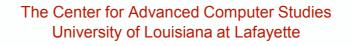
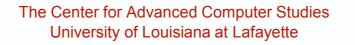

CSCE 561 Information Retrieval System Models

Satya Katragadda 26 August 2015



Agenda

- Introduction to Information Retrieval
- Inverted Index
- IR System Models
- Boolean Retrieval Model



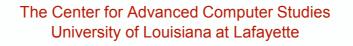
Introduction

Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers)

"Satisfy" – what does this mean?

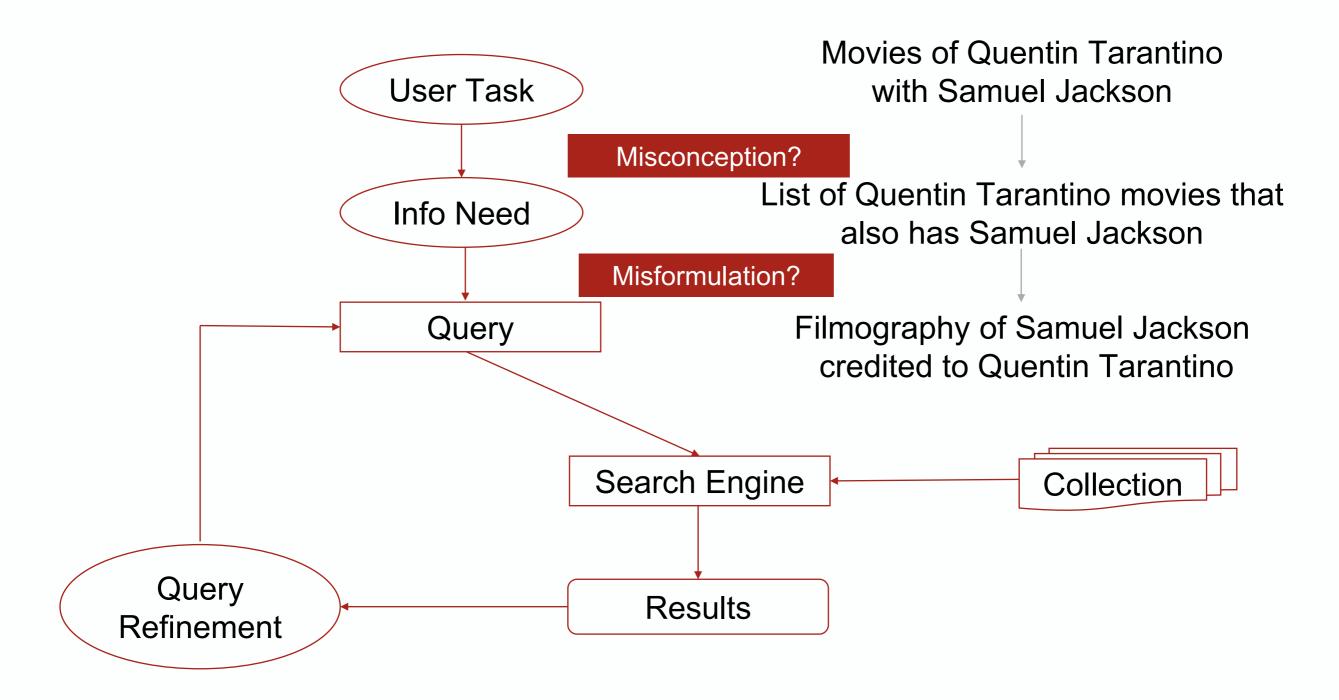
Introduction: Applications of IR

- Traditional Web Search
 - Search Engines: Google, Bing, Yahoo?
 - Digital Catalogues: IMDB, GLADYS
- Non-Traditional Searches
 - File search
 - Email search
- Other Applications
 - Text categorization
 - Text Summarization
 - Structured Document Retrieval



Introduction: IR Assumptions

Collection: A set of documents, assume its static

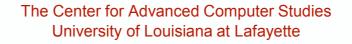

 Goal: Retrieve documents with information that is relevant to user's information need to complete a task.

Introduction: Classic Search Model

The Center for Advanced Computer Studies University of Louisiana at Lafayette

Introduction: Search Model

- Search for movie credits with Quentin Tarantino and Samuel Jackson that does not have Leonardo DiCaprio
- grep all movie pages with for Quentin Tarantino and Samuel Jackson, then remove the ones that contain Leonardo DiCaprio
- Problems?
 - Slow for large corpus
 - More additional Information
 - Ranked retrieval?



- How to store documents and terms so that we can retrieve documents
 - Efficiently
 - Effectively
 - With reasonable space requirements?

Indexing: Term - Document Matrix

- Create a table
 - Rows: Terms
 - Columns: Document IDs
- Term-Document Incidence Matrix
- Inverted View of Collection

Indexing: Term - Document Matrix

	Document 1	Document 2	Document 3	Document 4
Term 1	1	0	0	1
Term 2	0	1	1	1
Term 3	1	0	1	1
Term 4	1	1	1	1

- Rows: Vectors of documents containing term x
- Columns: Vectors of terms contained by document Y

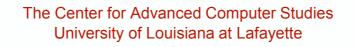
Indexing: Document - Term Matrix

Term 1	Term 2	Term 3	Term 4
1	0	1	1
0	1	0	1
0	1	1	1
1	1	1	1
	1 0	1 0 0 1	1 0 1 0 1 0

- Rows: Vectors of terms contained by document x
- Columns: Vectors of documents containing term y

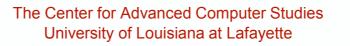
Indexing: Term – Document Matrix

- Naïve way of storage: Create and store the matrix
- Calculations
 - 500,000 Terms
 - 1,000,000 Documents
 - $\frac{1}{2}$ trillion entries: most of them 0's and 1's
- Memory Impact
 - As documents/terms grows, needs constant updation
 - Can't keep up with memory

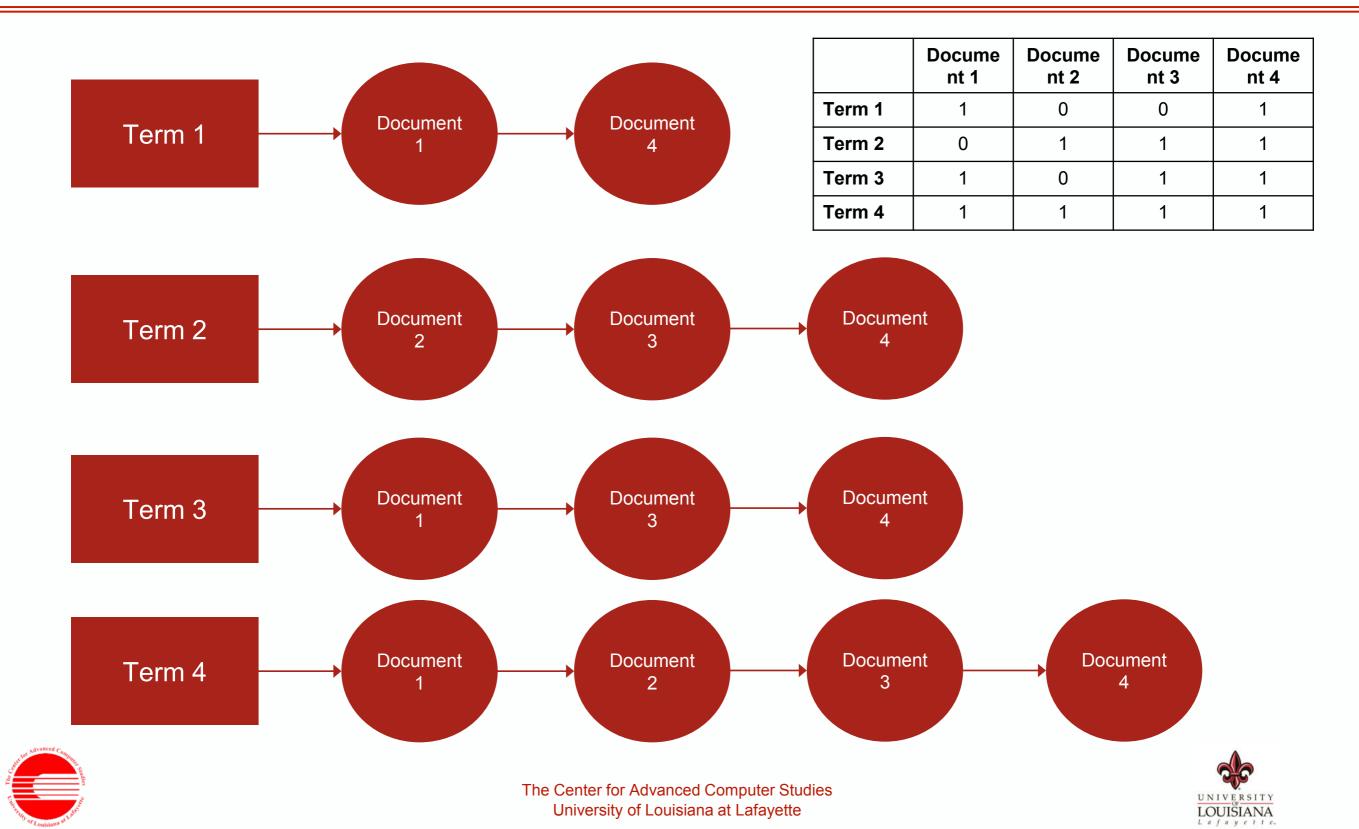


Indexing: Term – Document Matrix

- Observation
 - Term –Document Matrix->Sparse
 - Only a small number of terms in any given document
- Assume a typical document contains 1000 terms
 - A collection of 1,000,000 documents contains 1 billion 1
 - Rest of the entries are 0's
 - Thus, 99.8% of matrix is 0's

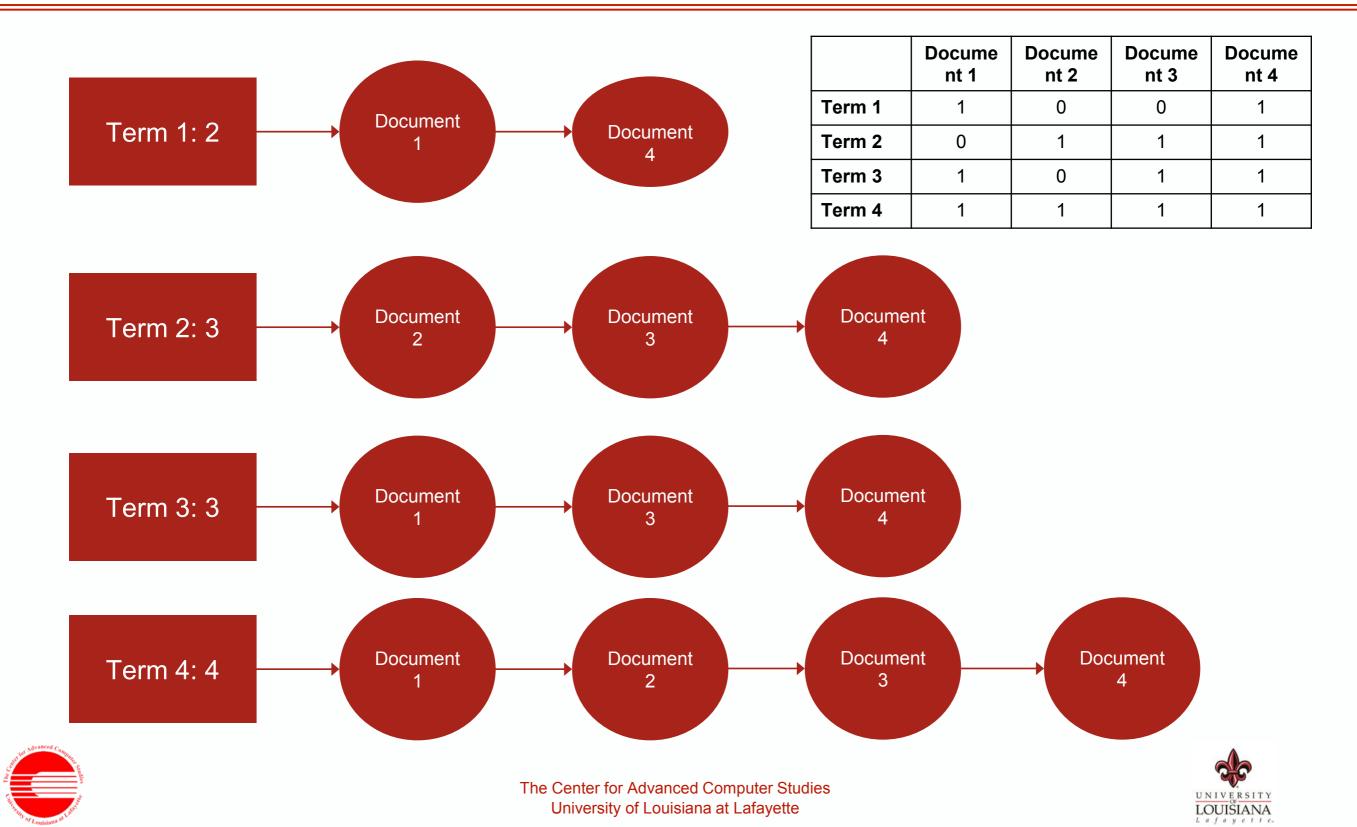


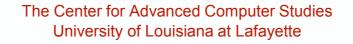
Indexing: Inverted Index


- Also called Inverted File
- Dictionary of terms
 - Vocabulary
 - Lexicon
- Each term
 - List of documents in which it appears
 - Each document is called a posting

Indexing: Inverted Index

Indexing: Inverted Index


- Dictionary: Sorted alphabetically
- Each posting: sorted by ID
- Storage
 - Dictionary kept in memory
 - Postings can be stored in memory or disk


Indexing: Inverted Index, changed

IR System Models

- S=(D, Q, T, V, F)
 - D: Documents Representation Space
 - Q: Query Representation Space
 - T: The set of Index terms (Indexing Vocabulary)
 - F: D X Q \rightarrow V
 - V: The set of Retrieval Status Value

IR System Models

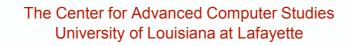
- S = (D, Q, T, V, F)
- If the retrieval status values are unique, then the ordering is linear
- If the retrieval status values are non-unique, it is a weak ordering
 - Select 10 relevant results?

IRS Models: Subject Catalog Model

- S=(D, Q, T, V, F)
 - T = set of subject headings
 - Q = T
 - D = 2[⊤]
 - $V = \{0, 1\}$
 - $F_q(d)$, where $q \in Q$, $d \in D$
 - 1, if q ∈ d
 - 0, other wise

IRS Models: Coordination level System

- S=(D, Q, T, V, F)
 - Q = 2[⊤]
 - D = 2[⊤]
 - $V = \{0, 1\}$
 - $F_q(d)$, where $q \in Q$, $d \in D$
 - 1, if $q \subseteq d$
 - 0, other wise
 - $F'_q(d)$, where $q \in Q$, $d \in D$
 - 1, if $|q \cap d| > k$
 - 0, other wise



IRS Models: Boolean System

- S=(D, Q, T, V, F)
 - D = 2^T
 - Q = E (Expression)
 - V = {0,1}
 - $F_q(d)$, where $q \in Q$, $d \in D$
 - 1, if q evaluates to True w.r.t. Document
 - 0, other wise

Boolean System: Expression

- Let $t \in T$
 - Then $t \in E$
- If $e \in E$
 - Then $\neg e \in E$
- If $e_1, e_2 \in E$
 - $e_1 \lor e_2 \in E$
 - $e_1 \wedge e_2 \in E$
 - Nothing else is an element of E.

Boolean System: Document Representation

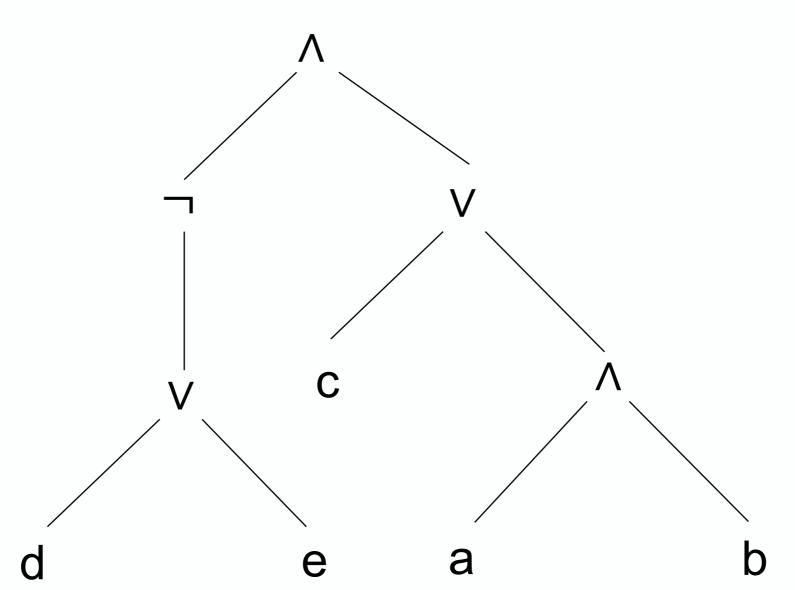
- Set of Documents ID's
 - $D = \{d_{\alpha}\}, \alpha = 1, 2, ..., p$
- Set of all term ID's
 - $T = \{t_i\}, i = 1, 2, ..., n$

Boolean System: Document Representation

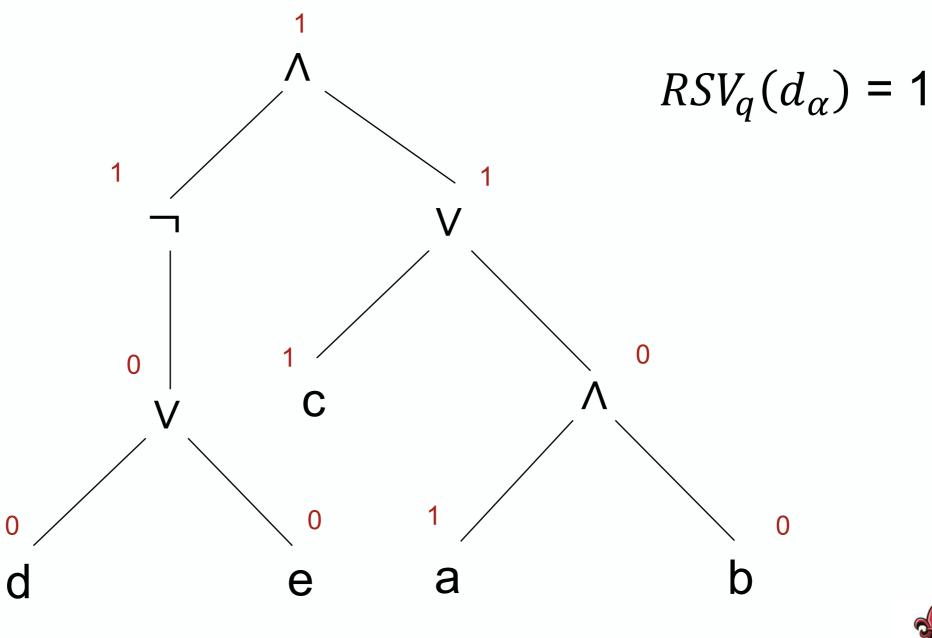
- Relation
 - $D = \{ \langle d_{\alpha}, t_i, \mu_D(d_{\alpha}, t_i) \rangle \}$
 - $\mu_D = D \times T \rightarrow \{0,1\}$
 - $\mu_D(d_\alpha, t_i)$
 - 1, if d_{α} contains t_i
 - 0, otherwise
- $D_{t_i} = \{ d_{\alpha} \in D \mid \mu_D(d_{\alpha}, t_i) = 1 \}$

•
$$d_{\alpha} \equiv D_d = \{t_i \in T \mid \mu_D(d_{\alpha}, t_i) = 1\}$$

Boolean System: Retrieval Function


- $RSV \equiv F$
- $RSV_t(d_\alpha) = \mu_D(d_\alpha, t)$
- $RSV_{\neg e}(d_{\alpha}) = 1 RSV_{e}(d_{\alpha})$
- $RSV_{e_1 \vee e_2}(d_{\alpha}) = RSV_{e_1}(d_{\alpha}) \vee RSV_{e_2}(d_{\alpha})$
- $RSV_{e_1 \wedge e_2}(d_{\alpha}) = RSV_{e_1}(d_{\alpha}) \wedge RSV_{e_2}(d_{\alpha})$

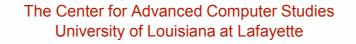
Boolean System: Example



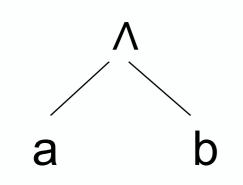
The Center for Advanced Computer Studies University of Louisiana at Lafayette

Boolean System: Example

$$q = \neg (d \lor e) \land (c \lor (a \land b)), D_{d_{\alpha}} = \{a, c\}$$


The Center for Advanced Computer Studies University of Louisiana at Lafayette

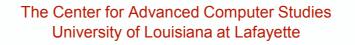
- $D_{t_1 \vee t_2} = \{ d_{\alpha} \in D \mid \mu_D(d_{\alpha}, t_1) \vee \mu_D(d_{\alpha}, t_2) = 1 \}$
- $D_{t_1 \wedge t_2} = \{ d_{\alpha} \in D \mid \mu_D(d_{\alpha}, t_1) \land \mu_D(d_{\alpha}, t_2) = 1 \}$


- D_t = set of documents containing term t
- T = {a, b, c, d, e}

- Input
 - $a \wedge b$

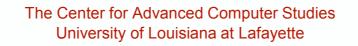
- Output
 - $D_a \cap D_b$

Output	Query
D_t	t
D_{e1}	e1
D_{e2}	e2
$D_{e_1 \vee e_2}$	$e_1 \vee e_2$
$D_{e_1 \wedge e_2}$	$e_1 \wedge e_2$
$D \backslash D_e$	$\neg e$



The Center for Advanced Computer Studies University of Louisiana at Lafayette

- AND queries $e_1 \land e_2$
 - Construct a merged list M for D_{e_1} and D_{e_2}
 - Transfer all duplicated records O_d on merge list to output
- OR queries $e_1 \vee e_2$
 - Construct a merged list M for D_{e_1} and D_{e_2}
 - Transfer all unique records O_u on merge list to output



- NOT queries $e_1 \land \neg e_2$
 - Construct a merged list M for D_{e_1} and D_{e_2}
 - Remove all the items appearing only once on this list \rightarrow First_List
 - Create a merge list composed of D_{e_1} and First_List \rightarrow Second_List
 - Remove items appearing more than once from Second_List
 - Transfer the remaining items (those that are alone) to output $-O_a$
 - $e_1 \setminus (e_1 \wedge e_2)$

Boolean System: Method 2, Example

- $q = ((t_1 \lor t_2) \land \neg t_3)$
- D_{t_1} : {1,3}, D_{t_2} : {1,2}, D_{t_3} : {2,3,4}
- $(t_1 \lor t_2)$
 - $M(D_{t_1}, D_{t_2})$: { 1, 1, 2, 3}
 - $O(t_1 \vee t_2)$: {1, 2, 3} unique

M: Merge Operation, O: Output Selection

Boolean System: Method 2, Example

- $((t_1 \lor t_2) \land \neg t_3)$
- $O(t_1 \vee t_2): \{1, 2, 3\} \rightarrow D_{t_1 \vee t_2}$
- D_{t_3} : { 2, 3, 4}

- $M(D_{t_{1}\vee t_{2}}, D_{t_{3}})$: { 1, 2, 2, 3, 3, 4}
- $O((t_1 \lor t_2) \land t_3): \{2, 3\} duplicate$
- $M(D_{t_1 \vee t_2}, D_{(t_1 \vee t_2) \wedge t_3})$: {1, 2, 2, 3, 3}
- $O((t_1 \vee t_2) \wedge \neg t_3): \{1\}$ alone

Boolean System: Variations

- Extended Boolean
 - Has standard operations
 - AND, OR and NOT
 - Plus
 - Term Proximity
 - Within X words, sentences, paragraphs
 - Wildcard Matching
 - Fuzzy
 - Allow for range
 - Function F no longer restricted to {0,1}

Questions?

References

- Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, Introduction to Information Retrieval, Chapter 1, 2008.
- Abraham Bookstein and William Cooper, "A General Mathematical Model for Information Retrieval Systems", The Library Quarterly, Vol 26, no. 2, pp 153 - 67.
- Ryan Benton's Lecture Notes: <u>http://www.cacs.louisiana.edu/~cmps561/notes/CMPS5</u> 61Fall10-BooleanIR-fa2011.pdf

