CMPS 561 Boolean Retrieval

Ryan Benton Sept. 7, 2011

Algorithms for Intersection

Algorithms – Basic Intersection (aka Merging)

- Intersect(p1, p2)
 - answer \leftarrow {}
 - While (p1 != NIL) and (p2 != NIL) Do
 - if docID(p1) = docID(p2)
 - Then ADD(answer, docID(p1))
 - » p1 ← next(p1)
 - » p2 \leftarrow next(p2)
 - Else if (docID(p1) < docID(p2))</p>
 - » Then p1 \leftarrow next(p1)
 - » Else p2 \leftarrow next(p2)
 - Return answer

Algorithms – Intersection

- Complexity: O(x + y)
 - For any given two posting lists
 - List A has size x
 - List B has size y
 - Note, this is upper bound.
- Formally, Complexity: $\Theta(N)$
 - N can be either
 - Number of documents in collection
 - Note, this is a tight bound.

Observation

- In many cases, Boolean queries
 Conjunctive in nature
- Allows for a possible improvement based on posting size (term frequency)

Algorithms – Conjunctive Query Merging

- IntersectConjunct(t₁, t₂, ..., t_z)
 - − Terms ← SortByIncreasingFrequency((t₁, t₂, ..., t_z))

 - − Terms ← rest(Terms)
 - while (Terms != NIL) and (Results != NIL) Do

 - Terms ← rest(Terms)
 - Return Results

Why?

- By using least frequent term
 - All results guaranteed to be no larger than least frequent term
- In practice
 - The 'intermediate' list always places upper bounds on the size.

References

- Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, Introduction to Information Retrieval, Chapter 1, 2008.
- Abraham Bookstein and William Cooper, "A General Mathematical Model for Information Retrieval Systems", The Library Quarterly, Vol 26, no. 2, pp 153-67.
- Vijay V. Raghavan's Notes/Lecture Material
 - <u>http://www.cacs.louisiana.edu/~cmps561/561/notes/</u> <u>Model.pdf</u>
 - Material in Slides ued with permission