CMPS 561 Assignment \#3, Fall 2010

Vijay V Raghavan
Assigned: November 16, 2017
Due: November 29, 2017
Note:

1. All details of work for each question must be submitted.
2. Staple the question and answer sheet together
3. Make a cover with Name, CLID
4. Number all pages and give an index to each question.
5. Most importantly, any sort of cheating will NOT be tolerated. More information can be found on class Web page on cheating policy.

Q1.
30 Points
In the Vector Space Model, the relationships among different terms can be expressed as a term-term matrix G_{t}, which is called the Grammarian matrix. The term-document relationship is shown in Table 1.

	d_{1}	$\mathrm{~d}_{2}$	$\mathrm{~d}_{3}$	$\mathrm{~d}_{4}$
t_{1}	3	0	1	3
t_{2}	0	1	3	0
t_{3}	3	0	0	2
t_{4}	2	0	1	3

Table 1
(a). If $\mathrm{G}_{\mathrm{t}}=\mathrm{I}$, and that a query is given by $q=2 \vec{t}_{1}+\vec{t}_{3}$, calculate the RSVs for d_{1} through d_{4} with respect to q .
(b). Repeat part a) if $\quad \boldsymbol{G}_{\boldsymbol{t}}=\left[\begin{array}{llll}t_{1} \cdot t_{1} & t_{1} \cdot t_{2} & t_{1} \cdot t_{3} & t_{1} \cdot t_{4} \\ t_{2} \cdot t_{1} & t_{2} \cdot t_{2} & t_{2} \cdot t_{3} & t_{2} \cdot t_{4} \\ t_{3} \cdot t_{1} & t_{3} \cdot t_{2} & t_{3} \cdot t_{3} & t_{3} \cdot t_{4} \\ t_{4} \cdot t_{1} & t_{4} \cdot t_{2} & t_{4} \cdot t_{3} & t_{4} \cdot t_{4}\end{array}\right]=\left[\begin{array}{cccc}1 & 0.1 & -0.4 & 0.5 \\ 0.1 & 1 & -0.3 & 0.2 \\ -0.4 & -0.3 & 1 & 0.1 \\ 0.5 & 0.2 & 0.1 & 1\end{array}\right]$
(c). Pick a document for which RSV in part (b) is greater than that in part (a) and explain which element(s) (term relationships) from G_{t} cause this change.
(d). Can the RSV of a document become smaller when G_{t} is incorporated into the RSV computation? If yes, explain what the characteristics of term-term relationships matrix are that will cause this effect.
(e). Compute the RSVs for d_{1} through d_{4} with respect to q , assuming the GVSM model is employed.

In this case, no assumption about G_{t} is needed.

Answer the questions based on the following table shown in the figure

	t 1	t 2	t 3	t 4		Relevance
$\mathbf{d 1}$	0	2	0	2		REL
$\mathbf{d 5}$	1	3	1	0		REL
d7	0	3	1	2		NREL
d3	1	3	0	0		REL
d6	0	2	1	1		NREL

Fig 1: W matrix for training.
(a). Use the gradient descent approach based on (standard) Perception Criterion discussed in Class and determine the optimum query.
(b). Uses the gradient descent approaches based on Generalized Perception Criterion discussed in class and determine the optimum query. We have:
$b 1=d 1-d 7, b 2=d 1-d 6, b 3=d 5-d 7, b 4=d 5-d 6, b 5=d 3-d 7, b 6=d 3-d 6$
(c). Use Generalized Perception-learning by sample discussed in Class and determine the optimum query. We have:
$b 1=d 1-d 7, b 2=d 1-d 6, b 3=d 5-d 7, b 4=d 5-d 6, b 5=d 3-d 7, b 6=d 3-d 6$
Only learn from $\mathrm{b}_{\mathrm{i}} \mathrm{s}$ in the forward direction, by following the order, as listed next: $\vec{b} 1, \vec{b} 2, \vec{b} 3, \vec{b} 4, \vec{b} 5, \vec{b} 6$
(d). Obtain the optimal query based on Rochhio's method.

Q3.
10 Points
Use the following W' as test instances set to compare the above four methods (use the three optimal queries derived by them). Use $\mathrm{R}_{\text {norm }}$ measure for evaluation.

	t 1	t 2	t 3	t 4		Relevance
d 2	0	2	0	2		REL
d 4	2	3	1	0		REL
d 8	0	1	1	0		NREL
d 9	1	2	0	0		REL
d 10	1	3	2	1		NREL

Fig 2: W' matrix for testing

