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Abstract
Variation is ubiquitous in software. Many applications can benefit from making this variation

explicit, then manipulating and computing with it directly—a technique we call “variational pro-
gramming”. This idea has been independently discovered in several application domains, such
as efficiently analyzing and verifying software product lines, combining bounded and symbolic
model-checking, and computing with alternative privacy profiles. Although these domains share
similar core problems, and there are also many similarities in the solutions, there is no dedicated
programming language support for variational programming. This makes the various implemen-
tations tedious, prone to errors, hard to maintain and reuse, and difficult to compare.

In this paper we present a calculus that forms the basis of a programming language with
explicit support for representing, manipulating, and computing with variation in programs and
data. We illustrate how such a language can simplify the implementation of variational program-
ming tasks. We present the syntax and semantics of the core calculus, a sound type system, and
a type inference algorithm that produces principal types.
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1 Introduction

The idea of representing and computing with explicit variation has been used to solve a
variety of problems where a similar computation must be performed on sets of related data.
For example, a challenge in software product lines (SPL) is to ensure that all program
variants that can be generated from a code base satisfy a given property. Since analyzing
each variant in sequence is intractable, researchers have developed algorithms and tools for
analyzing the variational code directly. This work enables the efficient parsing [29], type
checking [28, 46, 2], type inference [17, 16], model checking [19, 1], and flow analysis [6, 7] of
whole software product lines at once.

But the need to write programs that manipulate variation representations is not limited
to the area of software product lines. Other applications include computing with alternative
privacy policies [3], improving type error messages [10, 11, 15], improving the performance
of simulations [45], supporting view-based editing [53], and several applications to software
testing [30, 31, 39, 49].

All these applications require an explicit representation of variation in data along with
operations for inspecting, transforming, and/or mapping computations over such variational
data. We collectively refer to these as variational programming tasks. Variational pro-
gramming is not well supported by existing programming languages. While there exists
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some support from libraries [24, 29], there is no dedicated language support for variational
programming. The lack of language support makes it difficult to reason about the variational
programs and the artifacts they produce.

Therefore, we present in this paper a set of carefully designed, dedicated variational
programming abstractions that can provide guarantees about variational programs and their
results. The integration of these operations into a functional programming language can
greatly improve the effectiveness, reliability, and productivity of variational programming.

In the remainder of this paper, we first motivate variational programming and illustrate
it with several examples. We then formalize the underlying principles by defining a calculus
for variational programming. This paper makes the following contributions.

We explain the idea of variational programming through several examples in Section 2.
We introduce the underlying variation representation and demonstrate how variational
programming combinators can be built from a small set of core constructs and principles.
We present the syntax and operational semantics of a variational programming calculus
(vpc) in Section 3. A particular challenge is to balance and integrate the competing
notions of variation-preserving computation and variation aggregation. A careful choice
of congruence rules and evaluation strategy ensures the confluence of the semantics.
We develop a type system for vpc in Section 4 and present a soundness theorem. Named
choices lead to a limited form of dependent types, called dimension polymorphism, which
reflect variability in expressions at the type level. Moreover, since operations for the
elimination of variation cause subtle changes in variational types, we have to employ
constraints in the type system to track the evolution of variability in computations.
In Sections 5 and 6, we present constraint generation and constraint solving that constitute
a type inference algorithm for vpc, which is sound, complete, and principal.

We discuss related work in Section 7 and conclude the paper with Section 8.

2 Variational Programming

The term “variational program” has two related meanings. On the one hand, it refers to
a program family from which individual programs can be selected. On the other hand, it
refers to programs that process variational values. For variational programs that process
variational programs the two meanings collapse. In this paper we are primarily focused on
the second meaning, that is, we want to study programs that process variational values.

The systematic processing of variational values requires machinery to create, query,
and transform such values. These tasks should be supported by a principled variation
representation that enjoys a rich set of laws. In Section 2.1 we present a simple representation
based on the choice calculus [23], illustrate how it can be embedded into a (functional)
programming language, and then motivate and outline the rest of this section.

2.1 Representing Variation
We represent variation by named, binary choices [23]. For example, a program that applies
a function f to either 1 or True can be represented as p = \f.f A<1,True> where the choice
represents a point of variation within p. A program that contains choices is called a variational
program. This variational program encodes two plain programs, \f.f 1 and \f.f True, called
variants. These variants can be obtained by selecting either the left or right alternative from
the choice. The name associated with the choice, A, is called a dimension. Dimensions allow
the synchronization of choices in different parts of a program. For example, the program
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q = p A<succ,not> runs p with a choice of functions that will be synchronized with the choice
of constants. Variational programs can vary in more than one dimension. Choices in different
dimensions vary independently of one another, that is, whereas q contains only two variants,
the variational program q’ = p B<succ,not> contains four.

Executing a variational program produces a variational result. For example, executing
program q above produces the result A<2,False>. This result may, in general, vary in all of
the dimensions referred to in the variational program. We call such executions variation-
preserving (see Section 2.2).

However, variational programming encompasses more than just executing variational
programs. For example, suppose we have implemented a variational function that computes
the time needed to complete a project depending on many design decision each represented
by a different dimension. We can imagine several subsequent operations to perform on
the variational result of this function. For example, we may want to do further variation-
preserving computations by adding the variational time to complete the project to the
variational time needed to complete another project, or by comparing it with a variational
time computed by a different function. We may also want to filter the result by making
selections that reduce the amount of variability in the result, which can help speed up
subsequent variation-preserving computations. Alternatively, we may want to aggregate the
variation, for example, to identify the minimum or maximum variant, to determine how to
proceed depending on if we are being paid on salary or hourly. In the rest of this section,
we take a closer look at variation-preserving computations (Section 2.2), reducing variation
through selection (Section 2.3), and variation aggregation (Section 2.4), introducing the core
constructs of our language and deriving some general combinators to support variational
programming, as illustrated through an example application (Section 2.5). Finally, in Section
2.6, we argue why our language design is a good basis for variational programming.

2.2 Variation-Preserving Computations
We start with the task of adding variational numbers. Since choices in the same dimension
are synchronized, expect evaluating A<1,2> + A<3,4> to produce A<4,6>. But how about
A<1,2> + B<3,4> or even A<1,2> + 3? We can address the latter expression by realizing that
a non-variational number is the same as a choice whose alternatives are identical, that is,
3 = A<3,3>. In other words, choices are idempotent. Therefore, A<1,2> + 3 = A<1,2> + A<3,3> =
A<4,5>. We arrive at the same result by considering that the variational expression A<1,2> + 3
represents two plain expressions 1+3 and 2+3, depending on which alternative from dimension
A is selected, that is, the expression is equivalent to A<1+3,2+3>, which evaluates to A<4,5>.

We can see that the operation +3 was effectively “moved” into the A choice, which is an
application of the choice distribution law [23] that allows one to push a common context into
a choice. This is illustrated below where C is an arbitrary context and D is an arbitrary
dimension.

C[D⟨e, e′⟩] =D⟨C[e],C[e′]⟩

Choice distribution is the basis for variation-preserving computation. It says that we can
evaluate an expression such as f A<3,4> by applying f to the alternatives of the A choice.
With this we can also determine the result of A<1,2> + B<3,4> by moving one of the choices
into the other and then doing this again in each of the alternatives.

A<1,2>+B<3,4> = A<1+B<3,4>,2+B<3,4>> = A<B<1+3,1+4>,B<2+3,2+4>> = A<B<4,5>,B<5,6>>
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If we decide to move the A choice instead, we obtain the equivalent value B<A<4,5>,A<5,6>>.
This can be verified by making all possible selections for A and B.

Previously, we argued that A<1,2> + A<3,4> yields only two variants since both A choices
are synchronized. It is instructive to perform choice distribution on this example to illustrate
that selection commutes with semantics-preserving computation. In fact, we obtain the same
derivation except that all Bs are replaced by As, so the resulting expression is A<A<4,5>,A<5,6>>.
Observe that both 5 values can never be selected since selecting either the left or right
alternative of A implies the same selection in the nested A choices. This phenomenon, called
choice domination, neutralizes the effect of nested choices in the same dimension on the
variability of values. These examples illustrate that we can apply a (variational) function to
a (variational) value, and choice distribution will produce a result in which the variation in
both the function and argument are preserved.

As another example, we can also compare variational values by a variation-
preserving computation. For example, A<3,5> == A<4,5> evaluates to A<False,True>, and
A<B<5,4>,7> ≤ A<6,C<8,2> yields A<True,C<True,False>>.

2.3 Eliminating Variation
The elimination of choices is called selection. Selection takes a selector of the form D.s

(where D is a dimension and s is either L or R), traverses the expression, and replaces all
choices named D with its corresponding left or right alternative. For example, given program
q defined in Section 2.1, the expression sel A.L q produces the variant (\f.f 1) succ. Since
the program q’ contains choices in two different dimensions, we need two selection operations
to eliminate the variability in the program and obtain plain expressions. By considering all
four possible selections on q’, we can observe that only two of the variants are type correct.

sel A.L (sel B.L q’) = (\f.f 1) succ sel A.R (sel B.L q’) = (\f.f True) succ
sel A.L (sel B.R q’) = (\f.f 1) not sel A.R (sel B.R q’) = (\f.f True) not

A choice is an expression, not a textual macro.1 This means that we cannot vary, say, a few
letters in the middle of an identifier or optionally exclude a closing parenthesis. However, we
can pass choices to functions, and observe and manipulate them at runtime.

2.4 Variation Aggregation
Besides selecting individual variants, we often want to systematically eliminate all the
variability in a variational program. For example, to compute the minimum variant of
a variational number, we have to eliminate all of the choices, replacing each one by the
smaller of its two alternatives. This kind of aggregation is supported by the syntactic form
any d from e in e′ else e′′. An any-expression checks if there are any choices in expression
e. If so, it picks one out, binds the corresponding dimension name to a new variable d,
then returns expression e′, which may contain references to d. If no choices exist in e, the
any-expression evaluates to e′′. The following function vmin uses any to implement the
minimum-variant aggregation. If a choice is found in its argument i, it eliminates the choice
with sel and recursively computes the minimum variant of the left and right alternatives,
then returns the minimum of those two values (using the function min). If no choice is found,
then all variation has been eliminated and i is a plain integer, which is simply returned.

1 This is in contrast with, for example, the C Preprocessor’s #ifdef notation, which is widely used to
implement static variation in C programs.
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vmin : Int -> Int
vmin i = any d from i in

min (vmin (sel d.L i)) (vmin (sel d.R i))
else i

Now consider the expression vmin A<B<4,3>,2>, which we expect to evaluate to 2. However, by
applying the choice distribution principle from the previous subsection, the expression could
also evaluate to A<B<4,3>,2>. In other words, in this scenario, choice distribution prevents
aggregation and changes the intended semantics of the program. There are several ways to
address this issue, but we choose to disambiguate the situation syntactically, which leads to
a simpler operational semantics. Specifically, we allow function arguments to be annotated
as “aggregating” (using @), which acts as a boundary that prevents choice distribution. In
the case of vmin this looks as follows.

vmin @i = any d from i in ...

Now vmin A<B<4,3>,2> will compute 2 and not return a choice. But what if we want to
independently compute vmin for two alternatives of a dimension, say A? We can still do this
by applying a corresponding choice of vmins, that is, we write A<vmin,vmin> A<B<4,3>,2>.
Now choice distribution will preserve the A dimension and we get the result A<3,2>. However,
note that the idempotency law does not hold for variation aggregators, that is, in general we
have A<vmin,vmin> ≠ vmin.

Within the definition of vmin are two inter-related patterns that occur frequently in
variational programs. The first is to select both the left and right alternatives of the same
dimension in parallel; the second is to pick an arbitrary dimension, then immediately select
with it. To accommodate the first pattern, we introduce a derived form, split, which allows
us to rewrite vmin as follows.

vmin @i = any d from i in
split i on d<l,r> -> min (vmin l) (vmin r)

else i

In the split expression, d refers to the dimension we want to eliminate, bound by the
enclosing any expression; l and r are new names bound to the result sel d.L i and sel d.R
i, respectively.

To accommodate the second pattern, we combine split and any into a single construct
as illustrated below. This expression form picks a dimension out of i and immediately splits
on it.

vmin @i = split i on any
d<l,r> -> min (vmin l) (vmin r)

else i

Which dimension is picked by any is determined by a fixed, predefined ordering among
dimensions. Therefore the names of dimensions in a variational value generally matter.
However, in functions that systematically process all variability present in a value, the order
does not matter. For example, vmin A<B<5,4>,7> will compute the same result, independent
of the order in which the dimensions are picked by any. To demonstrate, here is the
computation that unfolds if A is picked first.

min (vmin B<5,4>) (vmin 7) = min (min 5 4) 7 = min 4 7 = 4

If B is picked first, the enclosing A choice is preserved across both alternatives of B.
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min (vmin A<5,7>) (vmin A<4,7>) = min (min 5 7) (min 4 7) = min 5 4 = 4

The two computations return the same result because choices commute [23] allowing arbitrary
reordering of how choices are nested. Specifically, for any two dimensions, A and B, the
following relationship holds.

A<B<a,b>,B<c,d>> ≡ B<A<a,c>,A<b,d>>

Computing the minimum variant of a variational integer is an instance of the more general
task of aggregating variability, which can be captured by a variational join function that
accumulates variants with a binary function.

vjoin : (a -> a -> a) -> a -> a
vjoin f @x = split x on any

d<l,r> -> f (vjoin f l) (vjoin f r)
else x

Using vjoin we can define vmin more simply as vjoin min. More generally, we can define
a variational fold that both converts each variant to a separate accumulator type b, then
aggregates them.

vfold : (a -> b) -> (b -> b -> b) -> a -> b
vfold f g @x = split x on any

d<l,r> -> g (vfold f g l) (vfold f g r)
else f x

Now vjoin is just a vfold where the conversion is the identity function, that is,
vjoin = vfold id.

Using vfold, we can aggregate variational values in a variety of ways. For example, here
is a function for counting the number of choices in a variational value.

choices : a -> Int
choices = vfold (\x.0) (\x y.1+x+y)

The vfold function is essentially a bottom-up tree fold over the binary trees of choices.
However, because of the semantics of any, the aggregation order is determined not by the
structure of the value, but by the ordering of dimension names contained in the value. This
means that one should be careful when using vfold or vjoin with aggregating functions that
are not associative.

2.5 An Application to Variational Unification
Variational unification finds substitutions that solve equations of the form: A⟨Int, a⟩ ≡? B⟨b, c⟩.
This is not a trivial problem. The following substitution is an obvious solution to this example.

σ1 = {a↦ Int, b↦ Int, c↦ Int}

However, while some simple unifiers such as σ1 can be found quickly, identifying the most
general unifier is not easy. To wit, here is a list of some other solutions, some more general
than others, some unrelated. Substitution σ6 is the most general unifier.

σ2 = {b↦ A⟨Int, a⟩, c↦ A⟨Int, a⟩} σ3 = {a↦ B⟨Int, f⟩, b↦ Int, c↦ A⟨Int, f⟩}
σ4 = {a↦ B⟨f, Int⟩, b↦ A⟨Int, f⟩, c↦ Int} σ5 = {a↦ B⟨d, f⟩, b↦ A⟨Int, d⟩, c↦ A⟨Int, f⟩}

σ6 = {a↦ B⟨A⟨i, d⟩,A⟨j, f⟩⟩, b↦ B⟨A⟨Int, d⟩, g⟩, c↦ B⟨h,A⟨Int, f⟩⟩}
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One particular challenge for the unification algorithm is to find substitutions modulo an equiv-
alence relation (≡) that includes laws for choice distribution, idempotency, and domination,
which have been described already, plus some others.

A variational unification algorithm was first presented in [17]. This algorithm has since
been employed as a crucial component in a number of applications [17, 16, 10, 12, 13, 14].
The original implementation in Haskell required a considerable number of auxiliary type and
function definitions to support handling choice types. Having choices available as part of
the language simplifies the implementation tremendously, allowing the programmer to focus
on the main logic. First, the data type definition for types does not need to mention choice
types and only needs to provide the (non-variational) constructors to represent the original
(non-variational) core type language.

data Type = TInt | TBool | TVar Int | TFun Type Type

The unification of choice types works by systematically matching dimensions and type
constructors, constructing substitutions along the way. The matching process is dominated
by the matching of dimensions since they can be moved up or down in expressions (due to
choice distribution/factoring), which is directly supported by the operation split. This is
reflected in the following definition of the function vunify. Without going into too much
detail, we explain how some of the cases work, and in particular, how they can profitably
exploit the fact that variation is built into the language.

vunify : Type -> Type -> Subst
vunify @t @u = split t on any d<lt,rt> ->

split u on d<lu,ru> -> d<vunify lt lu,vunify rt ru> (1)
else d<vunify lt u,vunify rt u> (2)

else
split u on any d<lu,ru> -> d<vunify t lu,vunify t ru> (3)
else unify t u (4)

In case (1), if both types contain the same dimension, vunify computes a choice of substitutions
for both alternatives, which is equivalent to a substitution with choice types.

D⟨{a↦ T, . . .},{a↦ T ′, . . .}⟩ = {a↦D⟨T,T ′⟩, . . .}

Since it can happen that either substitution contains a mapping for a variable that isn’t
contained in the other, choice factoring can be “blocked” in such cases. We can write a
function that explicitly converts a variational substitution into a substitution containing choice
types and that takes care of these cases by adding a type variable for missing substitutions;
we omit the code here for brevity.

In case (2), if t contains some dimension d but u does not, we can unify each of ts
alternatives with u due to idempotency (that is, u = D<u,u>). The case (3) is symmetric.
Finally, in case (4), neither type contains any more dimensions, so we invoke the non-
variational function unify, which implements Robinson’s traditional unification algorithm.
This example illustrates how variational concerns can be isolated from the rest of the
unification algorithm; vunify focuses on variation, while unify handles the non-variational
type structure.

2.6 A Foundational Language for Variational Programming
We argue that the features described in this section constitute a rational basis for a variational
programming language. A choice between two alternatives is by definition the simplest possible
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representation of variation, and the choice calculus has a well-developed theory [23, 50] that
has been successfully reused in several contexts [17, 16, 10, 12, 13, 14, 24, 52, 53, 11, 15].
Choices are also used internally in the TypeChef system [29], which has been reused in a
number of projects for analyzing software product lines [37, 38, 33, 30, 34], and choices are
the basic representation used in other variational programming scenarios outside of software
product lines [3, 48]. Choices encode variation in-place but can also be combined with
compositional approaches to variation [51]. Choices between several alternatives can be
modeled by cascading choices in different dimensions. In previous work [53], we have shown
how the choice calculus can be extended with more general conditions on choices, but we
omit this extension here to keep the presentation concise.

The concept of variation-preserving computation describes the property that selection
commutes with evaluation. That is, running a variational program corresponds to running
all of the individual variants separately. This is the philosophy expressed in almost all work
on analyzing software product lines [47] and in recent work on variational execution [39, 3].
Selection is a symmetric elimination form for choices that satisfies Gentzen’s principle [25,
p. 102]. This means that choice and selection are information-preserving inverses, a property
that enables simple and reversible semantics.

Finally, a necessary feature for practical programming with variations is reflection on
variability. In Section 2.4, we describe the any form for extracting one arbitrary dimension
if it exists, and in the next section we describe a similar the form that extracts one specific
dimension if it exists. The any and the forms are orthogonal constructs that are sufficient
to implement pattern matching on variations, as illustrated by the derived form split.

3 Syntax and Semantics of VPC

In this section we define a variational programming calculus (vpc). The calculus extends
the lambda calculus with all of the features needed to implement the variational functional
programming language described in the previous section. We define the syntax of vpc in
Section 3.1 and a small-step operational semantics in Section 3.2.

3.1 Syntax
We separate the definition of vpc into two parts: (1) a core calculus that includes only the
essential features of the language, and (2) several derived forms, defined in terms of the core
calculus, that provide convenient surface syntax for variational programming.

Core calculus.

The syntax of the core calculus is defined in Figure 1. The first two lines define separate
namespaces for variables that refer to expressions and variables that refer to dimension
names. In this paper, we distinguish these namespaces by using letters from the beginning of
the alphabet for dimension variables, and from the end of alphabet for expression variables.
Literal dimension names are represented by capital letters. The syntactic category δ includes
both dimension variables and dimension names, while ϕ includes both dimension variables
and expression variables. As a convention, we use the nonterminal of a syntactic category
(or variations on it) to stand for arbitrary instances of that category. For example, ϕ, ϕ1,
and ϕ2 all generically refer to variables where it is not important to distinguish between
expression variables and dimension variables. We explain the syntactic categories s and ∗ in
the context of the relevant expression forms.
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v ∶∶= x ∣ y ∣ z ∣ . . . (expression variables)
d ∶∶= a ∣ b ∣ c ∣ . . . (dimension variables)
D ∶∶= A ∣ B ∣ C ∣ . . . (dimension names)
δ ∶∶= d ∣ D (dimensions)
ϕ ∶∶= v ∣ d (variables)
s ∶∶= ` ∣ r (selectors)
∗ ∶∶= @ ∣ ε (abstraction annotations)

e ∶∶= κ ∣ λ∗ϕ.e ∣ e e ∣ v (lambda calculus + constants)
∣ let v = e in e (recursive let)
∣ δ (dimensions)
∣ δ⟨e, e⟩ (choice)
∣ δs ▸ e (selection)
∣ any d from e in e else e (any dimension pick)
∣ the δ from e in e else e (specific dimension pick)

e ∶∶= κ ∣ D ∣ λ∗ϕ.e ∣ D⟨e, e⟩ (values)

Figure 1 Syntax of core vpc.

The metavariable e ranges over vpc expressions. The first two lines enumerate the
constructs of the lambda calculus extended by constants, ranged over by κ, and recursive
let-expressions. Abstractions differ from standard lambda calculus in two ways. First, they
can be distinguished by the namespace of their declared variable. That is, we will sometimes
distinguish between expression abstractions, λv.e, and dimension abstractions, λd.e. Second,
they may be optionally annotated by an @ symbol, as in λ@ϕ.e, which prevents mapping the
function over variation in its argument, as described in Section 2.4. Note that the alternative
annotation ε represents the lack of an @ annotation; that is, we write simply λϕ.e for an
unannotated abstraction. In addition to constants and expression variables, the third line
defines that we can also refer to dimension literals and dimension variables.

The next two lines define the choice and select constructs, described in Section 2.1
and Section 2.3, for introducing and eliminating variation, respectively. The dimension δ
associated with a choice δ⟨e1, e2⟩ may be either a literal dimension name D or a reference to
a dimension variable d. A selection replaces, within e, all choices in dimension δ by either
their left alternatives, written δ` ▸ e, or their right alternatives, written δr ▸ e.

The any d from e in e′ else e′′ and the δ from e in e′ else e′′ forms match against
the variability in e. The any form is described in Section 2.4, while the is new. For any, if
e contains variation, then d will be bound to a dimension from e and e′ will be evaluated,
otherwise d will remain undefined and e′′ will be evaluated. For the, if e contains variation
in the specified dimension δ, then e′ will be evaluated, otherwise e′′ will be evaluated. Note
that any declares a new dimension variable d while the refers to an existing dimension name
or variable δ.

Values.

The last line in Figure 1 describes the values of vpc as a subset of expressions. Values are
produced by fully evaluating well-typed and terminating vpc expressions. In addition to
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split e on δ⟨v`, vr⟩→ e′ ↝ (λv` vr.e′) (δ` ▸ e) (δr ▸ e)
split e on δ⟨v`, vr⟩→ e′ else e′′ ↝ the δ from e in split e on δ⟨v`, vr⟩→ e′ else e′′
split e on any d⟨v`, vr⟩→ e′ else e′′ ↝ any d from e in split e on d⟨v`, vr⟩→ e′ else e′′
ifvar e then e′ else e′′ ↝ any d from e in e′ else e′′
ifplain e then e′ else e′′ ↝ any d from e in e′′ else e′

Figure 2 Derived syntactic forms for vpc.

constants and abstractions, which are typical values in lambda calculus, a value can also be
dimension literal or a choice whose alternatives are also values. Note that only choices with
literal dimension names may be values. This implies that expressions with free dimension
variables are not well-typed (see Section 4). Additionally, observe that the body of an
abstraction value may be an arbitrary expression.

Derived forms.

Figure 2 extends the syntax of vpc with several derived forms that macro-expand to
constructs in the core calculus. These forms enable higher-level operations on variational
values without complicating the semantics and type system of vpc.

The first group of derived forms are three variations on the split construct described in
Section 2.4. A basic split expression makes both possible selections on e in dimension δ and
binds these to v` and vr in e′ using function application. The split–else form expands to a
the expression that checks whether δ appears in a free choice in e; if so, it performs the split,
otherwise it returns e′′. Finally, the split–any–else form expands to an any expression that
picks an arbitrary dimension out of e, if one exists, then either splits on that dimension or
returns e′′ if there is no variation in e.

The second group introduces two derived forms for basic queries about the presence
(ifvar) or non-presence (ifplain) of variability in e. These expand to any-expressions that
declare an arbitrary fresh dimension variable d, which is not referenced in e′.

3.2 Operational Semantics
In this section we define a small-step operational semantics for vpc. Since derived forms
macro-expand into the core calculus before evaluation, we consider only the core calculus
here. The step relation has the form e Ð→ e′ and is defined in Figure 3. We separate the
discussion of the rules into three parts: (1) reduction rules, which form the core of the
semantics, (2) commutation rules for setting up future reductions, and (3) congruence rules
for enabling reduction in subexpressions.

Reduction rules.

The most basic variation constructs are choice and selection, for introducing and eliminating
variation. The elimination of choices by selections is defined by the two Chc-Elim rules, for
selecting the left or right alternative of a choice. Observe that selection is only defined on
choices with literal dimension names, not dimension variables. This requires that all dimension
variables be substituted (see App-Reduce) before choices can be eliminated. Also note that
these reductions propagate the selection into the remaining alternative, implementing choice



S. Chen, et al. XX:11

Chc-Elim-L
D` ▸D⟨e1, e2⟩Ð→D` ▸ e1

Chc-Elim-R
Dr ▸D⟨e1, e2⟩Ð→Dr ▸ e2

Sel-Idemp-K
δs ▸ κÐ→ κ

Sel-Idemp-D
δs ▸D Ð→D

App-Reduce
(λϕ.e) e′ Ð→ split e′ on any d⟨v`, vr⟩→ d⟨(λϕ.e) v`, (λϕ.e) vr⟩ else [e′/ϕ]e

App@-Reduce
(λ@ϕ.e) e′ Ð→ [e′/ϕ]e

Any-Reduce-Then
any d from e in e′ else e′′ Ð→ [min(dims(e))/d]e′

Any-Reduce-Else
∅ = dims(e)⇒ any d from e in e′ else e′′ Ð→ e′′

The-Reduce-Then
δ ∈ dims(e)⇒ the δ from e in e′ else e′′ Ð→ e′

The-Reduce-Else
δ ∉ dims(e)⇒ the δ from e in e′ else e′′ Ð→ e′′

Let-Reduce
let v = e in e′ Ð→ [[let v′ = e in v′/v]e/v]e′

Sel-Let
δs ▸ let v = e in e′ Ð→ let v = δs ▸ e in δs ▸ e′

App-Chc
δ⟨e1, e2⟩ e′ Ð→ δ⟨e1 (δ` ▸ e′), e2 (δr ▸ e′)⟩

Sel-App
δs ▸ e e′ Ð→ (δs ▸ e) (δs ▸ e′)

Sel-Abs-Exp
δs ▸ λ∗v.eÐ→ λ∗v.(δs ▸ e)

Sel-Abs-Dim
d′ is fresh⇒ δs ▸ λ∗d.eÐ→ λ∗d′.(δs ▸ [d′/d]e)

Sel-Chc
D ≠D′ ⇒Ds ▸D′⟨e1, e2⟩Ð→D′⟨Ds ▸ e1,Ds ▸ e2⟩

Sel-Any
d′ is fresh⇒ δs ▸ (any d from e in e′ else e′′)Ð→ any d from δs ▸ e in δs ▸ [d′/d]e′ else δs ▸ e′′

Sel-The
δs ▸ (the δ′ from e in e′ else e′′)Ð→ the δ′ from δs ▸ e in δs ▸ e′ else δs ▸ e′′

Figure 3 Small-step operational semantics of vpc: reduction and commutation rules.
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domination (see Section 2.2), illustrated by the following reduction sequence.

Ar ▸A⟨2,A⟨3,4⟩⟩Ð→ Ar ▸A⟨3, 4⟩Ð→ Ar ▸ 4Ð→ 4

The final step of this sequence depends on the fact that selection on constants (and dimension
names) is idempotent, as defined by the two Sel-Idemp rules. Our strategy for eliminating
selections will be to continually push selections down to the leaves of an expression, eliminating
choices as we go. This will be accomplished mainly by the commutation rules discussed
later. However, note that we do not have a selection idempotency rule for selections applied
to variables. Such expressions are stuck until a corresponding substitution enables further
progress.

The next two rules define function application with aggregating (@-annotated) and
non-aggregating functions. The App@-Reduce rule is just standard β-reduction. For non-
aggregating functions, recall from Section 2.2 that we must instead map the function
application over all variants of the argument. In fact, both the LHS and RHS of an
application may be variational. If the LHS is a choice, we can apply the App-Chc rule to
push the application into both alternatives (and selecting on the RHS to enforce choice
domination). We might expect a symmetric rule for pushing an application into a choice
on the RHS of an application and then a β-reduction rule for reducing abstractions applied
to non-choices. However, this strategy only maps across variation introduced by top-level
choices, whereas in general variation may be arbitrarily embedded within an expression, such
as in an abstraction body. Therefore, in App-Reduce we define that an unannotated redex
is expanded into a split-any-else expression that recursively splits e′ on every dimension it
contains, effectively pushing the application downward into its variants. After we’ve split on
all of the dimensions in e′, the else branch applies, and the generated expression reduces to
standard β-reduction.

Reducing an any- or the-expression requires querying the variability of the first subex-
pression, which we call the scrutinee. Observe that all of the Any and The reduction rules
require the scrutinee to be a value. This forces full reduction of the scrutinee before the
expression can be reduced. Ideally, we would reduce the scrutinee to either a choice or
a constant, then replace the any/the-expression by its then or else branch, respectively.
However, this strategy is stymied by the fact that abstractions are also a value form, and
abstraction bodies are expressions that may contain choices, but may also contain free
variables and so cannot be further reduced to values. This leaves two possible solutions:
(1) get stuck when the scrutinee reduces to an abstraction, (2) statically approximate the
variability of the reduced scrutinee. Since we want to match against arbitrary values, we
choose option (2).

Figure 4 defines an auxiliary function dims(e) that computes a set of dimensions that
conservatively approximates the free dimensions of variability in e. A free dimension is either
a dimension name or a dimension variable that is not bound by an enclosing abstraction in e.
Observe in the definition of dims that dimension declarations and choices contribute to the
result set, while selections (which eliminate choices and therefore variability) subtract from
it. The dimension abstraction and any forms, which declare and scope dimension variables,
also subtract from the result set since their dimension variables are not free in e.

Using dims, we can define the reduction rules for the and any. The The-Reduce rules
simply check to see whether the specified dimension is present in dims(e) and reduce to
either the then or else branch accordingly. An any-expression reduces to the else branch if
dims(e) is empty (Any-Reduce-Else), but if it’s not empty we must pick a dimension to bind
to d (in Any-Reduce-Then). The dimension we pick is based on an ordering relation (≺) on
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dims(κ) = dims(v) = {} dims(e e′) = dims(e) ∪ dims(e′)
dims(δ) = {δ} dims(δ⟨e, e′⟩) = dims(e) ∪ dims(e′) ∪ {δ}
dims(λ∗v.e) = dims(e) dims(δs ▸ e) = dims(e) − {δ}
dims(λ∗d.e) = dims(e) − {d}

dims(any d from e in e′ else e′′) = {dims(e′) − {d} if dims(e) ≠ ∅
dims(e′′) otherwise

dims(the δ from e in e′ else e′′) = {dims(e′) if δ ∈ dims(e)
dims(e′′) otherwise

Figure 4 Static approximation of dimensions in a vpc expression.

(λv.e1) D⟨e2, e3⟩
Ð→ split D⟨e2, e3⟩ on any d⟨v`, vr⟩→ d⟨(λv.e1) e2, (λv.e1) e3⟩ else [D⟨e2, e3⟩/v]e1

{App-Reduce}
Ð→ any d from D⟨e2, e3⟩ in split D⟨e2, e3⟩ on d⟨v`, vr⟩→

d⟨(λv.e1) e2, (λv.e1) e3⟩ else [D⟨e2, e3⟩/v]e1 {expand split-any-else}
Ð→ split D⟨e2, e3⟩ on D⟨v`, vr⟩→D⟨(λv.e1) e2, (λv.e1) e3⟩ {Any-Reduce-Then}
Ð→ (λv` vr.D⟨(λv.e1) v`, (λv.e1) vr⟩) (D` ▸D⟨e2, e3⟩) (Dr ▸D⟨e2, e3⟩)

{expand split}
Ð→ (λv` vr.D⟨(λv.e1) v`, (λv.e1) vr⟩) e2 e3 {Chc-Elim-L,Chc-Elim-R}

Figure 5 Example reduction of (λv.e1) D⟨e2, e3⟩.

dimensions: for any dimension name D and dimension variable d′, D ≺ d′; when comparing
two dimension names or two dimension variables, ≺ is the lexicographic ordering of their
names. The function min(δ) returns the minimum δ ∈ δ according to this ordering relation.
(We use the overbar to denote lists.)

The requirement that the scrutinee of an any/the-expression be fully evaluated is needed
to ensure confluence since dims is an approximation of the actual variation in e. To illustrate,
consider the expression2 ifvar (λ@x.2) A⟨3, 4⟩ then 5 else 6. Forcing evaluation of the
scrutinee first yields reduces the expression to ifvar 2 then 5 else 6 and then to 6 since
dims(2) = ∅. However, if we allowed also reducing any/the immediately, the expression
reduces to 5 since dims((λ@x.2) A⟨3, 4⟩) = {A}.

Finally, the Let-Reduce rule implements a recursive let by a nested substitution.

Selection commutation rules.

The App-Chc rule described in the previous section pushes applications into choices on the
LHS in order to setup future reductions via the App-Reduce or App@-Reduce. Similarly,
the eight Sel-* rules push selections downward to setup the elimination of matching choices
via the Chc-Elim rules, and eventually to reduction at the leaves via the Sel-Idemp rules.

The Sel-App and Sel-Let rules straightforwardly push selections into applications and
let-expressions, respectively. The two Sel-Abs rules push selections into abstractions. In

2 Recall that ifvar expands to an any–then–else expression.
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these rules we distinguish between expression abstractions (where the variable is in the
namespace v) and dimension abstractions (in namespace d). However, both rules apply to
both annotated and unannotated abstractions. We make this explicit by writing λ∗v.e and
assume that the annotations are preserved by the transformation. Note that the Sel-Abs-Dim
rule renames the bound dimension variable to preemptively avoid the capture of the selected
dimension δ, which may also be a dimension variable.

The Sel-Chc rule pushes selections into choices. This rule can only be applied if both
dimensions (the one being selected, and the one referenced by the choice) have been resolved
to dimension names. Selection on a choice involving a dimension variable is stuck until
dimension substitution enables further progress. To illustrate why this is necessary, consider
the expression d` ▸ d′⟨e1, e2⟩. At first it may seem that this expression is equivalent to
d′⟨d` ▸ e1, d` ▸ e2⟩ since the dimension variables have different names. However, it might be
that d and d′ are substituted by the same dimension name, in which case we should have
eliminated the choice rather than pushing the selection into it.

Finally, the Sel-Any and Sel-The rules push selections into any- and the-expressions.
Since any binds dimension names, the Sel-Any rule renames to avoid dimension variable
capture.

Congruence rules.

We relegate to Appendix A.2 the congruence rules, which complete the reduction relation.
They are entirely straightforward. We give them names like In-Any-Then for reducing the
then-branch of an any-expression, and In-Chc-L for reducing the left alternative of a choice.
The most interesting feature of the congruence rules are two rules that are omitted—we do not
define In-Abs or In-Sel rules for reducing the body of abstractions or selections, respectively.
The reason these are omitted is to avoid prematurely reducing any- and the-expressions.
When an any/the occurs in the body of an abstraction, future variable substitutions may
affect the variability of the scrutinee, and so we should not reduce it until all free variables
have been substituted. Conversely, when an any/the occurs in the body of a selection, the
scrutinee may contain more variation than it will after the selections have been pushed all
the way down. Thus, reducing within abstractions and selections would lead to semantics
that is not confluent.

Confluence.

The main result for the operational semantics is that the reduction relation is confluent,
captured in the following lemma. (For a proof sketch, see Appendix A.1).

▸ Lemma 1 (Local confluence). eÐ→ e′ ∧ eÐ→ e′′ Ô⇒ ∃e′′′. e′ Ð→∗ e′′′ ∧ e′′ Ð→∗ e′′′

4 Type System

This section presents a type system for vpc. In Section 4.1 we define the syntax of the type
language, and in Section 4.2 we define the typing relationship through a set of typing rules.

4.1 Syntax
Types are stratified into three layers (see Figure 6). First, we use τ to range over plain types,
which don’t contain variations. Plain types include type constants γ, type variables α, and
function types. Second, we use φ to range over variational types. A choice type δ⟨φ1, φ2⟩
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τ ∶∶= γ ∣ α ∣ τ → τ (plain types)
φ ∶∶= τ ∣ δ⟨φ,φ⟩ ∣ φ→ φ ∣ δ (variational types)
σ ∶∶= ∀αd.φ ∣ ∀αd.C ⇒ φ (variational schemas)
C ∶∶= φ ≡ φ ∣ C ∧C ∣ δ⟨C,C⟩ ∣ ∃αd.C ∣ δ ∈ φ⇒ δ↓φ (constraints)

Figure 6 Type Syntax

allows us to represent type variation. By including dimensions δ, which are expressions, in
type syntax we obtain a lightweight form of dependent types. Finally, we have type schemas,
which are variational types universally quantified over type variables α and dimension
variables d. We refer to type schemas of the form ∀d.φ as dimension-polymorphic types.
Note that we don’t explicitly represent choice types containing polymorphic types since
they can be transformed to type schemas, as shown in [10].3 With this type syntax we
can characterize types for expressions manipulating dimensions and choices. Consider, for
example, the function poly that takes a dimension and creates a choice in that dimension.

poly ∶ ∀d.d→ d⟨Int, Bool⟩
poly = λd.d⟨2, True⟩

In this example, the type precisely describes the intention of poly. While we can instantiate
poly with any dimension, we may want to restrict dimensions that can be used to instantiate
dimension-polymorphic types in general. We use the following expression bounded to illustrate
this point.

bounded = λ@e.any d from e in d⟨2, True⟩ else undefined

Here bounded finds a dimension in the expression supplied as argument based on some
ordering that is discussed in Section 3. What should be the type of bounded? The type
∀d.φ → d⟨Int, Bool⟩ is not precise enough since it can be instantiated with any dimension,
even one absent in the input expression. To address this issue, we introduce constrained
types that allow us to attach constraints to polymorphic types. Constraints specify the valid
ways of instantiating polymorphic variables. To represent the type for bounded, we introduce
the constraint d↓φ, which requires that d must be the particular dimension in φ according to
the defined ordering. For example, for φ = B⟨A⟨Int, Bool⟩, Bool⟩, we have A↓φ. With this
constraint, we can write the type for bounded as follows.

bounded ∶ ∀d.d↓φ⇒ φ→ d⟨Int, Bool⟩

This type states that for any given argument, there is at most one valid instantiation of d.
Note that the constraint d↓φ must be satisfied only if d appears in the result type, as it does
in bounded. In general, the conditional constraint δ ∈ φ2 ⇒ δ↓φ1 means that δ↓φ1 must be
satisfied only if δ ∈ φ2 is satisfied.

We define other constraints in Figure 6 and use the metavariable C to range over
constraints. The constraint φ1 ≡ φ2 requires that types φ1 and φ2 be equivalent, which is
more flexible than type equality. The “variational constraint” δ⟨C1,C2⟩ expresses a choice
between constraint C1 or C2, depending on dimension δ. The constraint forms C1 ∧C2 and
∃αd.C have the conventional meanings.

3 E.g., we don’t deal with A⟨∀α.α→ α,∀α.α→ Int⟩ since we can transform it to ∀α,β.A⟨α → α,β →
Int⟩.
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E1
C ⊩ C

E2
C ∧C1 ⊩ C1

E3
C ⊩ ∃αd.C

E4
C1 ⊩ C2 C2 ⊩ C3

C1 ⊩ C3
E5

C1 ⊩ C2

θ(C1) ⊩ θ(C2)

E6
C1 ⊩ C2

∃αd.C1 ⊩ ∃αd.C2
E7

C1 ⊩ C2 C3 ⊩ C4

δ⟨C1,C3⟩ ⊩ δ⟨C2,C4⟩

E8
FD(φ1) = ∅ FV(φ1) = ∅ δ ∉ dims(φ1)

⊩ δ ∈ φ1 ⇒ δ↓φ
E9

δ ∈ dims(φ1) δ = min(dims(φ))
⊩ δ ∈ φ1 ⇒ δ↓φ

T1 φ1 ≡ φ2 ⊩ φ2 ≡ φ1 T2 φ1 ≡ φ2 ∧ φ2 ≡ φ3 ⊩ φ1 ≡ φ3 T3 ⊩ φ ≡ φ

T4 φ1 ≡ φ2 ⊩ φ[φ1] ≡ φ[φ2] T5 ⊩ δ⟨φ,φ⟩ ≡ φ T6 ⊩ δ⟨φ1, φ2⟩ ≡ δ⟨⌊φ1⌋δ`
, ⌊φ2⌋δr ⟩

Figure 7 Entailment relation of constraints

We now turn to the relations among constraints. We use the entailment relation C1 ⊩ C2
to denote that if C1 is satisfied, then C2 must also be satisfied. The rules E1, E2, and E4
are standard in constrained type systems. The rules E3 and E6 specify that existential
quantifiers hide information of constraints and thus quantified constraints are easier to satisfy.
The constraint E5 states that the entailment relation is stable under substitution, where θ is
a mapping of type variables to types and dimension variables to dimensions. Rule E7 deals
with variational constraints and is obvious.

Finally, rules E8 and E9 describe two ways to satisfy the constraint δ ∈ φ1 ⇒ δ↓φ. The
first applies when δ doesn’t occur in φ1, which we can conclude only when φ1 doesn’t contain
dimension variables or type variables because they may be substituted with other variational
types. The operation FD(φ) is defined as follows.

FD(d⟨φ1, φ2⟩) = {d} ∪ FD(φ1) ∪ FD(φ2)
FD(D⟨φ1, φ2⟩) = FD(φ1) ∪ FD(φ2)
FD(φ1 → φ2) = FD(φ1) ∪ FD(φ2)

FD(d) = {d} FD(D) = FD(τ) = ∅

The operation dims(φ) is defined similarly but collecting all δs. The second situation is
handled by E9, which requires that δ ∈ dims(φ1) and that δ is min(dims(φ2)).

The second part of Figure 7 presents the entailment relation between type equivalence
relations. The rules T1 through T3 state that type equivalence is reflexive, symmetric, and
transitive. Rule T4 describes that equivalence is congruent with respect to an arbitrary
shared context. The rules T5 and T6 state that idempotent choices and dead alternatives
may be eliminated. The operation ⌊φ1⌋δ`

replaces each occurrence of a choice in dimension δ
within φ1 with its left alternative [17].

4.2 Typing Rules
We use the judgment C; Γ; ∆ ⊢ e ∶ φ to denote that under the constraint C, the type environ-
ment Γ, and the dimension environment ∆, the expression e has the type φ. The environment
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C; Γ; ∆ ⊢ e ∶ φ

Con
κ of type γ
C; Γ; ∆ ⊢ κ ∶ γ

Var
Γ(v) = ∀αd.C ⇒ φ C ′ ⊩ C

C ′; Γ; ∆ ⊢ v ∶ φ

Abs
C; Γ, (v, φ1); ∆ ⊢ e ∶ φ
C; Γ; ∆ ⊢ λv.e ∶ φ1 → φ

App
C; Γ; ∆ ⊢ e1 ∶ φ1 C; Γ; ∆ ⊢ e2 ∶ φ2 C ⊩ φ1 ≡ φ2 → φ

C; Γ; ∆ ⊢ e1 e2 ∶ φ

AbsD
C; Γ; ∆, (d, δ) ⊢ e ∶ φ
C; Γ; ∆ ⊢ λd.e ∶ δ → φ

Let
C1 ∧C2; Γ, (v, φ); ∆ ⊢ e1 ∶ φ

d # FD(C2) ∪ FD(Γ) α # FV(C2) ∪ FV(Γ) C2; Γ, (v,∀αd.C1 ⇒ φ); ∆ ⊢ e2 ∶ φ2

C2 ∧ ∃αd.C1; Γ; ∆ ⊢ let v = e1 in e2 ∶ φ2

Dim
∆(δ) = δ1

C; Γ; ∆ ⊢ δ ∶ δ1

Chc
C1; Γ; ∆ ⊢ e1 ∶ φ1 C2; Γ; ∆ ⊢ e2 ∶ φ2 ∆(δ1) = δ

δ⟨C1,C2⟩; Γ; ∆ ⊢ δ1⟨e1, e2⟩ ∶ δ⟨φ1, φ2⟩

Sel

C; Γ; ∆ ⊢ e ∶ φ ∆(δ) = δ1 C ⊩ δ1⟨φ`, φr⟩ ≡ φ
⎧⎪⎪⎨⎪⎪⎩

C ⊩ α ≡ φ` s = `
C ⊩ α ≡ φr s = r

C; Γ; ∆ ⊢ δs ▸ e ∶ α

Any
C; Γ; ∆ ⊢ e1 ∶ φ1

C; Γ; ∆, (d, d) ⊢ e2 ∶ φ2 C; Γ; ∆ ⊢ e3 ∶ φ3 C ⊩ φ2 ≡ φ3 C ⊩ d ∈ φ3 ⇒ d↓φ1

C; Γ; ∆ ⊢ any d from e1 in e2 else e3 ∶ φ3

The
C; Γ; ∆ ⊢ e1 ∶ φ1 ∆(δ) = δ1 C; Γ; ∆ ⊢ e2 ∶ φ2 C; Γ; ∆ ⊢ e3 ∶ φ3 C ⊩ φ2 ≡ φ3

C; Γ; ∆ ⊢ the δ from e1 in e2 else e3 ∶ φ3

Figure 8 Typing rules

∆ that collects all the assumptions for bound dimension variables that are visible for e is a
mapping from dimension variables d to dimensions δ. We frequently use the operation ∆(δ),
which is defined as follows.

∆(δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D if δ =D
δ1 if δ = d ∧ (d, δ1) ∈ ∆
undefined if δ = d ∧ d ∉ dom(∆)

The first three rules (Con, Var, and Abs) are standard. The rule App for function application
relaxes the usual equality constraint between the function parameter and argument and
requires only that they be equivalent (not equal). The rule AbsD is similar to Abs except
that it abstracts over dimension variables. To type dimension abstractions, we assume a
binding for (d, δ) in ∆, then type the body.

The Let rule deals with recursive let expressions. Note that we allow polymorphism
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over both dimension variables and type variables. The overall typing process is standard.
However, note that we only attach the constraint (C1) that specifies requirements for α and
d to the type φ assumed for v. Since the variable v will probably be referred to many times
in the body, this helps to control the size of the constraint aggregated during the typing
process. As been noted earlier [40, 44, 13], the size of constraints has a huge impact on the
performance of type checkers. We therefore regard this optimization as necessary. Another
subtlety is that we keep the constraint ∃αd.C1 in the result typing constraint. This constraint
increases the precision of the type system. For a discussion, see [40, 44].

Rule Dim consults the binding for δ in ∆. From the definition of ∆(δ) it follows that
C; Γ; ∆ ⊢D ∶D and C; Γ; ∆ ⊢ d ∶D if (d,D) ∈ ∆. The rule Chc for choice construction
expresses the idea that the typing process can be composed over choice creation. Specifically,
if e1 and e2 are typed under the constraints C1 and C2, respectively, then δ1⟨e1, e2⟩ is well
typed under the variational constraint δ⟨C1,C2⟩, where δ = ∆(δ1). To type a selection, we
first retrieve the type φ1 of the expression being selected. Then, based on the selector given,
the constraint must ensure that the result type is equivalent to the corresponding alternative
of φ1. This idea is formalized in rule Sel.

To type an any expression, we first derive the type φ1 for e1. Then we have to consider two
different cases. First, if φ1 contains a dimension, we type the then branch e2 by extending
∆ with (d, d). Otherwise, if φ1 doesn’t contain any dimension, then the else branch e3 is
typed. The language requires that both branches have the same type. Another constraint
that needs to be satisfied is that if the result type of the expression refers to d, then d must
appear in φ1 and must be the smallest dimension according to the ordering of dimensions
defined in Section 3. This is expressed through the entailment relation C ⊩ d ∈ φ3 ⇒ d↓φ1.
The rule Any specifies this typing process.

Note that the result will be incorrect if we drop the condition and use the constraint
entailment C ⊩ d↓φ1. To illustrate, consider the expression vmin introduced in Section 2.4.
Although we will not describe the formal reasoning process, we briefly discuss how the type
for vmin can be derived. First, since vmin is a recursive function, we assume its type is α → β.
Next, the call of min of result type β forces β to be Int and the return type of the then
branch to be Int. As both branches of any need to have the same type, the else branch of
type α also has the type Int. Thus, both α and β are Int. If the any expression introduces
the constraint d↓Int, we observe that the constraint can never be satisfied since Int doesn’t
contain any dimension. However, if we introduce the constraint d ∈ Int⇒ d↓Int, then the
constraint can immediately be removed according to rule E8 in Figure 7.

The idea of typing the expressions is very similar to that of typing any expressions. Both
branches of the also need to be equivalent. The main difference is that this rule doesn’t
place a constraint on the dimension δ, as can be seen from the rule The. The reason is that
δ must be bound by a dimension abstraction. Note that while other judgments in The don’t
use δ1, we write ∆(δ) = δ1 to ensure that δ is a dimension constant or is bound in ∆.

Our type system is sound with respect to the operational semantics defined in Section 3.2.
Specifically, the following two properties hold.

▸ Theorem 2 (Progress). If C; Γ;∅ ⊢ e ∶ φ and Γ contains information for constants only
and FV(Γ) = ∅, and ⊩ C, then e is a value or there is some e′ such that eÐ→ e′.

▸ Theorem 3 (Preservation). If C; Γ; ∆ ⊢ e ∶ φ and eÐ→ e′, then C; Γ; ∆ ⊢ e′ ∶ φ.

Progress can be proved by induction on the typing derivation, and preservation by induction
on the reduction relation.
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I-App
C1; Γ; ∆ ⊢I e1 ∶ α1 C2; Γ; ∆ ⊢I e2 ∶ α2 α3 fresh
∃α1α2.(C1 ∧C2 ∧ α1 ≡ α2 → α3); Γ; ∆ ⊢I e1 e2 ∶ α3

I-Any

C1; Γ; ∆ ⊢I e1 ∶ α1
C2; Γ; ∆, (d, d) ⊢I e2 ∶ α2 C3; Γ; ∆ ⊢ e3 ∶ α3 C4 = (d ∈ α3 ⇒ d↓α1)

∃α1α2d.(C1 ∧C2 ∧C3 ∧ α2 ≡ α3 ∧C4); Γ; ∆ ⊢I any d from e1 in e2 else e3 ∶ α3

Figure 9 Constraint generation for vpc

5 Constraint Generation

The type inference process consists of two steps: constraint generation and constraint solving.
This section presents constraint generation and investigates its properties. Constraint solving
will be presented in Section 6. The goal of constraint generation is to collect constraints
for a specific expression e under the type environment Γ and dimension environment ∆.
Figure 9 presents constraint generation rules for function applications and any expressions.
The full set of constraint generation rules is presented in Appendix A.3. The rules define
the judgment C; Γ; ∆ ⊢I e ∶ α, which means that given e, Γ, and ∆, the constraint C will be
collected and the result type is α.

The constraint generation rules are derived from the typing rules in Figure 8. The
constraints for a given expression e are a combination of the constraints of its subexpressions
and constraints relating the types of its subexpressions. For example, in the I-App rule,
the constraints for e1 e2 are obtained as the conjunction of the constraints C1, C2, and
α1 ≡ α2 → α3, where C1 and C2 are the constraints for e1 and e2, respectively, and the
constraint α1 ≡ α2 → α3 relates the types of e1, e2, and e1 e2.

An important observation is that the constraint generation rules collect exactly the
constraints specified in the typing relation in Figure 8—they do not forget or introduce new
constraints. This leads to the following soundness and completeness theorems for constraint
generation.

▸ Theorem 4 (Soundness of constraint generation). If C; Γ; ∆ ⊢I e ∶ α, then C; Γ; ∆ ⊢ e ∶ α.

▸ Theorem 5 (Completeness and principality of constraint generation). If C; Γ; ∆ ⊢ e ∶ φ, then
C ′; Γ; ∆ ⊢I e ∶ α with C ⊩ ∃α.C ′ and C ∧C ′ ⊩ θ(α) ≡ φ for some substitution θ.

Theorem 4 can be proved by induction over the constraint generation rules, Theorem 5 by
induction over the typing rules.

Based on the constraint generation rules, the following set of constraints (reformatted
for readability) will be generated for the expression bounded A⟨2, 3⟩ (where bounded is the
function introduced in Section 4.1). We refer to these constraints collectively as C1 (and use
C to range over constraint sets henceforth). Here α and α1 represent the return type and
argument type of bounded, respectively.

C1 ∶ α ≡ d⟨Int, Bool⟩ C2 ∶ d ∈ d⟨Int, Bool⟩⇒ d↓α1 C3 ∶ α1 ≡ α2 C4 ∶ α2 ≡ A⟨Int, Int⟩

The constraint set C2 for the application bounded 2 has the same first three constraints as C1
and has a different last constraint C5.

C1 ∶ α ≡ d⟨Int, Bool⟩ C2 ∶ d ∈ d⟨Int, Bool⟩⇒ d↓α1 C3 ∶ α1 ≡ α2 C5 ∶ α2 ≡ Int
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6 Constraint Solving

While generating constraints from the typing is straightforward, solving such constraints is
more challenging. Section 6.1 discusses these challenges, and Section 6.2 presents a constraint
solver.

6.1 Constraint Solving Challenges
There are three main challenges to address. First, rule T5 in Figure 7 specifies that we can
always simplify a type by eliminating idempotent choices. Moreover, doing so can significantly
improve the performance of type inference algorithms in practice, as has been shown in [17].
However, eagerly eliminating all idempotent choices can render some satisfiable constraints
unsatisfiable. Consider, for example, the constraint set C1 generated in Section 5. If we
solve C3 and C4 with the substitution θ = {α2 ↦ Int, α1 ↦ Int}, then C2 cannot be satisfied
since d↓Int fails because Int doesn’t contain any dimension. This is undesirable since the
expression that generates C1 is well typed. However, if we instead use the substitution
θ′ = {α2 ↦ A⟨Int, Int⟩, α1 ↦ A⟨Int, Int⟩}, then C2 can be solved by mapping d to A. Finally,
solving C1 gives us A⟨Int, Bool⟩ as the result type of bounded A⟨2, 3⟩. This result matches
our expectation since the expression is indeed well typed.

On the other hand, we shouldn’t introduce gratuitous idempotent choices, because those
might allow solving some unsatisfiable constraints. Consider, for example, the constraint
set C2 from Section 5. We again have both θ and θ′ as potential solutions for C2. Since the
expression that generates C2 is ill typed, only θ leads to the expected result since it makes
C2 unsolvable.

The second challenge regards the kind of information produced through constraint solv-
ing. This is straightforward for constraints on type variables. For example, in the case
of A⟨Int, α⟩ ≡ A⟨α, Bool⟩, we simply find a substitution for α. But what do we do about
d1⟨Int, Bool⟩ ≡ d2⟨Int, Bool⟩? At best, this constraint allows us to derive that d1 = d2. How-
ever, in general such constraints are undecidable. For example, consider A⟨Int, α⟩ ≡ d⟨Int, β⟩.
Both {d↦ A,α ↦ Int, β ↦ Int} and {d↦ B,α ↦ Int, β ↦ Int} are possible substitutions but
neither is more general than the other.

The third challenge is that, unlike in normal constraint solving [40], a set of constraints
cannot be solved in one iteration. Consider, for example, the following constraint set C3.

C6 ∶ d1⟨Int, Bool⟩ ≡ d2⟨Int, Bool⟩ C7 ∶ d1 ≡ A ∧ d2 ≡ B

For the same reason as in the previous paragraph*, solving C6 directly won’t provide useful
information. We can solve C7, however, with d1 ↦ A and d2 ↦ B. By substituting d1 with A
and d2 with B in C6, we can now find that C6 is unsolvable. Overall, we need two iterations
to determine that C3 is unsolvable.

To address the first challenge, we require that idempotent choices are not reduced when
solving certain constraints. To address the second challenge and make constraint solving
decidable, we defer computing solutions for dimension variables when they are used as choice
constructors. Finally, to address the third challenge, we use iterative constraint solving, that
is we solve constraints in multiple iterations and stop when no further progress can be made.

To simplify the presentation, in addition to the constraint forms in Figure 6, we introduce
a new constraint form, d↓φ, which is satisfied if d = min(dims(φ)). We also use true to denote
a constraint that is trivially satisfied. We define the auxiliary function noelim(C,K) in Figure
10 to decide when idempotent choices shouldn’t be removed. Given C, the iterative function
noelim(C,{}) returns the set of type variables for which we must preserve idempotent choices.
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noelim(φ1 ≡ φ2,K) =
⎧⎪⎪⎨⎪⎪⎩

K K ∩ FV(φ1, φ2) = ∅
K ∪ FV(φ1, φ2) otherwise

noelim(∃αd.C,K) = noelim(C,K − α)
noelim(C1 ∧C2,K) = noelim(δ⟨C1,C2⟩,K) = noelim(C1,K) ∪ noelim(C2,K)

noelim(δ ∈ φ1 ⇒ δ↓φ,K) = noelim(δ↓φ,K) = K ∪ FV(φ)

noelim(C,K) =
⎧⎪⎪⎨⎪⎪⎩

K K = K′

noelim(C,K′) otherwise
where K′ = ⋃

C∈C
noelim(C,K)

Figure 10 Keeping idempotent choices

Intuitively, noelim(C,{}) includes (1) the type variables found in variational types φ for
constraints of the form δ ∈ φ1 ⇒ δ↓φ or δ↓φ and (2) the type variables that share a constraint
with some other type variables in noelim(C,{}). noelim(C,{}) is complete since it handles
all different forms of the constraint.

Given this operation, we can compute noelim(C1,{}) = {α1, α2}, where C1 is from
Section 5. Note that α is not included in the resulting set since it shares no constraint with
either α1 or α2.

6.2 A Constraint Solver
We can now implement a constraint solver S. Given a constraint set C and a mapping θ,
S solves iteratively until no progress can be made, which is detected when C = C′ where
C′ is the residual constraint set of the current iteration. Note that a new noelim(C,{}) is
computed and passed to U ′ at the beginning of each iteration since constraints may have
been changed during the previous iteration.

S(C, θ) =
⎧⎪⎪⎨⎪⎪⎩

(C′, θ′) C = C′

S(C′, θ′) otherwise
where (C′, θ′) = U ′(C, θ,noelim(C,{}))

The real work of solving constraints is performed by U ′, which in turn calls U to solve each
constraint individually. Both U ′ and the main part of U are given in Figure 11. Several
simple cases, such as unifying two plain types and unifying two dimension variables, for
U are omitted. Given C, U ′ will return the same result if the constraints are solved in
different orderings. However, if C fails to solve, U ′ will fail on different constraints considering
different orderings. The main solver U has the type U ∶ C × θ × 2α → C × θ, that is, it takes
three arguments—the constraint to be solved, the mapping, and the set of type variables for
handling idempotent choice eliminations—and returns as two results when constraint solving
is successful the residual constraint and the result unifier.

We go briefly over the cases in Figure 11. Case (a) deals with existential constraints of
the form ∃αd.C, which is satisfiable if C is satisfiable. For this constraint, we first solve C
and remove binding information about α and d in the result unifier. Case (b) states that
a conditional constraint δ ∈ φ1 ⇒ δ↓φ2 can be simplified in two ways: (1) if the condition
δ ∈ φ1 is satisfied, the constraint is simplified to δ↓φ2 and (2) if the condition fails, the whole
constraint is satisfied. Otherwise, the constraint is deferred for later iterations if the condition
contains free dimension or type variables, which may be substituted with concrete dimension
names or types.
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U ′({C1, . . . ,Cn}, θ,K) = let (C ′1, θ′1) = U(C1, θ,K)
(C′, θ′) = U ′(θ′1({C2, . . . ,Cn}), θ′1,K)

in ({C ′1} ∪ C′, θ′)

(a) U(∃αd.C, θ,K) = let (C1, θ1) = U(C, θ,K) in (∃αd.C1, θ1/{α, d})
(b) U(δ ∈ φ1 ⇒ δ↓φ2, θ,K)

∣ δ ∈ dims(θ(φ1)) = U(δ↓φ2, θ,K)
∣ FD(θ(φ1)) == ∅ ∧ FV(θ(φ1)) == ∅ ∧ δ ∉ dims(θ(φ1)) = (true, θ)
∣ otherwise = (δ ∈ φ1 ⇒ δ↓φ2, θ)

(c) U(δ↓φ2, θ,K)
∣ FD(θ(φ2)) ≠ ∅ ∨ FV(θ(φ2)) ≠ ∅ = (δ↓φ2, θ)
∣ dims(θ(φ2)) == ∅ = fail
∣ δ == d = (true,{d↦min(dims(θ(φ2)))} ○ θ)
∣ δ ≠ min(dims(θ(φ2))) = fail
∣ otherwise = (true, θ)

(d) U(D1⟨φ1, φ2⟩ ≡D2⟨φ3, φ4⟩, θ,K) =
let (θ1, r) = vunify(D1⟨φ1, φ2⟩,D2⟨φ3, φ4⟩) in if r then (true, θ1 ○ θ) else fail

(e) U(α ≡ φ, θ,K) = if α ∈ K then (true,{α ↦ φ} ○ θ) else (true,{α ↦ norm(φ)} ○ θ)
(f) U(δ⟨C1,C2⟩, θ,K) =

let (C3, θ3) = U(C1, θ,K) ; (C4, θ4) = U(C2, θ,K) in (δ⟨C3,C4⟩, δ⟨θ3, θ4⟩)
(g) U(C1 ∧C2, θ,K) =

let (C3, θ3) = U(C1, θ,K) ; (C4, θ4) = U(θ3(C2), θ3,K) in (C3 ∧C4, θ4 ○ θ3)
(h) U(C, θ,K) = (C, θ)

Figure 11 A constraint solving algorithm using pattern matching and guard expressions.

Case (c), for solving constraints of the form δ↓φ2, is more interesting. This constraint is
processed only when θ(φ2) doesn’t contain any free dimensions or type variables (handled
by the first guard and its body). Otherwise, if the substituted type doesn’t contain any
dimensions, then solving fails (handled by the second guard and its body). For example,
constraint solving for δ↓Int will fail since Int doesn’t contain any dimension. Next, if δ
is a dimension variable d, then d is mapped to the minimum dimension and the result
unifier is updated (handled by the third guard and its body). For example, the solution
for δ↓A⟨Int, Bool⟩ is δ ↦ A. Otherwise, if δ doesn’t match the minimum dimension, then
the constraint is unsatisfiable (handled by the fourth guard and its body). For example,
B↓A⟨Int, Bool⟩ is unsolvable. Finally, if δ is the same as the minimum dimension of φ2, the
constraint is trivially satisfiable (last case).

In contrast to previous situations, δ is the same as the minimum dimension, which is
handled by the last guard and the corresponding body.

Case (d) deals with type equivalence when both types are variational and contain dimension
literals only. In this case, we delegate the work to vunify, the variational unification algorithm
from [14]. Given two types φ1 and φ2, vunify(φ1, φ2) returns a pair (θ, r), where θ is
the unifier when the unification is successful and r is a boolean value indicating whether
the unification problem is solved successfully. The use of vunify, together with the fact
that type equivalence constraints containing dimension variables are deferred until they
are instantiated with dimension literals, makes the constraint solver here simpler than the
unification algorithm in VLC [17]. A detailed discussion of the relationship between the
constraint solver and VLC can be found in Appendix A.4.
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Case (e) solves a type equivalence constraint between a type variable α and a variational
type φ, where α doesn’t occur in φ. In this case, we further decide if α ∈ K. If so, α
is mapped to φ. Otherwise, φ is simplified with the auxiliary function norm(φ), and α

is mapped to the simplified type. The auxiliary function norm(φ) reduces idempotent
choices and dead alternatives, which are discussed in more detail in [17]. For example,
U(α ≡ A⟨Int, Int⟩,∅,{B}) yields (true,{α ↦ Int}), and U(α ≡ B⟨Int, Int⟩,∅,{B}) yields
(true,{α ↦ B⟨Int, Int⟩}).

Both cases (f) and (g) are straightforward. To solve a variational constraint, we just
solve each alternative constraint. To solve the constraint C1 ∧C2, we solve both C1 and C2.
Although the structures for these cases are very similar, there exist two subtle differences.
First, C1 and C2 are solved independently in (f) while they are solved sequentially in
(g). Second, (f) returns a variation of the substitutions for C1 and C2 while (g) returns a
composition of the substitutions. These differences reflect that the constraints in a variational
constraint are independent of each other. Other than previous cases, the constraint is deferred
to later iterations, as can be seen in case (h).
U is sound, complete, and principal, captured in the following theorems.

▸ Theorem 6 (Soundness of U). If (C2, θ2) = U(C1, θ1,K), then C2 ⊩ θ2(C1) and θ2(C2) = C2.

▸ Theorem 7 (Completeness and principality of U). Given (C1, θ1), if C3 ⊩ θ3(C1), then
(C2, θ2) = U(C1, θ1,K) and θ2 ⊑ θ3 and C3 ⊩ θ3(C2), where θ2 ⊑ θ3 if there is some θ4 such
that θ3 = θ4 ○ θ2.

Both theorems can be proved by induction on the constraint solving rules in Figure 11.
With U ′ and U , we can illustrate how S solves C1 from Section 5 through the following

sequence of transformations.

(C1,∅,K)
(e),elseÐÐÐÐ→ ({C2,C3,C4},{α ↦ d⟨Int, Bool⟩},K) (b),1ÐÐ→

({C3,C4;d↓α1},{α ↦ d⟨Int, Bool⟩},K)ÐÐÐÐ→
({C4;d↓α1},{α1 ↦ α2, α ↦ d⟨Int, Bool⟩},K) (e),thenÐÐÐÐÐ→

({d↓α1},{α2 ↦ A⟨Int, Int⟩, α1 ↦ A⟨Int, Int⟩, α ↦ d⟨Int, Bool⟩},{α1})
(c),3ÐÐ→ (true, θ4,{α1})

θ4 = {α1 ↦ A⟨Int, Int⟩, α2 ↦ A⟨Int, Int⟩, d↦ A,α ↦ A⟨Int, Bool⟩}

The constraint solving process begins with (C1,∅,K), where K = noelim(C1,{}) = {α1, α2}.
Constraint C1 from C1 is solved by the else branch of case (e) in Figure 11, as indicated by
the label “(e),else” over the arrow. Next C2 is solved by the first case of (b), which produces
the residual constraint d↓α1 that is included in the constraint set. It is separated by a “;” to
indicate that the constraint will be solved in the second iteration. Since the case of unifying
two type variables is not included in Figure 11, the arrow for solving C3 is not labelled. The
constraint solving process ends with (true, θ4,{α1}), where θ4 is shown at the end of the
transformation. This result tells us that the expression bounded A⟨2, 3⟩ is well typed and has
the type θ4(α) = A⟨Int, Bool⟩.

On the other hand, S(C2,{}) fails because the constraint solving process leads to the
constraint d↓Int, which is unsolvable according to the second case of rule (c). Similarly,
S(C3,{}) fails in the second iteration since the constraint A⟨Int, Bool⟩ ≡ B⟨Int, Bool⟩ is
unsatisfiable.

In general, S is sound, complete, and principal since it inherits these properties from
U . Together with Theorems 4 and 5, it follows that type inference is sound, complete, and
principal.
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7 Related Work

In Section 1, we provided references to many applications of variational programming.
However, there has not been much work on providing language support for variational
programming.

The choice calculus (CC) is a formal language for representing static variation in trees
and other data [23, 50], which is the basis for the choice-based variation representation
used in vpc. It provides choices for systematically representing variation, but itself offers
no constructs for transforming such representations. There have been a few attempts at
extending CC with variational programming features. The compositional choice calculus
(CCC) extends CC with functions [51]. It supports generating new variation and a form
of variation-preserving computing, but does not provide any mechanisms for eliminating,
aggregating, or transforming the variation structure. The main goal of CCC is to unify
compositional and annotative approaches to feature implementation, so it also provides a
generic mechanism for composing two ASTs. A different extension of CC adds a selection
operation to eliminate choices [22]. It focuses mostly on the interaction between selections
and a construct for declaring locally-scoped dimensions which we have omitted from vpc, and
discusses the impact of the semantics on the modularity of software product line specifications.
It does not provide any support for computing with variation.

There have also been several language-based approaches to compositionally constructing
variational programs with aspects [36], by step-wise refinement [5], or through delta-oriented
programming [42]. Each of these provide mechanisms for modularizing changes that may
be conditionally applied to a program. As with in-place variation, a substantial amount
of work has been done in the software product line community on analyzing and verifying
compositionally constructed variational programs. An excellent survey of analyses on both
varieties of product line is provided by Thüm et al. [47]. The compositional approach is
quite different from our view of in-place variation, so vpc is less applicable in this context.
However, one finding of Thüm et al.’s survey is that whole-family analyses are less common
over compositional product lines, at least in the literature.

There are a few library-based approaches to variational programming. The concept of
variational programming, independent of its applications, was first proposed via a Haskell
library [24]. This library requires data types to be explicitly extended by new cases to support
variation. Monad instances support convenient variation-preserving computations within a
single variational data type, but more advanced use cases—involving multiple variational
types or any kind of aggregation or transformation—entail quite some notational overhead
to wrap/unwrap variational types and pattern match on variation constructs. This contrasts
with vpc where functions are mapped automatically over arbitrary variational structures.
TypeChef [29] is a system developed for parsing and type checking #ifdef-annotated source
code. To do this, it provides a library of data structures and operations to support variational
programming. As a library, it suffers similar inconveniences and limitations as [24]; however,
it has been successfully employed in a number projects for analyzing software product
lines [37, 38, 33, 30, 34]. Variational data structures and idioms to support variational
programming are described in [52], most of which are adapted from the above works.

Work on algebraic effects and effect handlers has frequently used a choice as an example
of a non-deterministic effect [4, 8, 27, 41]. These choice effects differ from vpc choices in
two key ways: (1) Each choice effect is independent—there is no concept analogous to vpc’s
dimensions to synchronize selections across choices. (2) The evaluation of an expression
with choice effects yields an unstructured set of variants, rather than a structured choice



S. Chen, et al. XX:25

that clarifies the relationship between a sequence of selections and the variant it yields,
as in vpc. A notable exception is the “selection functional” effect presented in [4], which
essentially implements dimensioned choices in the Eff programming language. Both choice
effects and selection functionals are more restrictive than vpc choices since they do not
permit the alternatives of the choice, or the produced variants, to be values of different types.
Additionally, the control flow enforced by these encodings of choices rules out several ways
to optimize variation-preserving computations. Since computations for different alternatives
are performed in different continuations, we lose the opportunity to perform choice reduction
to proactively eliminate unreachable alternatives [17], or to join converged execution paths
early. Finally, encoding choices as effects loses the ability to explicitly reflect on the structure
of a variational expression and perform transformations. This ability is often needed for
variational analyses, for example, the ability to commute selections with computations is
a critical transformation for analyzing SPLs [29, 28, 46, 2, 17, 16]. All of the limitations
of choice effects and selection functionals relative to vpc can likely be overcome through
more clever effect encodings. However, this would essentially amount to embedding vpc into
a host language with a rather complicated semantics, complicating our understanding of
effective variational programming.

Variation-preserving computations can also be encoded as computations in a reader monad,
where the environment identifies a single variant (for example, a predicate on dimensions)
and choices are encoded as conditional statements querying this environment. Some of the
limitations of this encoding echo the above: It does not support alternatives of different
types, and it doesn’t support optimizations or transformations since we cannot reflect on
the structure of variation in the program. The reader-based encoding has the additional
drawback of describing the variational results of a computation intensionally, rather than
extensionally. That is, the result is a function that can be used to obtain different variants by
passing in different environments, rather than an explicit choice structure as obtained from
vpc. This makes it prohibitively expensive to enumerate the variants of a result since we
must try all possible selections of the dimensions, rather than just iterating over the variants
at the leaves of a choice expression.

There are, of course, many applications that do some form of variation programming,
but without any specific programming support. The idea behind multi-execution is to run
small number of program alternatives in parallel; it has been applied to identify security
problems [21, 20, 9, 32], configuration bugs [43], and update inconsistencies [49, 26, 35] in
programs. Most of these applications synchronize the different executions externally, but
some approaches do exploit similarities between programs run in parallel [49, 45]. Most of
these approaches are limited to running two programs at a time and would not scale to
number of variants encountered in variational programming.

8 Conclusions

Variational programming supports a wide variety of applications that must somehow deal with
variation in programs or data, but computing with and transforming variation representations
in general-purpose programming languages is effort intensive and error prone. In this paper,
we have presented vpc, a core calculus that supports the implementation of a variational
functional programming language that provides direct support for variational programming.
This language directly supports the implementation of high-level functions for aggregating
and transforming variation, as illustrated in Section 2. Additionally, it enables a very simple
implementation of a variational type unification algorithm, which is quite complicated without
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built-in support for variation [17]. As future work we intend to implement other pre-existing
variational programming applications using vpc.

We have defined a small-step operational semantics for vpc, and demonstrated that it
offers flexibility in its reduction strategy. In existing variational programming applications,
much effort is often needed to demonstrate that computations and variation commute properly,
but this is built into the semantics of vpc. We presented a type system that relates variational
types with vpc expressions. The type system supports dimension polymorphism through
a restricted form of dependent types. Finally, we described a type inference algorithm for
automatically inferring most general types for vpc expressions. At the core of this algorithm
is a new variational constraint solving algorithm.
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A Appendix

A.1 Confluence of Reductions
Proof sketch for Lemma 1. A full proof of confluence proceeds by induction on the structure
of e, considering for each term, every possible pair of reductions and constructing a common
e′′′ from the result of each. Most of these cases are not interesting, for example, we can
reduce either the then or else branch of an any/the-expression, then immediately reduce
the other. Throughout this section, we have noted places where we have enforced a particular
evaluation order to preserve confluence. For example, the scrutinee must be fully reduced
before reducing an any/the-expression, and we do not allow reduction in the body of
abstractions or selections. In this proof sketch, we illustrate a few case involving applications
and choices to give a sense for the structure of the full proof.

Consider a function application with a choice on the RHS, e = (λv.e1) D⟨e2, e3⟩. We
can either (1) apply the App-Reduce rule, or (2) reduce one alternative, say the left, of
the choice via the In-App-R and In-Chc-L congruence rules. Path (1) produces a split
expression as e′. Path (2) produces e′′ = D⟨e′2, e3⟩. From each of these, we can produce
e′′′ =D⟨(λv.e1) e′2, (λv.e1) e3⟩. Figure 5 shows a reduction sequence along path (1). From
here, further reduction depends on the variability of e2 and e3. For simplicity, assume both
are plain; then two sequences of App-Reduce, expand split-any-else, and Any-Reduce-Else
will produce the expression D⟨(λv.e1) e2, (λv.e1) e3⟩. Now we can produce e′′′ via the
In-Chc-L and In-App-R congruence rules. It is easy to see that the same reduction sequence,
minus the final step, produces e′′′ from e′′ since at each step e2 is simply replaced by e′2.

Next consider an application where both sides contain a choice in the same dimension, as
in e =D⟨λv.e1, λv.e2⟩ D⟨e3, e4⟩. Now we can either (1) apply the App-Chc rule, resulting in
e′ = D⟨(λv.e1) (D` ▸D⟨e3, e4⟩), (λv.e2) (D` ▸D⟨e3, e4⟩)⟩, or (2) reduce the left alternative
of the choice on the RHS, resulting in e′′ =D⟨λv.e1, λv.e2⟩ D⟨e′3, e4⟩. From each of these, we
can produce e′′′ = D⟨(λv.e1) e′3, (λv.e2) e4⟩. From e′, we apply Chc-Elim-L via In-Chc-L,
then Chc-Elim-R via In-Chc-R, and finally reduce e3 via In-Chc-L, In-App-R. From e′′, we
apply App-Chc followed by Chc-Elim-L via In-Chc-L and Chc-Elim-R via In-Chc-R. ◻

A.2 Congruence rules
Figure 12 presents the full set of congruence rules for the operational semantics of vpc.
These rules are discussed in Section 3.2.

A.3 Constraint generation rules
Figure 13 presents the full set of constraint generation rules to support type inference in vpc.
Constraint generation is discussed in Section 5.

A.4 Relationship Between the Constraint Solver and VLC
In VLC [17], a variational unification algorithm was developed for unifying variational types.
Although the types contain dimension literals only, the algorithm was quite complicated in
its way of distinguishing type variables that appear in different alternatives but share the
same name. To see why we need to distinguish type variables with the same name, let’s
consider the type equivalence constraint A⟨Int, α⟩ ≡ A⟨α, Bool⟩. For this constraint, our first
attempt was to decompose it into two subproblems Int ≡ α and α ≡ Bool, which are trivial to
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In-App-L
e1 Ð→ e′1

e1 e2 Ð→ e′1 e2

In-App-R
e2 Ð→ e′2

e1 e2 Ð→ e1 e
′
2

In-Chc-L
e1 Ð→ e′1

D⟨e1, e2⟩Ð→D⟨e′1, e2⟩

In-Chc-R
e2 Ð→ e′2

D⟨e1, e2⟩Ð→D⟨e1, e
′
2⟩

In-Let-Bound
e1 Ð→ e′1

let v = e1 in e2 Ð→ let v = e′1 in e2

In-Let-Body
e2 Ð→ e′2

let v = e1 in e2 Ð→ let v = e1 in e′2

In-Any-From
e1 Ð→ e′1

any d from e1 in e2 else e3 Ð→ any d from e′1 in e2 else e3

In-The-From
e1 Ð→ e′1

the δ from e1 in e2 else e3 Ð→ the δ from e′1 in e2 else e3

In-Any-Then
e2 Ð→ e′2

any d from e1 in e2 else e3 Ð→ any d from e1 in e′2 else e3

In-The-Then
e2 Ð→ e′2

the δ from e1 in e2 else e3 Ð→ the δ from e1 in e′2 else e3

In-Any-Else
e3 Ð→ e′3

any d from e1 in e2 else e3 Ð→ any d from e1 in e2 else e′3

In-The-Else
e3 Ð→ e′3

the δ from e1 in e2 else e3 Ð→ the δ from e1 in e2 else e′3

Figure 12 Small-step operational semantics of vpc: congruence rules.

solve with the solutions α ↦ Int and α ↦ Bool, respectively. Putting the solutions together
requires mapping α to two different types, yielding a conflict.

VLC addresses this problem by first qualifying type variables with the locations they
appear. Qualification brings the original constraint to A⟨Int, αA.2⟩ ≡ A⟨αA.1, Bool⟩ VLC then
decomposes this new constraint, solves subproblems, and puts the solutions together, yielding
the solution {αA.1 ↦ Int, αA.2 ↦ Bool}. To transform a solution for the qualified problem to
a solution for the original problem, VLC uses a step called completion. Completion turns
each mapping αq ↦ φ into a mapping α ↦ φ′ so that φ′ has φ in the location q. Moreover,
there should be only one φ′ for each type variable after completion. Applying completion to
our example yields the solution α ↦ A⟨Int, Bool⟩.

While types in this paper contain dimension literals as well dimension variables, constraint
solving in Figure 11 doesn’t need variable qualification for two reasons. First, as explained in
Section 6.1 and implemented in Figure 11, unification of types containing dimension variables
are deferred until all dimension variables are instantiated with dimension literals. Second, as
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can be seen from case (d) in Figure 11, our constraint solver uses vunify, an improved version
of the unification algorithm used in VLC, which doesn’t need qualifications and completion.

The key insight that has allowed the simplification in vunify is that the need for qualifica-
tion arises because a type variable used in different alternatives received its binding from a
global context that can only provide one value for it. For example, when solving the two
subproblems Int ≡ α and α ≡ Bool from A⟨Int, α⟩ ≡ A⟨α, Bool⟩, a name conflict occurs for α
because there is no way to assign a single type to α in a global context. This conflict can
be avoided if we divide the global context into sub-contexts and perform constraint solving
in the individual sub-contexts. In our example, we can split the global context into two
contexts named A.1 and A.2 and solve constraint Int ≡ α in A.1 and α ≡ Bool in A.2. This
allows us to map α to different types in the different contexts. The solutions from split
contexts can be merged into a solution for the global context if we respect the ordering of
the contexts. For example, the result from the context A.1 will appear in the first alternative
of A only. Following this idea, the solution α ↦ Int from A.1 and α ↦ Bool from A.2 can be
combined to α ↦ A⟨Int, Bool⟩, which is indeed the most general unifier to the unification
problem A⟨Int, α⟩ ≡ A⟨α, Bool⟩.
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I-Con
κ of type γ α fresh
γ ≡ α; Γ; ∆ ⊢I κ ∶ α

I-Var
Γ(v) = ∀αd.C ⇒ φ α fresh
∃αd.(C ∧ φ ≡ α); Γ; ∆ ⊢I v ∶ α

I-Abs
C; Γ, (v,α1); ∆ ⊢I e ∶ α2 α3 fresh

∃α1α2.(C ∧ α3 ≡ α1 → α2); Γ; ∆ ⊢I λv.e ∶ α3

I-App
C1; Γ; ∆ ⊢I e1 ∶ α1 C2; Γ; ∆ ⊢I e2 ∶ α2 α3 fresh
∃α1α2.(C1 ∧C2 ∧ α1 ≡ α2 → α3); Γ; ∆ ⊢I e1 e2 ∶ α3

I-AbsD
C; Γ; ∆, (d, d) ⊢I e ∶ α2 α3 fresh

∃α2d.(C ∧ α3 ≡ d→ α2); Γ; ∆ ⊢I λd.e ∶ α3

I-Let

α fresh C1; Γ, (v,α); ∆ ⊢I e1 ∶ α1
C2 = C1 ∧ α ≡ α1 C3; Γ, (v,∀α1.C2 ⇒ α1); ∆ ⊢I e2 ∶ α2

(∃αα1.C2) ∧C3; Γ; ∆ ⊢I let v = e1 in e2 ∶ α2

I-Sel

C1; Γ; ∆ ⊢I e1 ∶ α

δ ∈ ∆ C2 = C1 ∧ α ≡ δ⟨α`, αr⟩
⎧⎪⎪⎨⎪⎪⎩

C3 = C2 ∧ α1 ≡ α` s = `
C3 = C2 ∧ α1 ≡ αr s = r

α`, αr, α1 fresh

∃αα`αr.C3; Γ; ∆ ⊢ δs ▸ e ∶ α1

I-Dim
α fresh

δ ≡ α; Γ; ∆ ⊢I δ ∶ α
I-Chc

C1; Γ; ∆ ⊢I e1 ∶ α1 C2; Γ; ∆ ⊢I e2 ∶ α2 α3 fresh
∃α1α2.(δ⟨C1,C2⟩ ∧ δ⟨α1, α2⟩ ≡ α3); Γ; ∆ ⊢I δ⟨e1, e2⟩ ∶ α3

I-Any
C1; Γ; ∆ ⊢I e1 ∶ α1 C2; Γ; ∆, (d, d) ⊢I e2 ∶ α2 C3; Γ; ∆ ⊢ e3 ∶ α3

∃α1α2d.(C1 ∧C2 ∧C3 ∧ α2 ≡ α3 ∧ (d ∈ α3 ⇒ d↓α1)); Γ; ∆ ⊢I any d from e1 in e2 else e3 ∶ α3

I-The
C1; Γ; ∆ ⊢I e1 ∶ α1 C2; Γ; ∆ ⊢I e2 ∶ α2 C3; Γ; ∆ ⊢ e3 ∶ α3 ∆(δ) = δ1

∃α1α2.(C1 ∧C2∧); Γ; ∆ ⊢I the δ from e1 in e2 else e3 ∶ φ3

Figure 13 Full set of constraint generation rules for vpc
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