assume that each document in a collection is 
described by a column vector d in a p-dimensional vector space over a set of index terms 

C~l.tz,..-,tJ. Let I? be the set of document vectors. Then, there exists a linear 
function: 

such that 

g(d) = qTd = w,id,i 
I= 1 

(3.1) 

which implies 

d <. d’ c=> qTd < qTd’ , d, d’ E D 

d - d’ <=> qTd = qrd’ . 

* (3.2) 

(3.3) 

( qT = ( WI, , Wlz, - - - 9 wI, ) denotes the transpose of vector q .) We say that a linear 

function defined by eqn. (3.1), satisfying condition (3.2) provides a perfect ranking for the 
documents. That is, based on such a function the documents can be ordered precisely in 
accordance with the user preference as defined by eqns, (2.1) and (2.2). 

In practice, to find a query vector representing both the preference and the 
indifference relations at the same time can be quite a difficult task. However, we can 
express condition (3.2) in terms of two single implications: 
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d <s. d , => q=d < q’dL’ , 

and 

(3.4) 

(3.5) 

The first impIication eqn. (3.4) is equivalent to 

qTd 2 q’d’ => not (d <. d’) , (3.6) 

which has a significant impact on designing retrieval models. Our primary concern in 
information retrieval is to ensure that thlose documents more relevant to the user informa- 
tion needs are ranked ahead of those less relevant ones. One is really not interested in 
making sure that those documents belonging to the same equivalence class of the 
indifference reIation should have the same relevance value. Therefore, the less stringent 
condition (3.4) may be a more suitable strategy than condition (3.2). 

In contrast to the perfect ranking strategy, condition (3.4) only guarantees that less 
preferred documents will not be listed in front of the more preferred ones. We say that a 
query vector q satisfying condition (3.4) provides an accepmbie ranking. 

It should perhaps be emphasized here that many existing ranking strategies[COOP68, 
SALT83, RIJS79] proposed in the past for information retrieval are in fact based on condi- 
tion (3.4), In this paper, we will adopt the acceptable ranking strategy for the study of 
linear structure. 

In order to facilitate the analysis of the linear structure and for comparison of some 
previous results, we assume in subsequent discussions that documents are represented by 
binary vectors. Each component of a document vector corresponding to an index term is 
assigned a value of 0 or 1 depending on whether the index term is absent or present in the 
document. Furthermore, it is assumed thlat the user preference has a simple structure with 
only two levels. That is, documents are: divided into two equivalence classes -- relevanr 
and nonrelevant (see Fig+ 3.1), Thus, the user preference and indifference relations can be 
expressed as: 

d c* d’ c=> d E nrcl , d’ E rei , (3.7) 

and 

d - d’ c=> (d E rel , d’ E rel) or (d E nrel , d’ E nrel) , (3.8) 

where rcl and nrcl denote the subsets of relevant and nonrelevant documents, respectively. 
(It should be noted that our analysis here is applicable to non-binary document descriptions 
with a more complex preference structure.) 
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Figure 3.1 A user preference with two levels: reIevant(+), nonrelevant 

Figure 3.2 Partition of documents based on the value of index term t 

Based on a given user preference, one can construct a contingency table for each 
index term t : 

Relevant 

R 

where 

Nonrelevant 

n-r 

N-n-R+r 

N-R 

1 

n 

N-n 

N 

N = total number of documents in the collection 
R = total number of relevant documents 
n = number of documents indexed by t 

r = number of relevant documents indexed by t . 
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Suppose documents are rankedl accordiq to the value of index term t.. There are jbur pos- 
sible groups of documents, A, B, C, L) as shown in Fig. 3.2.. From this classification 
scheme. we can form different sets of document pairs (Cartesian product sets): 

(i) A x D 

(ii) (A x C) u (l? x D) 

(iii) B x C 

(iv) (A x B) u (C x D) . 

As indicated in Table 3.1, the first two sets (i) and (ii) of document pairs are ordered 
correctly according to the acceptable ranking strategy (condition (3.4)), and the last two 
sets (iii) and (iv) of document pairs do not satisfy this criterion. Among these four sets, 
only sets (i) and (iii) are independent and moreover they are more significant for document 
classification. They can be used to construct a measure of the usefulness of each term f. 
For example, the ratio of the cardinality of set (i) over the cardinality of set (iii): 

IA x DI 
&3xcl= 

r(N - R - n + r) 
(n - r)(R - r) ’ (3.9) 

provides a plausible measure of how well the documents are ranked by using the index 
tern> t alone. 

set of 
document pairs 

AxD 
(A x C) u (B x D) 
BXC 
(A x B) u (C x D) 

condition. (3.4) 
=> 

Yes 
Yes 
no 
no 

condition (3.5) condition (3.2) 
<= <=> 

=- 
Yes Yes 
?lO no 
?lO no 
Yes ?lO 

Table 3.1 Characteristics of the sets of document pairs induced by t 

(yes: satisfying the condition, ru): not satisfying the condition) 

It is interesting to note that eqn. (3.9) is closely related to the formula for term preci- 
sion weighting[ROBN76, YU76] based on the probabilistic approach: 

WI = log - 
r(N - R - n + r) 

(n - r)(R - r) * 
(3.10) 

Using different assumptions, other formulas have also been suggested for term 
weighting[ROBN76]: 
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w2 = log r(iv - n) 
n(R-r) ’ 

(3.11) 

w7 = log r(N - R) 
R(n - r) ’ 
r-IV w4 = log - 
Rn - 

(3.12) 

(3.13) 

In terms of the cardinalities of sets A, B, C, D, the above formulas can be rewritten as: 

d = log r(R - r) + r(N - R - n + r) 

rW - r) + (n - r)(R - r) 
(3.14) 

w3 = log r(n - r) f r(N - R - n + r) 
tin - r) + (n - r)(R - r) 

(3.15) 

W4 = log 
rr + r(n - r) + r<R - r) + r(ZV - R - n + r) 

rr + r(n - r) + r(R - r) + (n - r)(R - r) l 

(3.16) 

It has been pointed out[ROBN76] that for some document collections wr gives the best 
results and performance becomes progressively worse from W* to w4 . If we assume 
r(n - r) 2 r(R - r), it is not difficult to see that more noise is added to & than w2 and so 
on. Thus, from quite a different point of view, our analysis here seems to justify the ear- 
lier results. 

4. A Gradient Descent Procedure 

In this section, we present an algorithm for finding a query vector q satisfying the 
acceptable ranking strategywONG88]. 

For convenience, the condition (3.4) can be expressed as 

d <. d’ => q=b > 0 , (4.1) 

where b = d’ - d is called the dirererence vector for document pair (d , d? such that 
d <e d’. It is therefore clear that the problem of finding a query vector satisfying criterion 
(4.1) is equivalent to solving the following system of linear inequalities: 

a% > 0 , a=1,2 ,..., M, (4.2) 

where M denotes the number of document pairs specified by the preference relation c* . 
An exact or approximate solution of this system of linear inequalities can be found by 
minimizing the well known pereeptron criterion function[DUDA73]: 

Aa> = 
b &qj- qTb ' 

(4.3) 
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where the set T(q) is deftned by: 

T(q) = 1: b = d’ - d I d <* d’ , qTb S 0 ) . (4.4) 

We define J(q) = 0 if T(q) = 0. It has been shown[WIONG88] that the function J(q) pro- 
vides, a measure of the total erPOr induced by the query vector q,. Therefore, minimizing 
J(q) is in fact equivalent to minimizing the error. With the criterion function (4.3), the 
gradient descent procedure[DWDA73, WONG88] is outlined below: 

(i) Choose an initial query vector q. and let k = 0. 

(ii) Let qk be the query vector in the kth step. Identify the set of difference vectors 
T(qk) using eqn. (4.4). If r(qk) = 0 (i.e. qk is a solution vector), temlinate the 
procedure. 

(iii) Let 

Yk+ 1 = Clk + c b - 
b E r(qtl 

(iv) Let k = k + 1; go back to step (ii). 

Example 4.1 

Consider a set of document vectors D = [ dr , d2 , d3 , d4 } with 

d, = ( 1, 1, 0, 1 )r 

d, = ( 1, 0, 1, 0 )T 

d3 = ( 0, 1, 1, 0 )T 

d,=(O, l,O, l)T 

Suppose a user preference relation on D is given by: 

d, <* d, , d, c. d, , d, c* d, , d4 <* d, > d4 <* d, - 

For this preference relation, one obtains the foIlowing set of difference vectors: 

B = 1 b21 3 t’31 3 b32 , b24 , b34 1, 

where 

(4.5) 

b2L1 = d, - cl1 = ( 0, -1, 1, -1 )T 
bsl = d3 - <II = ( -1, 0, 1, -1 ) T 

b32 = d3 - d2 = t-1, 1, 0, 0 IT 
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b24 =d2-d4= ( 1,-l, l,-l)T 

bJ4 = d3 - d, = ( 0, 0, 1, -1 ) T 

By choosing qo = 0, we have l-(90) = B. Thus, in the first iteration the query vec- 

tor q1 is equal to: 

ql = qo + ( bzr + bt + b32 + bu + b34 ) 

= ( -1, -1, 4, -4 )T . 

Use qs as query vector and we obtain r(qr) = ( b,, }. In the second iteration q2 
becomes: 

92 = 91 + b,, = ( -2, 0, 4, 4 y- - 

For query vector q2, r(q2) = 0. Therefore, q = q2 = ( -2, 0, 4, 4 )T is a solution 
vector. According to eqn. (3.1), the linear function has the values -6, 2, 4, and -4 
for documents d, , d2 , d, , and d, , respectively. It can easily be verified that to 
rank the documents according to these numbers satisfies the acceptable ranking 
strategy. q 

In general, if we choose q. = 0 as the initial query in the above gradient descent pro- 
cedure, at the first iteration one obtains from eqn. (4.4): 

I-(qo) = ( b = d’ - d 1 d E nrel, d’ E rel ) , (4.6) 

and from eqn. (4.5) qI is given by: 

q1=qo + c b = c C (d’ - d) . 
b E WJO) d’ E ret d E nrcl 

Based on the contingency table in Section 3, eqn. (4.7) can be written as, 

= (iv-R) C d’ - R c d - 
d’ E l-cl de nrcl 

(4.7) 

(4.8) 

The component of the query vector q1 assigns a weight 2 to index term f : 
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MS = (N - R)r - RI@ - r) 

=ivR(;-;) . (4.9) 

If 2 = $ (i.e. 2 = 0), index tenn I gives no useful informatio8n for document 
R 

classification. If +- > $, the presence of term c (i.e. dI = 1) in a docu.ment vector wilI 

contribute 2 vorcs for the relevant class (+). On the other hand, if i < c and d, = 1, 

d will contribute h?l votes for the nonrelevant class (-). Thus, the absolute value 

I$ - +I provides an approximate measure of the. usefulness of index term t for distin- 

guishing relevant and nonrelevant documents. (Note that RN in eqn. (4.9) is a constant 
which does not affect the ranking of documents.) 

.As an example for illustrating the potential of our approach, we present here a brief 
discussion on term weighting. In indexing, one nerds a guideline to select proper terms to 
index the documents. Since the usefulness of each index term with respect to a user 

preference is reflected by the value I$ - $1, it may provide a criterion for term weight- 

ing. However, the ratio $- is not the same for different user preference relations and not 

known a priori. In order to estimate the average value for I$ - $ I, one may regard $ 

as the value of a random variable X. Based on the physical interpretation of the weighting 
function 2 defined by eqn. (4.9), it is reasonabie to assume that the probability density 
function (p-d-f) of this random variable for a good index term has the form (indicated by 
the solid curve) as shown in Fig. (4.1). 

A 

zl 
N 

0 
-zi 

1 

Figure 4.1 The p.d.f. for a good index term 
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Suppose a linear function is used to approximate the p.d,f (see Fig. 4.1). That is, 

b(X-;) *5x51, 

(4.10) 

where a > 0 and b > 0. By normalizing the above p.d.f, 

1 s 1 

jf(X)dx= 1 a(-X+$)dX -I- l b(X-;)dY = 1 , 
0 0 

x 

one obtains: 

b 
2lP - an2 

= (N - n)2 * 

Clearly, * 
b(N - n)2 

2N2 
is the probability for 0 I X I G and 

2N2 
is the probability for 

+x51. 
an2 

For further simplification, one may assume that - = 
2N2 - 

1 - $ and 

b(iV - n)2 
2.N2 

ss $. Under these approximations, we have 

Thus, the expected usefulness of term t can be computed from the probability density func- 
tion as follows: 

1 

I 
2Nn (x-;)(x-pix 

z W - d* 

N 

(4.11) 
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lt can be shown that the expected value is maximum when n == 0.5N. Thus, the above 
anal!rsis provides a justification for choosing mid-frequency terms in indexing[S,ALT83, 
RlJS79]. 

5- E:xpcrimental Results 

There are two main objectives iin our experiments. The first is to test the 
effectiveness of the approximate weighting function defined by eqn. (4.9). The second is 
to test the convergence speed of the gradient procedure. The initial value for qu was 
chosen to be the null vector. Two standard document collections were used with binary 
vector representation. The ADlMJL collection has 82 documents and 35 queries and the 
CRN4NJL collection has 424 documents and 155 queries. Some of their characteristics 
are summarized in Table 5.1. 

II f1DINUL 
82 DQC. 35 QUE. 

(document length) 
max 
min 
average 

95 
17 
40 

(relevant documents 

per query) 
max 
min 
average 

33 
1 
4 

average document 
frequency II 2.9 

CRN4NUL 
424 DOC 155 QUE. 

164 
13 
53 

22 
3 
6 

8.6 

Table 5.1 Summary of collection statistics 
(document length is measured by the number of terms) 

Each collection includes information for every query as to which of the documents are 
relevant. We used this information (user preference) to compute the values of eqn. (4.9). 
The standard recall and precision measures are used for performance evaluation of the 
weighting function. Recall is defined as the proportion of relevant documents retrieved and 
precision is the proportion of the retrieved documents actually relevant. The overall per- 
formance is determined by computing the average precision over all the queries for recall 
values 0.1 , 0.2 , . . . , and 1.0 . The speed of the gradient descent procedure is measured 
in terms of the number of iterations requked for convergence. 

The performance results of our weighting function are given in Table 5.2. These 
results indicate that the weighting function is very effective for both collections. It should 
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be emphasized that the above results were obtained by using the complete relevance infor- 
mation and the whole document collection because our objective here is to evaluate the 
effectiveness of the proposed linear model. We are planning for more experiments to 
study the inductive process. 

Recall 
Precision 

-7 

ADINUL CRN4NUL 

0.10 1.0000 0*9990 
0.20 1.oooo 0.9990 
0.30 1.0000 0.9968 
0.40 1.oooo 0.9968 
0.50 1.oooo 0.9941 
0.60 l.oooo 0.9829 
0.70 1.oooo 0.9623 
0.80 1.oooo 0.9375 
0.90 1.0000 0.8718 
1.00 0.9976 0.8377 

Table 5.2 Performance of the weighting function 

We obtained 34 out of 35 query vectors in the ADINWL collection and 97 out of 155 
in the CRN4NUL collection in the first iteration, which satisfy the acceptable ranking stra- 
tegy. OnIy one query in ADINUL needs 4 iterations to converge. There are many more 
documents in CRN4NUL, but within 50 iterations more than 85% of the queries already 
converged (see Table 5.3). Our preliminary results are quite encouraging and lay some 
groundwork for designing a viable adaptive system. 

No. of iterations(l) 10 15 20 25 30 35 40 45 50 

No. of queries(converged) 102 105 108 112 115 120 126 130 134 

Percentage (%) 66 68 70 72 74 78 81 84 86 

Table 5.4 Convergence speed for CRN4NUL collection 
(The maximum number of iterations required is 275) 
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6. Conclusion 

Our discussions presented here provjide further- support that the conce.pt of linear struc- 
ture is useful for the understanding and development of an information retrieval system. 

The next task will be to irnplement ‘an adaptive system. In ctrder to test the predictive 
capability of such a system, one needs first to develop an effective method to select an 
appropriate set of samples {a training set of documents) for generating the query vector by 
the proposed inductive method. 
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