CMPS 561 Boolean Retrieval

Ryan Benton

Sept. 7, 2011

Algorithms for Intersection

Algorithms - Basic Intersection (aka Merging)

- Intersect(p1, p2)
- answer $\leftarrow\}$
- While (p1 != NIL) and (p2 != NIL) Do
- if docID(p1) = docID(p2)
- Then ADD(answer, docID(p1))
» $\mathrm{p} 1 \leftarrow \operatorname{next}(\mathrm{p} 1)$
» $\mathrm{p} 2 \leftarrow \operatorname{next}(\mathrm{p} 2)$
- Else if (docID(p1) < docID(p2))
» Then p1 $\leftarrow \operatorname{next}(\mathrm{p} 1)$
» Else p2 $\leftarrow \operatorname{next}(\mathrm{p} 2)$
- Return answer

Algorithms - Intersection

- Complexity: $\mathrm{O}(\mathrm{x}+\mathrm{y})$
- For any given two posting lists
- List A has size x
- List B has size y
- Note, this is upper bound.
- Formally, Complexity: $\Theta(\mathrm{N})$
- N can be either
- Number of documents in collection
- Note, this is a tight bound.

Observation

- In many cases, Boolean queries
- Conjunctive in nature
- Allows for a possible improvement based on posting size (term frequency)

Algorithms - Conjunctive Query Merging

- IntersectConjunct $\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{z}}\right)$
- Terms \leftarrow SortByIncreasingFrequency $\left(\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots\right.\right.$, t_{z})
- Results \leftarrow postings(first(Terms))
- Terms \leftarrow rest(Terms)
- while (Terms != NIL) and (Results != NIL) Do
- Results \leftarrow Intersect(result, postings(first(Terms)))
- Terms \leftarrow rest(Terms)
- Return Results

Why?

- By using least frequent term
- All results guaranteed to be no larger than least frequent term
- In practice
- The 'intermediate' list always places upper bounds on the size.

References

- Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, Introduction to Information Retrieval, Chapter 1, 2008.
- Abraham Bookstein and William Cooper, "A General Mathematical Model for Information Retrieval Systems", The Library Quarterly, Vol 26, no. 2, pp 153-67.
- Vijay V. Raghavan's Notes/Lecture Material
- http://www.cacs.louisiana.edu/~cmps561/561/notes/ Model.pdf
- Material in Slides ued with permission

