
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Casts and Costs: Harmonizing Safety and Performance in

Gradual Typing

ANONYMOUS AUTHOR(S)

Gradual typing allows programmers to use both static and dynamic typing in a single program. However,
a well-known problem with sound gradual typing is that the interactions between static and dynamic code
can cause significant performance degradation. These performance pitfalls are hard to predict and resolve,
and discourage users from using gradual typing features. For example, when migrating to a more statically
typed program, often adding a type annotation will trigger a slowdown that can be resolved by adding more
annotations elsewhere, but since it’s not clear where the additional annotations must be added, the easier
solution is to simply remove the annotation.

To address these problems, we develop: (1) a static cost semantics that accurately predicts the overhead of
static-dynamic interactions in a gradually typed program, (2) a technique for efficiently inferring such costs for
all combinations of inferrable type assignments in a program, and (3) a method for translating the results of this
analysis into specific recommendations and explanations that can help programmers understand, debug, and
optimize the performance of gradually typed programs. We have implemented our approach in Herder, a tool
for statically analyzing the performance of different typing configurations for Reticulated Python programs.
An evaluation on 15 Python programs shows that Herder can use this analysis to accurately and efficiently
recommend type assignments that optimize the performance of these programs without sacrificing the safety
guarantees provided by static typing.

1 INTRODUCTION

Static and dynamic typing have different strengths and weaknesses. Gradual typing [Siek and
Taha 2006; Tobin-Hochstadt and Felleisen 2006] attempts to combine the strengths of both by
allowing programmers to statically type some parts of their programwhile dynamically typing other
parts. Ideally, programmers could easily migrate between more or less statically typed programs
by adding or removing type annotations. Intuitively, more static programs might be expected
to have better performance and reliability, while more dynamic programs are more flexible and
can be executed even if they are statically ill-typed. Unfortunately, migrating gradually typed
programs is difficult [Campora et al. 2018; Tobin-Hochstadt et al. 2017] and can cause reliability
and performance issues [Allende et al. 2014]. In particular, Takikawa et al. [2016] observed that
adding type annotations can cause a more than 100 times slowdown in Typed Racket.

1.1 Performance Problem of Gradual Typing

To illustrate the performance implications of migrating between gradually typed programs, consider
the program in Figure 1(a) for computing spectral norms of matrices, which was adapted from
the Python Benchmark Suite.1 The loop labels (l1, l2, l3, and l4) in the figure can be ignored for
now. Reticulated Python [Vitousek et al. 2014] is a gradually typed variant of Python, where type
annotations can be added, using the Python type hints syntax [van Rossum et al. 2014], to introduce
static checking. For example, we could add type annotations to the eval_A function as shown below.
def eval_A(i:float, j:float)->float

In general, we can separately decide whether or not to annotate each of the four functions in
the program, yielding 24 = 16 potential typing configurations. Perhaps surprisingly, the choice of
which functions to annotate has a significant and non-monotonic impact on the performance of the
1https://github.com/python/performance/blob/master/performance/benchmarks/bm_spectral_norm.py

2018. XXXX-XXXX/2018/1-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://github.com/python/performance/blob/master/performance/benchmarks/bm_spectral_norm.py
https://doi.org/10.1145/nnnnnnn.nnnnnnn


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

def bench_spectral_norm(loops):
range_it = xrange(loops)
for _ in range_it: l3

u = [1.0] * DEFAULT_N
for x in xrange(10): l4

part_A_times_u((x,u))
part_At_times_u((x,u))

def eval_A(i, j):
return 1.0 / ((i + j) * (i + j + 1) // 2 + i + 1)

def part_A_times_u(i_u):
i, u = i_u
partial_sum = 0.0
for j, u_j in enumerate(u): l1

partial_sum += eval_A(i, j) * u_j
return partial_sum

def part_At_times_u(i_u):
i, u = i_u
partial_sum = 0.0
for j, u_j in enumerate(u): l2

partial_sum += eval_A(j, i) * u_j
return partial_sum

(a) A program adapted from Python Benchmark Suite. The functions

part_A_times_u and part_At_times_u are identical except for the
underlined parts. The loop labels l1, l2, l3, and l4 are referenced in

the cost lattice in Figure 2.

58.14

38.4893.70 37.38

67.6466.50 24.79

41.08

(b) Each node indicates whether

the eval_A, part_A_times_u, and
part_At_times_u functions are an-

notated (filled oval) or not (unfilled).

Fig. 1. A Python program (left) and its performance lattice (right)

program. In Figure 1(b), we illustrate this with a lattice that shows the execution time2 in Reticulated
for each of the 8 configurations where bench_spectral_norm is left unannotated. Each node in the
lattice indicates whether the functions eval_A, part_A_times_u, and part_At_times_u are annotated
(filled) or not (unfilled). For example, the node ① represents the configuration where no functions
are annotated, while node ② represents the configuration where only eval_A is annotated.
Figure 1(b) shows that as we migrate the program to be more static (move up the lattice), the

change in performance is unpredictable. For example, following the path ① → ② → ⑤ → ⑧,
we see the performance first decreases, then increases twice. On the other hand, performance
in ① → ④ → ⑦ → ⑧ first increases twice, then decreases. Additionally, the execution times at
different configurations are very different, for example, the execution time at ② is about 3 times
more than at ⑦. Together, these phenomena make it difficult for programmers to reason about what
configurations lead to acceptable performance. Moreover, sometimes programmers are presented
with a dilemma of whether static type checking is worth the performance slowdown to their
application.
The unpredictable and sometimes severely negative performance impact of adding type an-

notations makes programmers reluctant to add them, and so the potential benefits of gradual
typing go unrealized. This has lead Takikawa et al. to raise the question, “Is sound gradual typing
dead?” [Takikawa et al. 2016]. Of course, adding type annotations can also improve performance.

2All times in this paper are in seconds and are measured on a laptop with 4 GB of RAM and an AMD A6-3400M quad-core
processor running 64 bit Fedora 23.

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:3

In Figure 1(b), the performance at node ⑦ is much better than the original at node ①, in addition to
providing increased safety from static checking. Similarly, while annotating one subset of modules
led to the 100 times slowdown observed by Takikawa et al. in Typed Racket, annotating a different
subset of modules improved performance [Takikawa et al. 2016]. The crux of the problem is that
it’s not clear in advance what annotations the programmer should or should not add in order to
both increase static type safety and maximize performance.

1.2 Program Migration Scenarios

Programmers are reluctant to use gradual typing features due to the difficulty of predicting the
performance impact of type annotations, as described in Section 1.1. The goal of our work is to
remove this barrier by providing tooling that helps programmers understand and reason about the
tradeoffs between the safety guarantees given by increased static type checking and performance
during program migrations. In this subsection we enumerate four scenarios that such tooling
should support.

(S1) Maximizing static typing. In this scenario, the programmer’s primary goal is to maximize
the amount of static type checking, while performance is a secondary concern. Maximizing static
checking typically entails adding as many type annotations as possible. However, often the most
static migration of a gradually typed program is not unique, and so the programmer wants to pick
the most performant migration amongst the set of possibilities. The following program, adapted
from [Campora et al. 2018], illustrates the non-uniqueness of most-static migrations. In this example,
a type annotation may be added to the parameter fixed or to widthFunc, but not to both.
def width(fixed, widthFunc):
if (fixed):

widthFunc(fixed)
else:

widthFunc(5)

Campora et al. [2018] reported hundreds of different ways to maximize static typing in larger
programs. Since each of the most-static migrations may have significantly different performance
profiles, it is important that the programmer can make a rational selection among them.

(S2) Maximizing performance. In this scenario, the primary goal is to maximize performance,
while increasing static type checking is a secondary concern. Therefore, the programmer needs
support locating places to add type annotations that will either improve or at least not degrade
performance. For example, starting from configuration ① in Figure 1, our tool should recommend
configuration ⑦, since it has the least running time. This scenario can be extended in two ways:
First, the programmer may want to maximize performance while providing type annotations
in key places where increased static checking is judged to be more important or beneficial. For
example, assume the function eval_A in Figure 1 must be annotated. Then the tool should consider
configurations ②, ⑤, ⑥, and ⑧, and suggest configuration ⑧ as the most performant. Second, the
programmer way want to maximize performance while restricting the number of proposed type
annotations in order to manage the migration in a more incremental way. For example, starting
from ①, if the programmer wants to add only a single annotation, then configurations ③ and ④ are
preferable to ②.
(S3) Increasing static type information without sacrificing performance. In this scenario, the pro-

grammer wants to increase the static checking present the program, but only if it does not decrease
its performance. To support this scenario, the tool should be able to identify type annotations that
can be added that do not incur a performance overhead. For example, starting from configuration
①, the tool might recommend migrations ③, ④, ⑦, or ⑧, all of which increase the amount of static
typing without sacrificing performance. Additionally, if a previous migration hurt performance, the

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

tool should be able to identify subsequent migrations to improve it again. For example, migrating
from ① to ② significantly decreases performance, but the tool should be able to recommend ⑧ as
migration that will further increase safety guarantees from increased static typing while restoring
performance to (better than) previous levels.

(S4) Explaining performance degradation. In this scenario, the programmer has experienced a per-
formance degradation after adding type annotations and wants to understand why. Or, alternatively,
the programmer wants to understand why the tool recommends against a particular migration.
To support this, the tool should not only identify which program migrations will perform poorly,
but provide an explanation of why this performance degradation occurs. For example, when the
tool recommends against a migration from ① to ②, it might also explain that ② contains expensive
type casts in a deeply nested loop. Such explanations help the programmer to develop their own
mental model of how gradual typing affects the performance of their program. This enables them
to use gradual typing features more effectively, and to make more informed program migrations.
In each of these scenarios, we assume the programmer wants to make decisions with respect

to performance without decreasing the amount of typing. That is, we assume the tool will not
recommend the removal of type annotations. The approach described in this paper follows this
assumption, but extending it to also support the removal of type annotations poses no fundamental
difficulties.

1.3 Capabilities of a Tool to Support Program Migration

(l1+l2+2)*l3*l4

(l1+2l2+67)*l3*l4 (2l1+l2+67)*l3*l4 2*l3*l4

(2l1+2l2+67)*l3*l4 67*l3*l4 67*l3*l4

132*l3*l4

Fig. 2. Cost lattice for the program in Figure 1.

We have omitted an addend 2 that is shared by

all configurations. The letters l1, l2, l3, and l4,
introduced in Figure 1(a), represent the num-

ber of iterations for the respective for loops.

Each of the scenarios in Section 1.2 involve exploring
many alternative configurations of a gradually typed
program. Without tool support, this is extremely te-
dious since it requires manually adding and removing
type annotations and rerunning the program to mea-
sure its performance. Worse, this exploration cannot
hope to be complete for large programs since the search
space is simply too large, so the best configuration for
the scenario will not likely be found. Therefore, tool
support is necessary to support the scenarios and to
help programmers effectively migrate gradually typed
programs. This subsection identifies the key capabilities
needed to build such a tool, and outlines the techniques
we use to provide them.

We propose a methodology for systematically explor-
ing the entire space of potential program migrations needed to support each scenario and to
efficiently identify the most performant type configurations in that space. We can break this
methodology down into three fundamental capabilities: (C1) A way to enumerate and efficiently
represent all valid type configurations of a gradually typed program. (C2) A way to statically
approximate and compare the runtime performance of a single configuration of a gradually typed
program. (C3) A way to combine C1 and C2 to efficiently compute and compare the performance
approximations for all type configurations.
Regarding C1, in a program with n parameters, an upper limit on the number of possible type

configurations is 2n since each parameter can either be assigned a static type or remain unannotated
(and thus dynamically typed). However, in general, not every combination of parameters can be
statically annotated in a consistent way, as illustrated by the width example in Section 1.2. We can
use variational type inference [Chen et al. 2014] to efficiently explore all 2n possibilities by inferring
static types for all parameters in one pass while keeping track of which combinations of types

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:5

are compatible with each other. The idea to use type inference to help migrate gradually typed
programs is inspired by the observation that “static type systems accommodate common untyped
programming idioms” by Takikawa et al. [2016], and by previous successes combining gradual
typing and type inference [Campora et al. 2018; Garcia and Cimini 2015; Rastogi et al. 2012; Siek
and Vachharajani 2008]. In particular, we reuse the machinery developed in Campora et al. [2018]
to transform the output of variational type inference into an efficient representation of all valid
type configurations of a program.

As in previous work, the success of type inference in a gradually typed setting can be expected
to vary significantly across programs. In our benchmarks, we observed a broad range of outcomes,
successfully inferring types for anywhere from 25% to 100% of parameters in a program (Section 6.2).
Fortunately, effectively supporting the migration scenarios does not require inferring types for all
parameters. We simply infer types for as many parameters as possible, then reason about this space
of migrations. Subsequent migrations may require fundamental changes to the code to remove
behavior that relies on dynamic typing, expanding the space we can reason about.
Capability C2 requires a way to estimate the overhead of gradual typing in each configuration,

allowing us to estimate and rank their expected runtime performance. To enable C2, we develop
a static cost semantics for gradually typed programs. The insight underlying our cost semantics
is that the overhead of gradual typing is mostly caused by inserted casts [Takikawa et al. 2016]
and checks [Vitousek et al. 2014, 2017]. Therefore, we statically approximate the number and
complexity of cast and check operations that will be performed while executing a gradually typed
program. Figure 2 shows the result of applying our cost semantics to each of the configurations of
the program in Figure 1. Since we do not know statically how many times each loop body in the
program will be executed, the costs are parameterized by symbolic values representing the number
of iterations (l1, l2, l3, and l4).
Note that our cost semantics does not approximate the absolute runtime of different configura-

tions of the program, but only the overhead of gradual typing. This is similar to other cost analyses
focused on specific aspects of program execution [Hoffmann and Hofmann 2010; Hoffmann and
Shao 2015]. For example, the absence of loop labels l1 and l2 in ❶ does not suggest that these
loops are not executed, but rather that no casts or checks will be performed in these loops in the
corresponding configuration. The factors 2, 67, and 132 that multiply these loop labels correspond
to the estimated overhead of individual casts and checks performed in the body of these loops.
Since gradual typing overhead is only a (smaller or larger) fraction of the running time of a

program, we can see that the ratios of estimated costs for two configurations do not correspond
precisely to the ratios of their running time. For example, the cost of ❶ in Figure 2 is 66 times
that of ❼, while the running time of ① in Figure 1(b) is roughly 2.5 times that of ⑦. However, the
relative ordering of the costs in Figure 2 do correspond to the relative ordering of running times in
Figure 2. For example, the cost at ❼ is 2 ∗ l3 ∗ l4 is the lowest estimated cost and corresponds to
the lowest running time at ⑦. Similarly, the cost decreases along the path ❶ → ❹ → ❼, just as
the running time decreases along the path ①→ ④→ ⑦. This illustrates that the estimated costs
are useful as a tool for predicting the relative performance of different typing configurations. This
makes sense since the different configurations differ only in their type assignments, and so any
difference in their running time should be explained by the overhead of gradual typing.

One may ask how can we compare, for example, the costs of ❶ and ❽ since one mentions l1 and
l2 and the other does not? The answer is: we can not. This makes sense because the relation of
the running times between these two variants is not fixed. In this case, it depends on the value
of DEFAULT_N (see Figure 1(a)), which determines how many times the loop bodies of l1 and l2 are
executed. In general, different loop bodies can be expected to execute different numbers of times
based on different inputs and environment settings. The loop labels make this uncertainty explicit.

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

While costs involving different loop labels cannot be directly compared, they can still be used to
produce explanations to help a programmer make an informed decision when deciding between
different migrations. For example, the tool might explain that the configuration at ⑧ induces casts
in the loops l1 and l2, but reduces the cost of casts in the loops l3 and l4, relative to configuration ①.
With capabilities C1 and C2, we can statically enumerate all type configurations of a program

and statically compare the performance of different configurations using our cost semantics.
Hypothetically, we could apply these together in order to identify the best configurations to support
our program migration scenarios. The problem is that, since the number of type configurations
produced by C1 scales exponentially with the number of parameters, the search space quickly
grows overwhelming to perform the search by applying C2 directly. This problem is solved by C3,
which enables efficiently computing and comparing costs for all valid type configurations.

The key observation to support C3 is that a substantial amount of work can be reused between
the cost analyses of different configurations. For example, calculating the cost of configurations ❶
and ❸ can share the computations of costs for eval_A and part_At_times_u. Similarly, calculating
the costs of ❸ and ❹ can share the computations of eval_A. In large programs, the majority of the
computations can be shared when computing the costs of two similar configurations.
Unfortunately, sharing cannot be achieved by simply analyzing the costs of different functions

separately then composing the results since interactions between functions do affect the analyses.
However, by locally capturing differences between sets of configurations and preserving these
differences throughout the analysis, we can effectively reuse results wherever possible. Specifically,
we apply the ideas of variational programming [Chen et al. 2016; Erwig and Walkingshaw 2013]
and variational typing [Chen et al. 2014] to systematically reuse computations during the cost
analysis. Instead of enumerating all configurations and computing the cost of each separately, we
perform a variational cost analysis that analyzes the program once to compute a variational cost
that compactly represents the cost of all valid type configurations.
With these three capabilities, we can support all of the scenarios outlined in Section 1.3 by

performing a variational cost analysis, then querying the variational cost to identify the desired
configuration. For example, to support S1 (maximizing static typing), we would select the lowest
cost among the configurations that include as many annotations as possible.

1.4 Relation with Previous Work and Contributions of this Work

There have been several lines of research addressing the performance problem of gradual typing
since Takikawa et al.’s [2016] report on the prohibitive overhead of sound gradual typing. Previous
work has addressed the problem through new languages with more efficient gradually typed
semantics [Muehlboeck and Tate 2017; Vitousek et al. 2017] and through new implementation
techniques for existing languages [Bauman et al. 2017; Richards et al. 2017]. There are two main
differences between our work and previous efforts: First, our approach does not require changes to
existing gradually typed languages or implementations; it works with the prevailing implementation
technique of translating a typed variant of a language into an underlying untyped language. Second,
in addition to addressing the common goal of reducing or avoiding performance problems, our
work also provides a way to understand and debug performance problems when they occur. We
discuss the relation with existing work in more detail in Section 7.2.
By drawing insights from gradual typing and type inference [Campora et al. 2018; Garcia

and Cimini 2015; Siek and Vachharajani 2008], cost analysis [Danner et al. 2015; Hoffmann and
Hofmann 2010], and variational programming [Chen et al. 2012, 2014], we develop a methodology
for understanding, debugging, and optimizing the performance of gradual programs based on a
deep understanding of how types affect performance. To test the feasibility of this methodology,
we have implemented our variational cost analysis as Herder, a tool that efficiently and accurately

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:7

analyzes the costs of many type configurations of a Reticulated Python program. Overall, this paper
makes the following contributions:
(1) We develop a cost semantics for casts in gradually typed programs with a guarded semantics in

Section 4. The cost semantics is simple and enables automating cost analysis, yet still allows
authentically comparing the relative run times of different configurations for the same program.

(2) We combine variations and cost analysis, yielding a variational cost analysis in Section 5. Instead
of computing costs for all configurations separately, variational cost analysis systematically
reuses computations to compute a variational cost that encodes the cost of all the configurations
that can be inferred.

(3) We have implemented our approach asHerder on top of Reticulated and evaluate it in Section 6.
We evaluate the accuracy of the cost semantics by taking the configuration Herder reports as
having the lowest cost and testing whether it has the fastest runtime amongst the measured
configurations. Our evaluation demonstrates that Herder can efficiently find configurations
yielding good performance. In most benchmarks, the recommended configuration is one of the
top 3 in terms of execution time. Moreover, our approach is scalable, taking exponentially less
time than a brute-force approach as the number of configurations becomes large, and 2–4 times
as long as the cost analysis of a single configuration.

The rest of the paper is organized as follows. Section 2 provides necessary background on gradual
typing and variational typing. Section 3 informally introduces our static cost semantics, while
Section 4 gives the formal definition. Section 5 gives the formal definition of the full variational cost
semantics. The implementation of Herder is described in Section 6, together with an evaluation of
its accuracy and scalability. Section 7 describes related work and Section 8 concludes.

2 TYPING, GRADUALLY AND VARIATIONALLY

This section provides background needed to understand the rest of the paper. In Section 2.1, we
describe why and where casts are inserted into gradually typed programs. In Section 2.2, we review
variational typing [Chen et al. 2012] as a way to efficiently analyze many variants of a program.

2.1 Gradual Typing

Gradual typing allows mixing dynamically typed and statically typed code within a single program.
In a gradually typed program, statically typed values can flow into dynamically typed code and
vice versa. For example, consider the following dynamically typed function double.
def double(x):
return x * 2

Suppose the multiplication operation * is statically typed as Int→ Int→ Int. Then the dynamically
typed argument x flows into this statically typed operation. Similarly, if we invoke this function
as double(3), where 3 has static type Int, then a statically typed value flows into the dynamically
typed function.

During static type checking, the interface between static and dynamic code is defined by a con-
sistency relation [Garcia et al. 2016; Siek and Taha 2006]. Consistency (denoted by ∼) weakens type
equality by making every type consistent with the type Dyn, representing the type of dynamically
typed code. So the expression x * 2 in the double function is statically type correct since x has type
Dyn and Dyn ∼ Int. Of course, in order to preserve the dynamic type safety of gradually typed
programs, additional type checking may have to be performed at runtime. For example, the double

function must be translated to a version with an explicit type cast ⌈Int⇐ Dyn⌉ as shown below.
def double(x):

return ⌈Int⇐ Dyn⌉x * 2

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

During program translation, such casts are inserted into the program wherever dynamically and
statically typed code interact. Note that we do not need to cast the value 2 to Int since its type
is statically known. Similarly, if we annotated the type of double to be Int→ Int, we would not
need to cast x to Int, and the function call double(3) would not involve any casts since all types
are statically known.

2.2 Variational Typing

Variational typing was developed by Chen et al. [2014] to provide types for variational programs. A
variational program represents several related program variants using choices [Erwig and Walking-
shaw 2011] to denote where the variants differ, as illustrated below.
result = B⟨odd, double⟩(3) (vprog)

The variational program vprog contains a choice named B with alternatives odd and double. Two
distinct programs can be generated by selecting the first or second alternative of choice B. For
example, selecting the first alternative, denoted ⌊vprog⌋B .1, yields the program result = odd(3),
while selecting ⌊vprog⌋B .2 yields result = double(3).

Choices with the same name in a variational program are synchronized, while choices with
different names are independent. That is, ⌊e⌋d .i selects the ith alternative of all choices named
d in e . We call d .i a selector and range over selectors with s . Obtaining a plain (non-variational)
program from a variational program may require several selections. We call a set of selectors a
decision, ranged over by δ , and generalize the notation of selection to decisions as ⌊e⌋δ .
Variation in expressions naturally gives rise to variation in types. For example, the expression

B⟨odd, double⟩ can be assigned the type B⟨Int→ Bool, Int→ Int⟩. Variational type systems extend
traditional type systems to accommodate choices at the expression and type level. Typing function
applications is complicated by the fact that both the function and argument may be variational. To
accommodate this, variational type systems are equipped with a type equivalence relation. Two
typesT1 andT2 are equivalent, denotedT1 ≡ T2 if ⌊T1⌋δ = ⌊T2⌋δ for every decision δ . So, for example,
B⟨Int→ Bool, Int→ Int⟩ ≡ Int→B⟨Bool, Int⟩ since both sides of the equivalence yield Int→ Bool

when selecting B.1 and both sides yield Int→ Int when selecting B.2. Taking the right-hand side
of this equivalence, it is easy to see that the function application B⟨odd, double⟩(3) is well typed
and yields a result of type B⟨Bool, Int⟩.
A crucial property of variational type systems is that selection preserves typing. That is, if e : T

then ∀s .⌊e⌋s : ⌊T ⌋s . Previous work showed how variational types enable efficiently reasoning
about all possible assignments of dynamic or static types to function parameters in gradually
typed programs [Campora et al. 2018]. This enables efficiently migrating between gradually typed
programs with different type assignments. In this work, we tackle the problem of estimating the
performance overhead associated with different migrations for a gradual program.

3 THEWORKFLOWOF HERDER

Herder works by generating and reasoning about variational programs that represent all possible
type configurations at once. We use the following program to illustrate how this works, including
how variational casts are inserted and how variational costs are computed.We assume the + operator
has the static type Int→ Int→ Int.
def add(x, y):

return x + y

Casts are only inserted when passing dynamically typed values to statically typed code, which can
occur when some parts of the program contain type annotations, when primitive operations are
assigned static types by the language implementation, or when typed external code is called. We

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:9

focus on how programmer-added type annotations change the behavior of cast insertion. Therefore,
before we can reason about the costs of inserted casts arising via different annotations, we need to
infer what combinations of type annotations can be added to the program.

Migrational typing by Campora et al. [2018] can efficiently infer types for all configurations of a
program in a gradually typed language with type inference. It is only necessary for type inference
to be sound (not complete), so migrational typing can be applied even to languages with features,
such as subtyping, that prevent complete type inference. For add, we can use migrational typing
to infer that each parameter can independently have type Dyn or Int (note that an unannotated
parameter is equivalent to one annotated by Dyn). This yields four potential configurations of add,
which we can represent in a single single variational program, addV, with two independent choices.
def addV(x:B⟨Dyn, Int⟩, y:D⟨Dyn, Int⟩):

return x + y

In this paper, we focus on the problem of reasoning about and comparing costs for different
configurations and reuse necessary machinery from Campora et al. [2018] to get type information.

Instead of generating all configurations of addV and separately reasoning about the casts in each,
we instead add variational casts to addV and reason about addV directly. In this case, we need to
insert variational casts to ensure that the arguments to + have the type Int in each configura-
tion. Specifically, we insert the cast ⌈Int⇐ B⟨Dyn, Int⟩⌉ x, and similarly for y. Conceptually, this
represents the cast ⌈Int ⇐ Dyn⌉x in B.1, where x has static type Dyn, and it represents the cast
⌈Int⇐ Int⌉x in B.2, where x has static type Int. Since ⌈Int⇐ Int⌉ is a no-op, we can transform
the variational cast applied to x to B⟨⌈Int⇐ Dyn⌉, ϵ⟩ x, making it clear that no cast (ϵ) is performed
in the B.2 case where passing x to + can be statically type checked.

After cast insertion and simplification, we obtain addVC:
def addVC(x:B⟨Dyn, Int⟩, y:D⟨Dyn, Int⟩):

return B⟨⌈Int⇐ Dyn⌉, ϵ⟩ x + D⟨⌈Int⇐ Dyn⌉, ϵ⟩ y

Fig. 3. Overview of computing costs for all valid type

configurations. The operations and transformations at-

tached to dashed arrows are not presented in this pa-

per, they are either from previous work (such as ⊢M
from Campora et al. [2018] and ⌊·⌋δ from Chen et al.

[2014]) or for aiding conceptual understanding (⊢vG ).

Our next goal is to find a way to measure the
overhead of the inserted casts, and more im-
portantly to compare the overhead of differ-
ent configurations. For this simple program,
we can simply count the number of inserted
casts. Therefore, we assign the variational cost
B⟨1, 0⟩ to the cast B⟨⌈Int⇐ Dyn⌉, ϵ⟩ x, and the
cost D⟨1, 0⟩ for casting y. The cost for addV is
then B⟨1, 0⟩ + D⟨1, 0⟩. Applying standard vari-
ational programming techniques [Erwig and
Walkingshaw 2013], we can reduce this cost to
B⟨D⟨2, 1⟩,D⟨1, 0⟩⟩, which captures the costs of
all four configurations of the program.

We can obtain the cost of each configuration
by selecting from the variational cost with the
corresponding decision. For example, selecting
with δ = {B.1,D.2} yields 1, corresponding to
the single cast of x in the configuration of addV
produced by selecting with the same decision
δ . From the variational cost, we can see that
the configuration of add that annotates both
parameters with Int leads to the lowest cost.

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

Sections 4 and 5 present a formal treatment of this process. To separate concerns, we first present
the cost semantics for a single program in Section 4, then a method that computes the costs for all
valid configurations for the given program in Section 5.

To give a high-level view of the formalization, we present the connections between various
relations and syntaxes in Figure 3. Moving down the right side of the figure illustrates the process
of assigning costs to individual plain programs, while moving down the left side of the figure
illustrates the variational cost analysis process. Plain cost analysis works as follows (starting from
the upper right corner and moving down): the syntax es represents input gradual programs, which
may contain type annotations; the type-directed transformation ⊢G inserts casts into es , erases
type annotations, and generates et , which can be directly executed on the underlying interpreter;
we then use↘ to further transform programs in et into programs in the same syntax but which
are more amenable to cost analysis, and compute costs A with the ⊢C relation.
Conceptually, variational cost analysis works as follows (starting from the upper right corner,

moving left, then down): starting from es , we apply migrational typing, ⊢M , [Campora et al. 2018] to
compute all valid type configurations, which we encode as evs ; we apply a variational transformation,
⊢vG , to insert variational casts yielding a variational version of the target language evt ; a variational
transformation ↘v makes the program more amenable to cost analysis; finally, we compute
variational costs Av with ⊢vC . In practice, however, we move directly from es to evt using ⊢v since
this simplifies the formalization. Since Av encodes costs for all configurations, we can use this
result to make recommendations to satisfy the current program migration scenario. The arrows
annotated by ⌊·⌋δ help establish the correctness of variational cost analysis by relating variational
results with their corresponding plain results through selection (see Theorem 5.2).

4 COSTS FOR A SINGLE CONFIGURATION

Casts are the major source of performance degradation in gradually typed programs [Takikawa
et al. 2016]. Therefore, we need a way to accurately estimate the costs associated with the inserted
casts. In this section, we address this need by developing a static cost semantics in the style of
Danner et al. [2015]. Our cost semantics produces an expression in a cost language that evaluates
to a cost estimate for the corresponding gradually typed program. Specifically, in Section 4.1, we
define a function for estimating the cost of an individual cast. In Section 4.2, we introduce the
cost language and cost semantics informally through an example, then give a formal treatment in
Sections 4.3 through 4.5. In Section 4.6, we discuss important properties of the cost semantics.

4.1 The Cost of a Basic Cast

First, we consider the cost of an individual cast ⌈G1 ⇐ G2⌉, which checks that a value with
gradual typeG2 can be converted into a value with gradual typeG1, and performs the conversion
if necessary. The easiest cast to reason about is casts to Dyn. WhenG1 = Dyn and G2 is a base type
(such as Int or Bool) the cost of the cast is b, representing the cost of boxing a value.

The simplest cast that does some work is a cast where G2 = Dyn and G1 is a base type. In this
case, a dynamic type check must be performed. We use c to represent the constant cost of such
basic casts. For casts involving list types in both the source and target, we use s to represent the
overhead of checking the elements of a list, and we recursively compute the cost for the types
inside the respective list constructors. Our cost function is below:

cost (⌈G1 ⇐ G2⌉) =




b G1 = Dyn

s · cost (⌈G ′1 ⇐ G ′2⌉) Gi = [G ′i ]
c otherwise

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:11

The cost function handles basic casts, which are simply performed at the locations they are en-
countered in the program. In contrast, casts involving function types or reference types are trickier
since they are not applied immediately, but rather when the corresponding function or reference is
used [Siek et al. 2009]. We illustrate how to account for the cost of such casts and give a precise
cost calculation in Section 4.4.

4.2 Estimating Cast Costs in Programs

Armed with a cost function for individual casts, we can estimate the cost of a sequence of state-
ments by simply summing up the costs of each. However, more interesting programs present two
challenges: (1) How do we represent the costs of functions, whose bodies may contain casts whose
individual costs depend on the types of the arguments they are applied to? (2) How do we estimate
the cost of loops, whose bodies may contain casts that are executed a statically indeterminate
number of times? In this subsection, we introduce a cost language and cost semantics for addressing
these challenges. We use the following function mult as a running example.
def mult(md, mr):

sum = 0
for i in range(md):
sum = add(sum, mr)

return sum

This function multiplies the multiplicand md with the multiplier mr by iteratively adding mr to a
local variable sum. The built-in Python function range : Int→ [Int] returns a list [1,2,...,n] for
the given n, and the helper function add returns the sum of its arguments.
First, we consider how to represent the cast cost of a function. A function by itself incurs no

cost, but rather represents a potential cost when invoked. Moreover, the cast cost of the body of a
function will vary depending on the arguments that are passed in. The potential cost of a function
can be represented by a corresponding function in the cost language, and the cost of a function
application can be approximated by executing a corresponding application in the cost language.

More concretely, following Danner et al. [2015], we represent the cost approximation of a term by
a pair (C, P ), where C represents the immediate cost of the term and P represents its potential cost.
We use A to range over approximations and use cost and potential to refer to immediate costs and
potential costs, respectively. The potential of a function abstraction λx .e in the source language is
captured by a potential abstraction in the cost language of the form Λx .A. The cost of a function
application e1 e2 can then be computed by applying the corresponding potentials of e1 and e2.
Returning to our example, we can sketch a template for the approximation of mult as

(0,Λmd.(0,Λmr .Am )), where the function itself (and its partial application) has no immediate
cost, and the body of the function is approximated by Am , which may refer to the potentials of its
parameters, md and mr .

While we produce costs, we maintain a cost environment that maps each source language variable
to its potential. Let us assume that sum has type ref Dyn. The first statement of the body is sum = 0,
which has approximation (0, 0). The cost is 0 since we generate no casts and 0 is a constant, and its
potential is 0 since the statement does not involve functions or loops. In reality, sum is a reference
and has associated potential. To handle this, we define a transformation in Section 4.4, but for
simplicity while illustrating this example we will assume that reference creation and assignment
contributes no overhead relating to proxies. Therefore, the statement contributes no cost to Am
and the environment is extended with sum 7→ 0.

We now turn to producing a cost for the loop in mult. For the subexpression range(md), suppose
the cost environment maps the built-in function range to the potential Λu .(0,u), indicating that it
incurs no cast costs except the potential costs of its argument. Since md has type Dyn, a cast ⌈Int⇐

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

Term variables x, y, z Base types γ

Source es ::= x | λx : G .es | es es
expr. | for x in es do es

| let x = es in es
| letrec x = es in es
| ref es | !es | es:= es

Target et ::= x | λx.et | et et
expr. | for x in et do et

| let x = et in et
| letrec x = et in et
| ref et | !et | et := et
| ⌈G ⇐ G⌉et

Cost variables x ,y, z Loop labels l

Type constr. T ::= [] | ref
Gradual types G ::= γ | T G | G→G | Dyn

Approximations A ::= (C, P ) | C ⊕ P
Costs C ::= n | l ·C | C +C
Potentials P ::= n | x | l · P | P + P

| Λx .A | P P

Type env. Γ ::= ∅ | Γ, x 7→ G
Cost env. Φ ::= ∅ | Φ, x 7→ P

Fig. 4. Syntax for our gradually typed functional language and its corresponding cost language.

Dyn⌉ must be performed before passing md into range. This cast has cost c . The overall approximation
of range(md) is this immediate cost added to the approximation returned by applying the potential
of range to the potential of the argument md, which is (Λu .(0,u)) md = [md/u](0,u) = (0,md).
This yields a final approximation of (c,md) for the subexpression range(md).

The cost of a loop is the cost of its body times the number of iterations. In general, the number of
iterations is unknown statically. Therefore, in our approximations we introduce a unique symbolic
value to stand for the number of iterations each loop executes, which we call a loop label. The cost
approximation of a loop is the cost and potential of its body, each multiplied by the loop label.

In mult, the body of the loop is sum = add(sum, mr). For simplicity, let us assume for now that the
assignment does not generate a reference cast and that the use of sum in the body (a dereference) does
not generate a cast from a proxy. Now we can focus on the application of add to sum and mr. Suppose
add is annotated as Int→ Int→ Int, then we must cast both arguments for an immediate cost of 2c .
Also suppose add has potential Λx .(0,Λy.(c,x +y)). As described above, the cost environment maps
sum 7→ 0 and mr 7→ mr , so the resulting approximation of the application is (c, 0 +mr ) = (c,mr ).
Adding the immediate costs of the casts to this approximation yields an overall approximation of
(3c,mr ) for the loop body. To approximate the overall cost of the loop, we multiply the cost of
the body by a new loop label l , yielding (3c · l ,mr · l ), then add the approximation of range(md),
yielding (3c · l + c,mr · l +md).
Finally, the function returns a dereference of sum. This has cost (0, 0) since the return type

of mult is Dyn. Since the loop is the only source of cast costs in mult, we can set Am in our
template above to the loop approximation to yield our final approximation for the whole function:
(0,Λmd.(0,Λmr .(3c · l + c,mr · l +md))).

4.3 Cast Insertion Rules

As the running example in Section 4.2 shows, our idea of computing costs is to measure the number
and complexity of casts in programs. This subsection presents rules for inserting casts into gradually
typed programs. In Figure 4, we define a simple calculus that captures the essential features of
gradually typed programs with respect to cost analysis. The syntax of expressions is lambda calculus
extended by references and a loop construct. The syntax of gradual types consists of base types (γ ),
list types, function types, and the dynamic type. List types can be introduced through user type
annotations or the initial type environment. The syntax of approximations, costs, and potentials

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:13

Var
x : G ∈ Γ

Γ ⊢G x { x : G
Abs

Γ, x 7→ G ⊢G es { et : G1

Γ ⊢G λx : G .es { λx.et : G→G1

App
Γ ⊢G e1s { e1t : G Γ ⊢G e2s { e2t : G ′ dom (G ) ∼ G ′

Γ ⊢G e1s e2s { (Vdom (G )→ cod (G ) ⇐ GWe1t Vdom (G ) ⇐ G ′We2t ) : cod (G )

For
Γ ⊢G e1s { e1t : G1 extL (G1) = G Γ, x 7→ G ⊢G e2s { e2t : G2 l fresh

Γ ⊢G for x in e1s do e2s { for x in V[G]⇐ G1We1t do e2t : G2

Let
Γ ⊢G e1s { e1t : G1 Γ, x 7→ G1 ⊢G e2s { e2t : G

Γ ⊢G let x = e1s in e2s { let x = e1t in e2t : G

Letrec
Γ, x 7→ G1 ⊢G e1s { e1t : G1 Γ, x 7→ G1 ⊢G e2s { e2t : G

Γ ⊢G letrec x = e1s in e2s { letrec x = e1t in e2t : G

Ref
Γ ⊢G es { et : G

Γ ⊢G ref es { ref et : ref G
Deref

Γ ⊢G es { et : G1 G = extR (G1)

Γ ⊢G !es { !Vref G ⇐ G1Wet : G

Assign
Γ ⊢G e1s { e1t : G1 G = extR (G1) Γ ⊢G e2s { e2t : G2 G ∼ G2

Γ ⊢G e1s:= e2s { Vref G ⇐ G1We1t := VG ⇐ G2We2t : ref G

VG ⇐ GWet = et VG1 ⇐ GWet = ⌈G1 ⇐ G⌉et

dom (G1→G2) = G1 dom (Dyn) = Dyn cod (G1→G2) = G2 cod (Dyn) = Dyn

extL ([G]) = G extL (Dyn) = Dyn extR (ref G ) = G extR (Dyn) = Dyn

Fig. 5. Cast insertion rules.

are as described in Section 4.2. The n in the syntax refers to b, c , and s in Section 4.1. We discuss
the syntax C ⊕ P in Section 4.5.

In Figure 5, we define the cast insertion procedure for this calculus as a part of the typing process.
The judgment Γ ⊢G es { et : G can be read as: given a type environment Γ and a source expression
es , es has type G and is translated to a target expression et , which contains inserted casts. The
formalization is fairly standard, except for the addition of rule For.
We use the syntactic form VG2 ⇐ G1W to denote casts that can potentially be inserted, that is,

they are inserted only when G1 , G2. The rule definitions use several helper functions, given at
the bottom of Figure 5. These functions extract certain parts from types when they have desired
structures or Dyn when they are Dyn. Otherwise, these functions are undefined. For example, the
function extL extracts the element type from a list type and Dyn from Dyn. The helper functions
allow us to create a single rule for each source language construct, regardless of types.

The Var rule for variable references is standard. No casts are inserted in the translation process.
The Abs rule is also standard, except that it removes the parameter’s annotation, since the target
language is untyped. The App rule uses the consistency relation (∼) to make sure that the type of the
argument is consistent with the domain of the function. The definition of ∼ is standard [Siek and
Taha 2006], and we omit it here. If the two types are consistent, the rule translates both expressions

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

and inserts casts on each. The function (e1t ) is cast to have a function type with the original type’s
domain and codomain, using the dom and cod helper functions. The argument is also cast so that
its type matches the domain of the new function type.
In the For rule, there is a variable x associated with the loop that ranges over the list produced

by e1s . Typing ensures that e1s has a type that can be treated as a list by using the extL function.
Consequently, the translation procedure inserts a cast on e1t to a list type containing the extracted
type. The Let and Letrec for non-recursive and recursive let-bindings are standard.
For references, the Ref rule is trivial since no casts are inserted. For dereferences, in the Deref

rule, the source expression must be checked to ensure that its type is a reference via the extR
function. Thus, the translation process inserts a cast to a reference of the type extracted by extR
before dereferencing it. Finally, assignment in the Assign rule also applies extR to the reference
being assigned to, and this similarly generates a cast. Additionally, the type of the expression being
stored is cast to to the underlying type of the reference.

4.4 Cost of Wrapped Casts

The cast insertion rules in Figure 5 can insert casts involving function types. Since whether the cast
will be successful or not cannot be checked at definition time, the usual guarded approach handles
functions by dynamically creating function proxies that wrap underlying functions and cast their
inputs and outputs when they are called [Siek and Taha 2006]. The costs of such casts thus depend
on how the are used, which our cost model so far does not consider. To illustrate, consider the
following expression.

let f = ⌈Int→ Int⇐ Dyn→ Dyn⌉λx.x in f 1 + f 2

Following the ideas in Section 4.2, we will assign a potential cost Λx .(0,x ) to f (since there are
no casts in the function body), and so the calls at f 1 and f 2 each generate a cost of Λx .(0,x ) 0,
which reduces to 0. This, however, does not match the cost of guarded semantics where each call
induces two casts, one from Int to Dyn and the other from Dyn to Int.

We want to adapt the potential assigned to f so that it includes the costs of casts in the generated
proxies. However, the challenge is that to properly create these potentials, the cost analysis, which
is static, need to know about the proxies, which are created dynamically. The trick is that we
transform the program before analysis to syntactically include the proxies that will be generated at
runtime. Specifically, we transform each function cast into a lambda expression that contains casts
within its body, thereby creating a potential whose cost is not 0. The example above is transformed
into the following expression.

let f = λy.⌈Int⇐ Dyn⌉ (λx.x ⌈Dyn⇐ Int⌉y) in f 1 + f 2

Now f has a potential Λy.(b + c,y), and each application f 1 and f 2 will be assigned cost b + c ,
yielding a total cost of 2(b + c ), which matches the expected behavior of the guarded semantics for
higher-order casts.
Similarly, for casts involving reference types, the guarded semantics will create a proxy that

induces casts on all future dereferences and assignments. For such casts, we reuse the trick described
above of embedding lambdas representing the proxies into the program before analysis. Corre-
spondingly, we transform dereferences and assignments into lambda applications. Interestingly,
this idea can treat proxied references (those that require casts) and raw references (those that do
not) uniformly. To illustrate, consider the following expression, where y has type Dyn.

let g = λx.!x ∗ !(ref 1) in f ⌈ref Int⇐ ref Dyn⌉ (ref y)

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:15

↘ (⌈G1→G2 ⇐ Dyn⌉et ) =↘ (⌈G1→G2 ⇐ Dyn→ Dyn⌉ (↘ et )) (1)
↘ (⌈Dyn⇐ G1→G2⌉et ) =↘ (⌈Dyn→ Dyn⇐ G1→G2⌉ (↘ et )) (2)

↘ (⌈G3→G4 ⇐ G1→G2⌉et ) = λx.(↘ (⌈G4 ⇐ G2⌉ (↘ et )) ↘ (⌈G2 ⇐ G3⌉x)) (3)
↘ (ref et ) = let y = ↘ (et ) in λx.y (4)
↘ (!et ) = (↘ et ) () (5)

↘ (e1t := e2t ) =↘ (e1t ) ↘ (e2t ) (6)
↘ (⌈ref G2 ⇐ Dyn⌉et ) =↘ (⌈ref G2 ⇐ ref Dyn⌉ (↘ et )) (7)
↘ (⌈Dyn⇐ ref G2⌉et ) =↘ (⌈ref Dyn⇐ ref G2⌉ (↘ et )) (8)

↘ (⌈ref G2 ⇐ ref G1⌉et ) = λx.(↘ (⌈G2 ⇐ G1⌉ (↘ et )) ↘ (⌈G1 ⇐ G2⌉x)) (9)
otherwise ↘ (⌈G2 ⇐ G1⌉et ) = ⌈G2 ⇐ G1⌉ (↘ et ) (10)

Fig. 6. Transformation rules after cast insertion. Proxies usually inserted at runtime after checking certain

values are expanded syntactically, where possible. The otherwise in case (10) means that this rule applies

when all others fail.

Note that this expression contains both a proxied reference ⌈ref Int⇐ ref Dyn⌉(ref y) and a raw
reference ref 1, which are transformed into λa.⌈Int⇐ Dyn⌉y and λd.1, respectively (in reality, a
let binding is used to evaluate the expression in the ref body before wrapping it in a lambda, but
we just directly wrap the expressions here for simplicity). Each dereference is transformed into
an application by applying it to a unit value, (). Overall, the transformation yields the following
expression.

let g = λx.(x () ∗ (λd .1) ()) in f (λa.⌈Int⇐ Dyn⌉y)

Now let us analyze the cast costs. For the proxied reference, the potential isΛa.(c,y), and for the raw
reference, the potential is Λd .(0, 0). When they are dereferenced, the corresponding applications
lead to the costs (Λa.(c,y)) 0 and (Λd .(0, 0)) 0, which are c and 0, respectively, matching the
expected costs of guarded semantics on dereferences.

Overall, by transforming function casts and dereferences into lambda abstractions, we can reuse
the idea of potentials to precisely estimate the costs of these casts. In Figure 6, we present rules for
transforming expressions as described above, where↘ (et ) applies the transformations to et . In
the figure, we present rules that are relevant to casts only and ignore rules for other constructs
of et , which recursively apply the transformation to their subterms, if applicable. The first three
rules transform casts with function types. The next three transform reference expressions into
lambdas and applications. The next three handle casts with references. The final rule terminates
the recursive transformation in rules 3 and 9 when they arrive at casts between base types.

4.5 Cost Computing Rules

This subsection defines a cost semantics that computes a cost approximation for any expression
transformed by↘. The cost semantics is presented in Figure 7. The rules have the general form,
Φ ⊢c et |A, meaning that expression et has approximation A in the context of cost environment Φ.

In rule Var, a variable reference x has no immediate cost since the language is call-by-value, but
may have a potential cost that is retrieved from the cost environment. For example, a variable f can
reference a function, which would have an abstraction for its potential. The cost of abstractions in
rule Abs is 0 since they cause no evaluation, but their potential is an abstraction of the form Λx .A.

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

Var
x 7→ P ∈ Φ

Φ ⊢c x | (0, P )
Abs

Φ, x 7→ x ⊢c et |A

Φ ⊢c λx .et | (0,Λx .A)
App

Φ ⊢c e1t | (C1, P1) Φ ⊢c e2t | (C2, P2)

Φ ⊢c e1t e2t |C1 +C2 ⊕ (P1 P2)

For
Φ ⊢c e1t | (C1, P1) Φ, x 7→ P1 ⊢c e2t | (C2, P2) l fresh

Φ ⊢c for x in e1t do e2t | (C1 + l ·C2, l · P2)

Let
Φ ⊢c e1t | (C1, P1) Φ, x 7→ P1 ⊢c e2t | (C2, P )

Φ ⊢c let x = e1t in e2t | (C1 +C2, P )

Letrec

Φ, x 7→ x ⊢c e1t | (C1, P1) S = Apps(x , P1)
n = |S | P ′ = P1 ⊖ S l fresh Φ, x 7→ (l · nl · P ′) ⊢c e2t | (C2, P2)

Φ ⊢c letrec x = e1t in e2t | (C1 +C2, P2)

Cast
Φ ⊢c et | (C1, P ) cost (⌈G2 ⇐ G1⌉) = C2

Φ ⊢c ⌈G2 ⇐ G1⌉et | (C1 +C2, P )

Fig. 7. Cost semantics.

In rule App, the potential of an application is the application of the corresponding potentials. The
cost of an application is the cost of the two subexpressions, plus the cost of these two casts, and
the cost of the potential application. The term C1 +C2 ⊕ (P1 P2) is used to pairwise add the cost of
the potential application after it evaluates. For example:

1 ⊕ (Λx .(1,x ) 0) = 1 ⊕ [0/x](1,x ) = (1 + 1, 0)

This term is sometimes left unevaluated. For example, the approximation for a function with a
higher-order argument, such as λx.x 1, is Λx .(0 ⊕ (x 0)), which will evaluate after we substitute a
corresponding potential of the higher-order argument in a function call.

In rule For, a fresh loop label l is introduced to represent the number of loop iterations. The cost
of the loop is then the cost of evaluating e1, plus l times the cost of evaluating e2. The potential is
constructed similarly. For let expressions in rule Let, the cost and potential is computed similarly
to For except that the body is evaluated only once.
The rule Letrec assigns costs to recursive expressions and bindings. Since e1t refers to x, the

potential P1 for e1t must contain potential applications that apply x to some other potentials.
Moreover, these applications are connected by ⊕. We use Apps(x , P1) to collect all such potential
applications into S . We then use n to measure the cardinality of S . For example, the value of n in
a naive recursive definition of a function to compute the Fibonacci sequence would be 2, since it
involves two recursive function calls. We also use the operation ⊖ to remove all the applications
in S from P1 and assign the result to P ′. As a result, P ′ contains no further potential applications
applying x to some term. The recursion is then estimated to have the cost l ∗ nl , where l is a fresh
label estimating the size of the input. We then use this cost to compute the cost for e2t , the overall
cost for the whole construct. In general, static cost analysis for recursive programs is difficult
and an area receiving significant recent research [Danner et al. 2015; Hoffmann et al. 2017]. This
difficulty is further exacerbated in our case since the type information that is available in other
static cost analyses is unavailable in the gradual type setting. Our costs for recursions are a coarse
upper bound, and we assume the input to recursive calls strictly decrease in size, similar to previous

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:17

cost analyses [Danner et al. 2015]. Nevertheless, this cost estimation works quite well in practice
because the bounds for recursion do not affect relative cost comparisons, in particular the bounds
are shared for nearby type configurations in the cost lattice.
Finally, the rule Cast assigns a cost to each expression being cast, whose cost is that of the

underlying expression plus that of the cast, according to the cost function from Section 4.1. Rules for
approximating the costs of references and higher-order casts are handled by costs for abstractions
and applications after using the transformation procedure in Figure 6.

4.6 Properties

In the following lemmas and theorems, we use the judgment form Φ; Γ ⊢GC es { et : G |A, which is
equivalent to the judgment Γ ⊢G es { et : G followed by Φ ⊢c↘ (et ) |A. Essentially, the judgment
can be read as: under Γ and Φ, es has type G, is translated to et , and has the cost approximation A.

Before we present the most important properties of our cost semantics, we present some simple
lemmas relating terms in the source language to terms in the cost language. The first lemma states
that a bound variable, if referenced, affects the potential of its abstraction.

Lemma 4.1. If Φ; Γ ⊢GC λx.es { λx.et : G | (C, P ) and x ∈ vars(es ), then x ∈ vars (P ).

This lemma confirms that the potential costs of an argument, which may be a function with its
own costs, are reflected in the cost approximation of the function that uses it.

The second lemma states that substitution in the source language corresponds to substitution in
the cost language.

Lemma 4.2. Let Φ; Γ ⊢GC es { et : G | (C, P ) where x ∈ vars(es ), x 7→ x ∈ Φ, and x : G ′.
If Φ; Γ ⊢GC es

′ { et
′ : G ′ | (C ′, P ′), then the potential for [e ′s/x]es is [P ′/x]P .

This establishes how potential applications can insert the overhead of casts in the argument terms
into the body of a potential abstraction. Together, these two lemmas establish the correspondence of
function abstraction and application at the source level and the cost level. Moreover, since we also
reason about the overhead of using references by translating them into lambdas and then applying
our cost semantics, it is imperative that abstractions and applications be modeled correctly.
We now establish the most important properties of our cost semantics. The following theo-

rem states that our cost semantics terminates, provided that the program after translation (et ) is
terminating.

Theorem 4.3. [Cost Derivation Termination] For any terminating program es , Φ; Γ ⊢GC es { et :
G |A terminates and produces the approximation A.

Finally, the most important result is that our cost semantics bounds the number of casts of the
program, provided that its recursions, if any, are applied to smaller arguments.

Theorem 4.4. [Costs are Upper Bounds] If Φ; Γ ⊢GC es { et : G | (C, P ), then C is greater than or
equal to the number of casts performed when executing et after replacing loop labels by the number of
iterations performed.

The proofs of these two theorems are produced by induction over the rules in Figures 5, referencing
the rules in Figure7. The theorems also need to connect with the dynamic semantics for the language,
which is a fairly standard semantics with a few extensions for loops and other constructs.

5 COSTS FOR ALL CONFIGURATIONS

In this section we extend the formalization in Section 4 to make it variational, enabling us to
efficiently estimate costs for all possible type configurations of a program. Thus, instead of assigning

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

Target expr. evt ::= ... | ⌈M ⇐ M⌉evt | d⟨⌈M ⇐ M⌉, ⌈M ⇐ M⌉⟩evt
Costs Cv ::= ... | d⟨Cv ,Cv ⟩

Potentials Pv ::= ... | d⟨Pv , Pv ⟩
Approximations Av ::= ... | (Cv , Pv ) | Cv ⊕ Pv

Variational types V ::= γ | V →V | [V ] | ref V | d⟨V ,V ⟩
Migrational types M ::= γ | M→M | [M] | Dyn | ref M | d⟨M,M⟩
Configuration K ::= ∅ | K , x 7→ G
Choice env. Ω ::= ∅ | Ω, x 7→ M

Fig. 8. Syntax for variational cost analysis. Definitions of variational artifacts (e.g. evt ) extend the syntax for

non-variational counterparts (e.g. et ) in Figure 4.

a gradual type and a cost to each program, the rules in this section assign a variational gradual
type, called a migrational type [Campora et al. 2018] and a variational cost to each program. The
migrational type of a program represents the type of all possible type configurations, while its
variational cost encodes the cost lattice of migrating to each configuration, as illustrated in Figure 2.

5.1 Syntax

In Figure 8, we extend the syntax defined in Figure 4 to accommodate the variational analysis. In
particular, we extend costs and potentials with a choice construct, as described in Section 2.2. This
enables the representation of variational costs and variational potentials. The addition of choices
to types yields two new domains, variational types (static types with choices) and migrational types
(gradual types with choices), ranged over by V andM , respectively. Casts in the target language
are made variational by allowing casting to a migrational type.

Figure 8 also defines configurations, ranged over by K , and choice environments, ranged over by
Ω. A configuration is a mapping from initially dynamic parameters to gradual types, denoting
their type assignments for a particular configuration. A choice environment is a mapping from
parameters to migrational types and keeps track of the type assignments used to generate the
full configuration space for a given program. For example, if a program has dynamic parameters
x and y, then the choice environment Ω = {x 7→ B⟨Dyn, Int⟩,y 7→ D⟨Dyn, Int⟩} encodes four
configurations (each of x and y can be Dyn or Int). For simplicity, we assume that all parameter
names in the program are all unique. Configurations and choice environments are used to establish
the correctness of our variational cost analysis by making explicit the relation between the rules in
this section and those in Section 4.3.
Although migrational types now appear in casts in the target language, we do not extend its

dynamic semantics since in the implementation programs with variational casts are not executed,
only analyzed. After the analysis, the programmer would select a particular type configuration by
applying a complete decision to the program that eliminates migrational casts and yields a runnable
program.

5.2 Variational Cost Analysis

The cost semantics defined in Section 4 requires some changes to accommodate casts to migrational
types. First, we extend the cost function with the following new rules, which essentially maps the
cost calculation over cast choices, preserving the results in cost choices.

cost (Vd⟨M1,M2⟩ ⇐ MW) = d⟨cost (VM1 ⇐ MW), cost (VM2 ⇐ MW)⟩
cost (VM ⇐ d⟨M1,M2⟩W) = d⟨cost (VM ⇐ M1W), cost (VM ⇐ M2W)⟩

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:19

VarV
x 7→ M ∈ Γ

Γ ⊢v x { x : M | Ω
AbsV

Γ, x 7→ T ⊢v es { evt : M | Ω
Γ ⊢v λx : T .es { λx.evt : T →M | Ω

AbsDynV
Γ, x 7→ d⟨Dyn,V ⟩ ⊢v es { evt : M | Ω d fresh

Γ ⊢v λx.es { λx .evt : d⟨Dyn,V ⟩→M | Ω ∪ {x 7→ d⟨Dyn,V ⟩}

AppV
Γ ⊢v e1s { ev1t : M1 | Ω1 Γ ⊢v e2s { ev2t : M2 | Ω2 dom (M1) ≈ M2

Γ ⊢v e1s e2s { Vdom (M1)→ cod (M1) ⇐ M1Wev1t Vdom (M1) ⇐ M2Wev2t : cod (M1) | Ω1 ∪ Ω2

ForV
Γ ⊢v e1s { ev1t : M1 | Ω1 extL (M1) = M Γ, x 7→ M ⊢v e2s { ev2t : M2 | Ω2

Γ ⊢v for x in e1s do e2s { for x in V[M]⇐ M1Wev1t do ev2t : M2 | Ω1 ∪ Ω2

LetV
Γ ⊢v e1s { ev1t : M1 | Ω1 Γ, x 7→ M1 ⊢

v e2s { ev2t : M | Ω2

Γ ⊢v let x = e1s in e2s { let x = ev1t in ev2t : M | Ω1 ∪ Ω2

LetrecV
Γ, x 7→ M1 ⊢

v e1s { ev1t : M1 | Ω1 Γ, x 7→ M1 ⊢
v e2s { ev2t : M | Ω2

Γ ⊢v letrec x = e1s in e2s { letrec x = ev1t in e
v
2t : M | Ω1 ∪ Ω2

RefV
Γ ⊢v es { evt : M | Ω

Γ ⊢v ref es { ref evt : ref M | Ω
DerefV

Γ ⊢v es { evt : M1 | Ω M = extR (M1)

Γ ⊢v !es { !Vref M ⇐ M1Wevt : M | Ω

AssignV

Γ ⊢v e1s { ev1t : M1 | Ω1
M = extR (M1) Γ ⊢v e2s { ev2t : M2 | Ω2 M ≈ M2

Γ ⊢v e1s:= e2s { Vref M ⇐ M1Wev1t := VM ⇐ M2Wev2t : ref M | Ω1 ∪ Ω2

dom (M1→M2) =M1 dom (Dyn) = Dyn dom (d⟨M1,M2⟩) = d⟨dom (M1), dom (M2)⟩
cod (M1→M2) =M2 cod (Dyn) = Dyn cod (d⟨M1,M2⟩) = d⟨cod (M1), cod (M2)⟩

extL([M]) =M extL(Dyn) = Dyn extL(d⟨M1,M2⟩) = d⟨extL (M1), extL (M2)⟩
extR (ref M) =M extR (Dyn) = Dyn extR (d⟨M1,M2⟩) = d⟨extR (M1), extR (M2)⟩

Fig. 9. Cast insertion rules after adding variational types to our system. The operations dom, cod, extL , and
extR are undefined for cases that are not listed here.

Next, we similarly extend the transforming procedure (↘) to push the translation into choices.
Following the same idea, we extend the cost relation ⊢c in Figure 7 to deal with variations. We
name these extended relations ↘v and ⊢vc , respectively. A interesting bit in ⊢vc is that our cost
function now yields variational costs, and so we must define how arithmetic works on such values.
Intuitively, any basic operation on a variational cost can be performed by pushing the operations
into the choices. For example, c+B⟨2c, 3c⟩ = B⟨c+2c, c+3c⟩ = B⟨3c, 4c⟩. We omit a formal definition
here since it is straightforward.

In Figure 9, we present the revised set of type-directed cast insertion rules to support migrational
types. The judgment has the form Γ ⊢v es { evt : M | Ω, which states that under type environment
Γ, the source expression es has typeM and is translated to the target expression evt after casts are
inserted, where type change information is recorded in Ω. The cast insertion rules for variables,

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

loops, let expressions, and references are nearly identical to the corresponding rules in Figure 5,
except that they now use the extended syntax.
There are now two rules for abstractions, one for statically typed parameters (AbsV) and the

other for dynamically typed parameters (AbsDynV). The AbsDynV rule is where variation is injected
into the target program so that it captures the whole migration space. The choice type in AbsDynV
represents the fact that there are two possibilities during program migration: leaving the parameter
dynamically typed, or changing it to a static type. Correspondingly, when we carry out our cost
analysis there will be two different costs for the body. For example, in λx.x + 1, the reference to x

in the body must be cast using ⌈Int⇐ d⟨Dyn, Int⟩⌉, which will be assigned the cost d⟨c, 0⟩ since
we incur a cast when x has type Dyn and no cast when it has type Int. In AbsDynV, we also extend
Ω to record that we assigned the type d⟨Dyn,V ⟩ to the parameter.
Variation complicates the treatment of function applications. First, the dom and cod functions are

extended to support migrational types. Second, the type consistency relation used in the original
App rule of Figure 5 is replaced by the compatibility relation (≈) defined in [Campora et al. 2018],
which extends type consistency to also support variational type equivalence (see Section 2.2). Two
typesM1 andM2 are compatible, written asM1 ≈ M2, if they are consistent or compatible under
any selection. For example, B⟨Int, Dyn⟩ ≈ B⟨Dyn,D⟨Bool, Int⟩⟩, since selecting B.1 in both types
yields Int ∼ Dyn, while selecting B.2 in both yields Dyn ≈ D⟨Bool, Int⟩.

5.3 Properties

In this subsection, we prove the correctness of our variational cost analysis by showing that it is
equivalent to generating all type configurations and applying the cost analysis from Section 4 to
each one individually. We introduce a new judgment Φ; Γ ⊢v es { evt : M |Av | Ω as shorthand for
Γ ⊢v es { evt : M | Ω followed by Φ ⊢vc↘

v (evt ) |A
v .

We first extend selection, defined in Section 2.2, to choice environments by applying selections to
its range. For example, letΩa = {x 7→ B⟨Dyn, Int⟩, y 7→ D⟨Dyn, Int⟩}, then ⌊Ωa⌋{B .1,D .2} = Ka , where
Ka = {x 7→ Dyn, y 7→ Int}. We also need a way to apply a configuration to a typing process in order
to conveniently type different individual type configurations. We write Φ;KΓ ⊢GC e1s { e1t : G |A
to express that the cost analysis (Section 4.6) is directed by the configurationK . The configurationK
overrides the type assignments in the environment Γ, so for each variable reference x, if x 7→ G ∈ K ,
then x has type G, otherwise it retrieves the type from Γ. Since we assume all parameters have
unique names, this can be achieved without ambiguity. For example, let add = λx : Dyn.λy : Dyn.x+y
and Φ; Γ ⊢GC add { e1t : Int | (2c, P1), then e1t includes two casts ⌈Int⇐ Dyn⌉ to the parameters
x and y, whereas in Φ;KaΓ ⊢GC add { e2t : Int | (c, P2), then e2t includes a cast ⌈Int⇐ Dyn⌉ to the
parameter x only. The reason is that Ka forces the parameter y to have type Int.

We can now state the correctness of the rules in Figure 9 in two steps. First, Theorem 5.1 states
that the cost of any configuration can be obtained through some variational cost calculation.

Theorem 5.1 (Variational Cost Completeness). For any K , if Φ;KΓ ⊢GC es { et : G |A,
then there exists some variational cost analysis Φ; Γ ⊢v es { evt : M |Av | Ω such that et = ⌊evt ⌋δ ,
A = ⌊Av ⌋δ , G = ⌊M⌋δ , and K = ⌊Ω⌋δ , where δ can be decided by es and K .

Given an expression e and a configuration K for e , the corresponding decision δ can be deduced by
considering which alternative of each choice in e must be selected. For example, in the add example
above, the decision for Ka is {B.1,D.2}.

According to Theorem 5.1, it’s possible that we need to use different variational cost analyses to
obtain costs for different configurations. Fortunately, the following theorem shows that we can
find appropriate variational types for dynamic parameters such that the costs for all configurations

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:21

can be obtained through just one variational cost analysis. We capture this idea in the following
theorem.

Theorem 5.2 (Variational Costs Soundness and Efficiency). Given any es for which the
entire configuration space is well-typed, there exists some Ω for Φ; Γ ⊢v es { evt : M |Av | Ω such
that Φ; ⌊Ω⌋δ Γ ⊢GC es { ⌊e

v
t ⌋δ : ⌊M⌋δ | ⌊Av ⌋δ for any δ .

The proof of both theorems follows by induction over the rules in Figure 9, connecting to the
rules in Figure 5. The Ω in Theorem 5.2 can be found by migrational type inference [Campora
et al. 2018]. Moreover, we can lift the restriction about the configuration space being well-typed by
employing the pattern-constrained judgments introduced in that work, and our implementation
uses this approach. In fact, the inference process and variational cost analysis can be combined and
computed together, and we refer to this combined process as Cost Space Typing (CST).

5.4 Uses of Variational Costs

In Section 1.2, we outlined several scenarios programmers might encounter when migrating
gradually typed programs. This subsection will briefly describe how, given a source program es ,
the CST Φ; Γ ⊢v es { evt : M |Av | Ω can be used to solve the problems posed by these scenarios.
Supporting the scenarios often involves comparing costs that refer to different loop variables

and so are not comparable in principle. As a pragmatic solution, we simply instantiate all loop
variables by the same large integer and then directly compare the resulting values. For example,
given 2l1 + 4 and 3l2 + 3, we can instantiate both l1 and l2 by 100 and conclude that the first cost
is cheaper than the second since 204 < 303. The evaluation in Section 6 shows that this simple
solution yields good results, although future work could attempt to constrain loop variables more
precisely through program analysis.

In scenario S1, the goal is to maximize static safety first, then optimize for performance. Given the
migrational typing, we can apply the method described by Campora et al. [2018] to extract the set
of decisions corresponding to the most static migrations. Each decision δi in this set characterizes a
maximal set of parameters to be annotated in es . Finally, we select the δi that minimizes the value
of ⌊Av ⌋δi after instantiating loop variables in the approximation Av as described above.
In scenario S2, the goal is to maximize performance, before maximizing the presence of static

types for safety. To do this, we instantiate the loop variables then search Av for the decisions
with minimum cost. The search procedure is a straightforward recursive function that keeps track
of the lowest cost encountered as it builds up the decision(s) corresponding to the lowest costs
encountered. We can allow the user to require certain functions or parameters to be annotated by
simply selecting Av with the corresponding selectors before searching. This allows programmers
to optimize performance while still enforcing certain typing goals. To find incremental migrations
where at most c out of n parameters are migrated, we first compute the set of

(
n
c

)
decisions where

c parameters are annotated, then minimize Av under this set of decisions.
In scenario S3, the goal is to increase type-based safety guarantees without hurting performance.

This can be achieved by searching Av for all costs that are lower than the current program. We can
efficiently represent the result of such a search as a mask that can be applied to the typing results,
similar to the treatment of type errors in Chen et al. [2012]. This would effectively produce a set of
migrations that increase performance, after which we could maximize the static checking done in
the remaining migrations, as described in the solution to S1.
Finally, in scenario S4, the goal is to understand why a particular migration exhibits degraded

performance and to make informed decisions about the performance of different migrations.
Supporting this scenario requires selecting the relevant migrations from Av , then translating the
symbolic costs in each into explanations. For example, when considering configurations ① and ② in

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

the program in Figure 1, we can report that ② has worse performance than ① since it inserts casts
in the l1 and l2 loops in part_A_times_u and part_At_times_u that were not there before. Currently,
Herder contains a basic implementation capable of reporting the differences in the set of loop
labels between two configurations based on their costs.

6 IMPLEMENTATION AND EVALUATION

In this section we discuss Herder, a tool for carrying out variational cost analysis for Reticulated
Python programs. In Section 6.1 we give an overview of its implementation. We then evaluate how
well Herder realizes the capabilities described in Section 1.3, which are needed to support the
scenarios described in Section 1.2. Since capability C1, migrational type inference, is provided by
earlier work [Campora et al. 2018], we focus on C2 and C3. Specifically, in Sections 6.2 and 6.3, we
evaluate how effectively and efficiently, respectively, Herder identifies performant configurations.

6.1 Implementation

Herder is implemented on top of Reticulated’s guarded semantics [Vitousek et al. 2014], extending
it with migrational type inference [Campora et al. 2018], cost analysis of casts, and variations.
In addition to the constructs from Figure 4, our implementation supports conditionals and other
Python constructs.We use the sympy package—which supports creating, algebraically manipulating,
and substituting symbolic variables—to implement the approximation language.

6.2 Evaluation of Effectiveness

We evaluate the effectiveness of Herder by showing how often it can pick the most performant
configurations among all valid configurations. Our sample programs are drawn from the Python
benchmarks suite,3 and are largely a subset of those used by Vitousek et al. [2017] to evaluate
Reticulated, plus some programs from the scimark benchmark. We also generated three synthetic
benchmarks (syn) to stress-test the performance of Herder, when the cost analysis contains deeply
nested choices, a large number of choices, or a large number of code lines, respectively.
Among the 15 programs we evaluated, 3 of them, namely fankuch, nqueens, and pyflate, have

very uniform performance, meaning that the addition of type annotations has very little effect on
performance. As expected, Herder correctly identifies the most static configuration as having the
best performance. For this reason, in the rest of this section, we will not discuss them in detail.
The metrics and evaluation results for the remaining 12 programs, are given in Figure 10. The

first column group lists the name of each benchmark, its lines of code, and the total number of
function parameters it contains. The number of parameters describes the size of the search space
for our analysis. Since each parameter can either be statically annotated by the inferred type or
not, a program with p parameters contains up to 2p configurations.
The second column group reports the results of running Herder on each of the benchmarks.

The Analysis column reports the time to perform the analysis in seconds. The Rec column reports
the number of static type type annotations that Herder recommended be added to the program.
Finally, the Run column reports the time in seconds needed to execute the target program after
adding the recommended type annotations.

To evaluate the effectiveness of Herder at recommending performant configurations, we must
compare the recommended configuration to other possibilities. For each benchmark, if there are
fewer than 100 potential configurations, we generate and time every one. If there are more than 100
potential configurations (i.e. if the number of parameters is greater than 6), we randomly sample a

3http://pyperformance.readthedocs.io/benchmarks.html

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:23

Dynamic Worst Best
Bench LOC #P Analysis Rec Run Time Ratio Time Ratio Time Ratio Top 3
float 64 6 1.67 3 69.7 103.6 1.49 128.7 1.83 61.5 0.88 ✓
meteor 254 27 12.92 2 27.0 19.0 0.70 134.2 4.96 19.0 0.70 ✓
nbody 157 16 3.34 6 64.3 65.6 1.02 174.0 2.70 59.6 0.93 ✓
pidigits 68 5 0.71 4 8.1 47.0 5.83 45.7 5.65 8.0 0.99 ✓
raytrace 448 66 63.60 47 30.1 56.7 1.88 109.3 3.63 30.1 1 ✓
sm(FFT) 140 14 1.95 8 34.4 35.0 1.02 48.0 1.40 29.1 0.85 ✗
sm(MC) 97 5 0.96 4 40.8 7.4 0.18 48.9 1.2 7.4 0.18 ✓
sm(SOR) 110 16 7.19 16 37.8 97.9 2.59 120.7 3.19 37.8 1 ✓
spectral 85 4 0.82 2 17.9 48.8 2.73 93.8 5.24 17.9 1 ✓
syn_1 363 41 139.49 34 77.0 128.6 1.67 270.9 3.51 77.0 1 ✓
syn_2 3710 787 1438.47 716 10.0 30.8 3.08 53.6 5.36 10.0 1 ✓
syn_3 15213 2505 14607.84 2444 139.8 131.3 0.94 452.9 3.24 131.3 0.94 ✓

Fig. 10. Evaluation of Herder. All timing results in the table are in seconds. The first column group provides

basic stats about each benchmark: its name, lines of code, and the number of parameters it contains. The

second group describes the results: the time to perform the analysis, the number of recommended static

annotations, and the runtime of the resulting program. The third group compares the runtime of the resulting

program to other potential configurations: the fully dynamic program, and the worst and best configurations

identified identified in our sample. The final column indicates whether the configuration recommended by

Herder is among the top 3 of most performant configurations (✓) or not (✗).

set of 100 configurations, generating and timing the variant program for each. As a baseline, we
also measure the runtime of the fully dynamically typed version of each benchmark.

The third column group reports results from this comparison. The first pair of columns reports the
runtime of the fully dynamic version of the benchmark and the ratio of the dynamic version over our
recommended configuration. The next two pairs of columns report the runtime and corresponding
ratios for the worst and best configuration in our sample for each benchmark. Finally, in the last
column of the table, we report how the runtime of our recommended configuration ranked amongst
the runtimes of all variants in the sample.

The results demonstrate that Herder is effective at finding performant configurations. In 11/12
cases, it recommends one of the top three configurations. When the recommendation does not
achieve the best performance, its recommendation is usually within 15% of the optimal configuration.
Moreover, we observe that the worst configuration is often 3-5x slower than Herder’s pick. Some
of the ratio results along with the top 3 result might seem odd. For example, sm(MC) has a poor
“Best” ratio, yet Herder’s pick remains in top 3, while sm(FFT) has a better “Best” ratio, but the
pick is not in top 3. The reason for the poor “Best” ratio for sm(MC) is that the performance for the
dynamic configuration was an outlier and Herder’s pick had the fastest time compared to the rest.
With respect to sm(FFT), most of the configurations had similar times, so the pick happened to fall
out of top 3, even though the difference between the third best time and the pick’s time was small.
Three interesting cases are the scimark Monte Carlo benchmark, sm(MC); the meteor_contest

benchmark; and the syn_3 benchmarks, where the fully dynamic version of the program is faster
than any gradually typed version. Currently, Herder only introduces choices to reason about
alternative function parameter types but it infers return types directly. This means it does not
consider the fully dynamic version of the program as a potential configuration. This limitation can
be easily remedied by extending Herder to reason variationally about return types in addition to

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Anon.

parameter types, allowing return types to remain dynamic when needed, so that accurate costs can
be provided for these benchmarks.

Notice that the fully dynamic configuration does not necessarily have near-best performance, as
is typical in Racket [Takikawa et al. 2016]. This is due to the fact that Python programs frequently
unpack parameters via tuple assignment, which causes casts to be inserted. Typed literals can also
cause some overhead in programs. Consequently, in the Rec column, we observe a fair amount of
variability in whether the best configurations are more or less static. In some benchmarks, such
as nbody, the recommended configuration has fewer type annotations, and in sm(MC), we know
the best configuration contains no annotations. On the other hand, the best configuration for the
scimark successive over-relaxation benchmark, sm(SOR), adds annotations to all parameters.

Effectiveness of supporting programmigration scenariosWe next evaluate how well Herder
can support each migration scenario we outlined in Section 1.2. For scenarios S1 and S2 we use
Figure 10 as evidence. Specifically, Figure 10 shows how well Herder can find globally performant
configurations via the cost analysis, and consequently it directly supports S2.

To support S1, we first need to identify the migration space that contains all different migrations
that maximize static type safety, which can be realized efficiently through the method described
in Campora et al. [2018]. Performance optimization in this scenario then amounts to locating the
most performant migration within the identified migration space, which is much smaller than
the global space Herder searches for in Figure 10. Therefore, we believe that the effectiveness
demonstrated in Figure 10 carries over to this scenario. As evidence of this argument, in our
evaluation for S3 in the next paragraph, Herder similarly has to search a small space, and it
achieved good results.
In scenario S3, we are considering the case where a recently added type annotation hurt per-

formance, and asking Herder whether it is preferable to remove the annotation or add more
annotations to restore performance. To evaluate this scenario, from the 9 non-synthetic programs
in Figure 10, we generated 45 configurations by randomly adding type annotations. For 15 of these
configurations, the performance is better than their corresponding untyped configurations. For
the remaining 30 configurations, we asked Herder whether adding more type annotations (and if
so, which ones) or removing the annotations yields better performance. In 28 out of 30, Herder
generates correct recommendations, yielding an accuracy of 93.3%.

Finally, for S4, it is hard to empirically verify Herder’s ability to support this scenario without
a user study. Still, Figure 10 and our evaluation for S3 show that Herder is effective at both
finding performant configurations and directly comparing the performance of two configurations.
Consequently, explanations generated by Herder are likely to help users understand the perfor-
mance bottleneck present in the slower configuration. We leave a user study evaluating Herder’s
effectiveness for supporting S4 to future work.

6.3 Evaluation of Efficiency

In this subsection we evaluate how Herder scales with the size and complexity of the source
program. First, we consider how Herder scales as the number of type parameters in the program
increases. Each parameter effectively doubles the size of the search space since it can either be
annotated by a static type or not. For our evaluation, we artificially generate a set of programs with
an increasing number of parameters. Programs with 2–12 parameters were produced by repeating
a small arithmetic function with two parameters 1–6 times; programs with more parameters were
produced by copying, pasting, and renaming several functions from the FFT and nbody benchmarks.
For each program, we measure the runtime of Herder to type and cost the entire configuration
space and produce a recommendation. As baselines for comparison, we also measure the runtime

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:25

Params Herder Brute-force Dynamic
2 0.07 0.27 0.03
4 0.12 1.48 0.05
6 0.18 7.47 0.09
8 0.27 36.97 0.12
10 0.38 128.75 0.14
12 0.531 2545.33 0.17
51 13.03 - 4.12
99 40.41 - 13.09
195 181.86 - 46.76
387 675.64 - 178.94
807 2896.76 - 773.20

LOC Herder Brute-force Dynamic
89 0.83 7.81 0.44
130 1.20 12.40 0.73
225 2.08 21.70 1.10
1090 10.66 105.18 5.38
2146 25.63 296.72 14.16
5010 80.60 605.70 30.82

Fig. 11. Runtime of Herder as the number of parameters increases (left) and the number of LOC increases

but keep the number of parameters the same (right), compared to the runtime of a brute-force search and

the time to type and cost a single all-dynamic variant. All times are in seconds.

of a corresponding brute-force search of all configurations (that is, generating each configuration
and typing/costing each one separately), and also the runtime of typing and costing a single
configuration—in this case, the configuration where all parameters are dynamically typed.
The results of the evaluation are shown in the Figure 11 (left). In the table, observe that the

brute-force approach scales poorly since the search space grows exponentially with the number
of parameters. In contrast, Herder scales approximately linearly with the number of parameters,
taking 2–4 times as long as typing and costing a single variant.
Next we consider how Herder scales as the size of the source program increases. For our

evaluation, we generate programs of increasing size but with a fixed number of 4 parameters. We
do this by starting with a subset of the scimark FFT benchmark with four parameters, then increase
the length of its core function by repeating its body multiple times. As before, we compare Herder
with a brute-force search and also with the time to type and cost the all-dynamic variant.

The results of the evaluation are shown in Figure 11 (right). In the table, observe that all three
measurements scale approximately linearly with respect to the size of the program. The runtime of
the brute-force approach is approximately 20 times the time to type and cost a single variant. This
is as expected since the size of the search space is 24 = 16 and there is some overhead associated
with generating the variants and identifying the cheapest configuration. More significantly, observe
that Herder also scales linearly and takes 2–3 times the single-variant time. This demonstrates
that the size of the program does not induce an unexpected performance hit in our approach.
Together, the evaluations in Sections 6.2 and 6.3 demonstrate that Herder can accurately and

efficiently recommend performant migrations of gradually typed Python programs.

7 RELATEDWORK

7.1 Static Cost Analysis

There has been substantial work on developing static analyses to infer bounds on the resource
usage of programs. For example, automatic cost analyses have been defined over the ML family of
languages that can bound the usage of time, memory, or energy [Hoffmann et al. 2017; Hoffmann
and Hofmann 2010; Hoffmann and Shao 2015]. Similarly, our work is to statically measure the
overhead of a certain resource, namely the number of casts. The methodology used in those
works relies on rich type information and uses linear constraint solving to generate the resource

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Anon.

bounds. Since gradually typed programs typically lack the rich type information to support these
methodologies, our approach is primarily syntax driven. While a main focus of those works is to
derive asymptotically tight upper bounds in their analysis for a given program, the main purpose
of our cost semantics is to compare the costs of different configurations by observing the worst
case behaviors possible for these programs. As Section 6.2 shows, our cost analysis serves this goal
well, accurately finding configurations with little overhead from inserted casts.

Our approach of translating source programs into a corresponding cost language was inspired
by Danner et al. [2015, 2013]. Their work infers worst-case bounds on the number of evaluation
steps to execute a program; we infer worst case bounds on the number of casts performed in the
evaluation of a gradual program. We adapt the syntactic generation of approximations from their
work in order to produce costs for an appropriate formal model for languages like Reticulated.
Unlike theirs, our cost semantics is fully automatic. This means that we can apply our cost analysis
to existing Reticulated Python programs without users providing any additional information to
help us extract costs.

Relational cost analysis [Çiçek et al. 2017] fulfills a very similar role to variational cost analysis.
In relational cost analysis the goal is to reason about the difference in cost between two similar
programs or two similar runs of the same program. For example, Çiçek et al. [2016] discuss
a relational cost analysis measuring the overhead of a rerun on a program with incremental
computation based on changes to the input. While a main goal of relational cost analyses is to relate
the cost of two runs of the same program with different inputs, that of variational cost analysis
in this work is to relate costs of two similar programs that differ in program structures. However,
variational cost analysis still bears much resemblance to unary typing in Çiçek et al. [2017] in the
way both reason about unrelated parts of two programs through the idea of sharing. It would be
interesting to see how precisely variational techniques can interact with relational cost analysis.

7.2 Gradual Typing Performance

Since Takikawa et al. [2016] reported that sound gradually typed programs can incur massive
slowdown when mixing dynamic and static code, there have been several efforts to address the
problem.
The Nom programming language [Muehlboeck and Tate 2017] addresses it by designing the

static and dynamic semantics for a gradually typed language from the ground up instead of adding
gradual typing to an existing language. This helps reduce the overhead of running casts. Nom’s
design allows programs to gain performance benefits as more types are added to a program.

Bauman et al. [2017] focus on improving performance for Racket by using a tracing JIT compiler,
Pycket, with new representations for contracts that eliminate much of their overhead. Since Pycket
is a tracing JIT, it can effectively optimize untyped and typed boundaries upon observing them.
Though Pycket makes the interaction between typed and untyped code less costly, overhead still
remains at certain code boundaries. It would be interesting to see how variational cost analysis and
inference can be used to recommend types that eliminate the introduction of typed border crossing
in code that iterates heavily, which would in turn help Pycket.

Richards et al. [2017] also help performance by designing intrinsic object contracts for implemen-
tations on a virtual machine, allowing the shape checks used by the VM’s JIT to act as the runtime
type-safety checks for gradual typing. It improves performance by not creating new allocations
when a contract is applied to an object that shares the shape of another object that already had the
contract applied to it. This design means that the performance of their approach is not determined
by the interaction of typed and untyped code, although they can still incur significant memory over-
head in certain typing configurations. It would be interesting to see if a variational cost semantics
can be created to reason about how different typings cause large memory consumption.

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:27

Overall, our approach is orthogonal to these approaches in quite a few ways. First, our method-
ology is a cost semantics and not a change to a runtime environment. Therefore its goal is not
solely optimizing performance but instead reasoning about how types affect performance and
can thus be used to support the different migration scenarios outlined in Section 1.2. Second, our
semantics is not appropriate for such specialized implementations, where the interaction of typed
and untyped code does not incur significant overhead. Instead it is intended for languages that
employ the traditional approach of translating gradually typed programs into untyped programs.
This makes it appropriate for the implementation of Typed Racket used in practice, which has
a traditional contract-based guarded semantics, or for many of the different semantics available
for Reticulated. Since many existing gradual languages work by translating typed programs into
untyped programs with proxies, we feel that our cost semantics is widely applicable. Finally, the
implementation of the cost analysis is relatively simple, with relatively small additions to the type
system and cast insertion rules. In contrast, the engineering effort for designing or modifying a
JIT compiler may take substantially more work, and codesigning a language’s type system and
semantics is not an applicable strategy for many existing gradually typed languages.
There are other approaches using type-based techniques to improve program performance.

Rastogi et al. [2012] use gradual type inference to help soundly migrate programs toward more
precise static types. In their system more precise typing is correlated with performance so they
want to infer as many types as possible while preserving soundness. Similarly our system can be
adapted to other type inference systems, such as the flow based one they present, so that we can
infer many possible most-static types, then find one optimizing static checking and performance.

Finally, confined gradual typing [Allende et al. 2014] introduces constructs to explicitly manage
data flow between static and dynamic parts of the program, preventing costly boundary crossings.
Our cost analysis can be thought of as away to reason aboutwhat parts of the programs contain these
costly boundary crossings and what type assignments can limit these crossings. This potentially
allows our system to help programmers by automatically finding and diagnosing these boundaries.

7.3 Migrational and Variational Typing

The design of the variational cost semantics in Section 5 builds on the technical machinery of
migrational typing [Campora et al. 2018], which in turn builds on the prior work on variational
typing [Chen et al. 2012, 2014]. This machinery is important to being able to efficiently infer types
and perform cost analysis for the entire space of potential migrations. Since migrating gradual
types [Campora et al. 2018] focused on the static type safety of gradual programs, it does not
contain variational cast insertion, which is necessary in this work in order to measure the costs of
the inserted casts. Aside from integrating the cost semantics, the implementation of Herder also
required extending that work to support new constructs, such as loops, that are not present in the
original calculus but widely used in Python.

8 CONCLUSION

Gradual typing promises the reconciliation of static and dynamic typing. However, a major practical
limitation of current implementations is that the interfaces between dynamically and statically
typed code can have a huge runtime overhead. Different assignments of type annotations have a
significant affect on these costs, but it is hard to predict how to assign types to improve performance.
This leaves programmers stuck wondering how to migrate programs to types fulfilling the safety
and performance goals they desire for their program.

To address this issue, we have presented a variational cost semantics for gradually typed programs
that approximates the runtime costs for all possible type configurations of a program. The cost
semantics provides a systematic way to create tools that help programmers identify performant

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

migrations and understand how typing affects performance as they migrate their programs. We
have implemented our semantics on top of Reticulated Python in Herder, and our evaluation
shows that Herder is effective, efficient, and can be used to aid programmers in many different
migration scenarios.

Our approach is amenable to many gradually typed languages in which (partial) type inference
is possible, and where inserted casts incur noticeable performance overhead. Overall, this makes
variational cost analysis a viable approach to reasoning about the complex interaction of typing and
performance during gradual program development. In the future, we will investigate how the ideas
in this paper can help address the performance problem in other gradual language implementations,
such as Typed Racket.

REFERENCES

Esteban Allende, Johan Fabry, Ronald Garcia, and Éric Tanter. 2014. Confined Gradual Typing. SIGPLAN Not. 49, 10 (Oct.
2014), 251–270. https://doi.org/10.1145/2714064.2660222

Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017. Sound Gradual Typing: Only
Mostly Dead. Proc. ACM Program. Lang. 1, OOPSLA, Article 54 (Oct. 2017), 24 pages. https://doi.org/10.1145/3133878

John Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2018. Migrating Gradual Types. In Proceedings of the
45th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL ’18). ACM, New York, NY, USA.

Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017. Relational Cost Analysis. SIGPLAN Not.
52, 1 (Jan. 2017), 316–329. https://doi.org/10.1145/3093333.3009858

Ezgi Çiçek, Zoe Paraskevopoulou, and Deepak Garg. 2016. A Type Theory for Incremental Computational Complexity with
Control Flow Changes. SIGPLAN Not. 51, 9 (Sept. 2016), 132–145. https://doi.org/10.1145/3022670.2951950

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2012. An Error-tolerant Type System for Variational Lambda Calculus.
In Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming (ICFP ’12). ACM, New York,
NY, USA, 29–40. https://doi.org/10.1145/2364527.2364535

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2014. Extending Type Inference to Variational Programs. ACM Trans.
Program. Lang. Syst. 36, 1, Article 1 (March 2014), 54 pages. https://doi.org/10.1145/2518190

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2016. A Calculus for Variational Programming. In European Conf. on
Object-Oriented Programming (ECOOP) (LIPIcs), Vol. 56. 6:1–6:26.

Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. 2015. Denotational Cost Semantics for Functional Languages with
Inductive Types. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP
2015). ACM, New York, NY, USA, 140–151. https://doi.org/10.1145/2784731.2784749

Norman Danner, Jennifer Paykin, and James S. Royer. 2013. A Static Cost Analysis for a Higher-order Language. In
Proceedings of the 7th Workshop on Programming Languages Meets Program Verification (PLPV ’13). ACM, New York, NY,
USA, 25–34. https://doi.org/10.1145/2428116.2428123

Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Representation for Software Variation. ACM Trans.
Softw. Eng. Methodol. 21, 1, Article 6 (Dec. 2011), 27 pages. https://doi.org/10.1145/2063239.2063245

Martin Erwig and Eric Walkingshaw. 2013. Variation Programming with the Choice Calculus. In Generative and Transfor-
mational Techniques in Software Engineering IV (GTTSE 2011), Revised and Extended Papers (LNCS), Vol. 7680. 55–99.

Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In Proceedings of the 42Nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA,
303–315. https://doi.org/10.1145/2676726.2676992

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 429–442.
https://doi.org/10.1145/2837614.2837670

Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York,
NY, USA, 359–373. https://doi.org/10.1145/3009837.3009842

Jan Hoffmann and Martin Hofmann. 2010. Amortized Resource Analysis with Polynomial Potential - A Static Inference
of Polynomial Bounds for Functional Programs. In In Proceedings of the 19th European Symposium on Programming
(ESOP’10) (Lecture Notes in Computer Science), Vol. 6012. Springer, 287–306.

Jan Hoffmann and Zhong Shao. 2015. Automatic Static Cost Analysis for Parallel Programs. In Proceedings of the 24th
European Symposium on Programming on Programming Languages and Systems - Volume 9032. Springer-Verlag New York,
Inc., New York, NY, USA, 132–157. https://doi.org/10.1007/978-3-662-46669-8_6

, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/2714064.2660222
https://doi.org/10.1145/3133878
https://doi.org/10.1145/3093333.3009858
https://doi.org/10.1145/3022670.2951950
https://doi.org/10.1145/2364527.2364535
https://doi.org/10.1145/2518190
https://doi.org/10.1145/2784731.2784749
https://doi.org/10.1145/2428116.2428123
https://doi.org/10.1145/2063239.2063245
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1007/978-3-662-46669-8_6


1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:29

Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally Alive and Well. In OOPSLA. ACM, New York,
NY, USA. https://doi.org/10.1145/3133880

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The Ins and Outs of Gradual Type Inference. SIGPLAN Not. 47, 1
(Jan. 2012), 481–494. https://doi.org/10.1145/2103621.2103714

Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM Already Knew That: Leveraging Compile-time Knowledge
to Optimize Gradual Typing. Proc. ACM Program. Lang. 1, OOPSLA, Article 55 (Oct. 2017), 27 pages. https://doi.org/10.
1145/3133879

Jeremy Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the Design Space of Higher-Order Casts. In Programming
Languages and Systems, Giuseppe Castagna (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 17–31.

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In IN SCHEME AND FUNCTIONAL
PROGRAMMING WORKSHOP. 81–92.

Jeremy G. Siek and Manish Vachharajani. 2008. Gradual Typing with Unification-based Inference. In Proceedings of the 2008
Symposium on Dynamic Languages (DLS ’08). ACM, New York, NY, USA, Article 7, 12 pages. https://doi.org/10.1145/
1408681.1408688

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual
Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 456–468. https://doi.org/10.1145/2837614.2837630

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: From Scripts to Programs. In Companion to
the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’06).
ACM, New York, NY, USA, 964–974. https://doi.org/10.1145/1176617.1176755

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt, Ben Greenman, AndrewM. Kent, Vincent St-Amour,
T. Stephen Strickland, and Asumu Takikawa. 2017. Migratory Typing: Ten Years Later. In 2nd Summit on Advances in
Programming Languages (SNAPL 2017) (Leibniz International Proceedings in Informatics (LIPIcs)), Benjamin S. Lerner,
Rastislav Bodík, and Shriram Krishnamurthi (Eds.), Vol. 71. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 17:1–17:17. https://doi.org/10.4230/LIPIcs.SNAPL.2017.17

Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. 2014. PEP 484 – Type Hints. (2014). https://www.python.org/dev/
peps/pep-0484/#rationale-and-goals

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for
Python. (2014), 45–56.

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-world Soundness and
Collaborative Blame for Gradual Type Systems. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL 2017). ACM, New York, NY, USA, 762–774. https://doi.org/10.1145/3009837.3009849

A PROOFS

Before we start on the proofs for the lemmas and theorems from Section 4 and 5, we assert some
lemmas whose proofs are straightforward. First, is a lemma stating that variable references are
preserved by the cast insertion procedure.

Lemma A.1 (Translation preserves variables). If x ∈ es and Γ ⊢G es { et : G then x ∈ et .

The proof of this lemma follows inductively from the cast insertion rules in Figure 5. This next
lemma states that our transformation for cost analysis also preserves variable references.

Lemma A.2 (Transformation preserves variables). If x ∈ et then x ∈↘ (et ).

The proof of this lemma is from case analysis on Figure 6, and we assume that any inserted
variables from the procedure do not capture existing variables. Finally, we assume that an inversion
rule exists for our cost semantics. We only state the cases used in proofs of lemmas and theorems.

Lemma A.3 (Inversion of the cost relation).

(1) If Φ ⊢c λx .et |A then A = (0,Λx .A′) for some A’ and where Φ, x 7→ x ⊢c et |A
′.

The proof of this immediately follows from the definition of the cost semantics.
With these lemmas in hand, we can provide the proof of Lemma 4.1.

, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3133880
https://doi.org/10.1145/2103621.2103714
https://doi.org/10.1145/3133879
https://doi.org/10.1145/3133879
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://www.python.org/dev/peps/pep-0484/#rationale-and-goals
https://www.python.org/dev/peps/pep-0484/#rationale-and-goals
https://doi.org/10.1145/3009837.3009849


1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

Proof of Lemma 4.1. We are given:

Φ; Γ ⊢GC λx .es { λx .et : G |A

The beginning of the proof begins by using Lemma A.1 and Lemma A.2 to derive x ∈↘ (λx.et ).
Note that↘ (λx.et ) = λx. ↘ (et ). Next, we use Lemma A.3 to derive:

A = (0,Λx .A′) Φ, x 7→ x ⊢c et | (0,Λx .A′)

Since we know that x ∈ et , then Var must have been used when producing the cost for et to derive:

Φ, x 7→ x ⊢c x | x

Thus, we know x ∈ A′ and consequently x ∈ (0,Λx .A′).
□

For the proof of Lemma 4.2, we will only consider the most interesting cases, namely those
involving references.

Proof of Lemma 4.2. This proof will follow by induction over the rules in Figure 5, also using
the rules in Figure 6 and Figure 7. For each case, we are given the following:

Φ; Γ ⊢GC es { et : G | (C, P ) x : G ′ x ∈ vars(es ) Φ; Γ ⊢GC e ′s { e ′t : G ′ | (C ′, P ′)

Case Ref: We have es = ref es1 and↘ (et ) =↘ (ref et1) = let z = ↘ (et1) in λy.z. This means
that the potential must be P = Λy.(0, P1) where P1 is the potential for↘ (et1). Our induction
hypotheses are:

Φ; Γ ⊢GC es1 { et1 : G1 | (C1, P1) Φ; Γ ⊢GC [es ′/x]es1 { e ′t1 : G1 | (C
′′
1 , [P

′/x]P1)
From the induction hypothesis we directly have: Φ ⊢c↘ (e ′t1) | (C

′′
1 , [P

′/x]P1) and we know
z will be assigned↘ (e ′t1). We can derive (assuming y < vars(↘ (e ′t1)):

Φ, y 7→ y, z 7→ [P ′/x]P1 ⊢c z | (0, [P ′/x]P1)

Since we know that↘ (ref et1) = let z = ↘ (et1) in λy.z, we can similarly use Abs on the
substituted program to derive:

Φ, z 7→ [P ′/x]P1) ⊢c λy.z | (0,Λy.(0, [P ′/x]P1))

Finally, we can use Let to derive:

Φ ⊢c let z = ↘ (e ′t1) in λy.z | (C ′′1 ,Λy.(0, [P
′/x]P1))

Case Assign: We have es = es1:= es2 and↘ (et ) =↘ (et1:= et2) =↘ (et1) ↘ (et2). This means
that the potential must be P = (P1 P2) where P1 is the potential of ↘ (et1) and P2 is the
potential of↘ (et2). Our induction hypotheses are:

Φ; Γ ⊢GC es1 { et1 : G1 | (C1, P1) Φ; Γ ⊢GC es2 { et2 : G2 | (C2, P2)
Φ; Γ ⊢GC [es ′/x]es1 { e ′t1 : G1 | (C

′′
1 , [P

′/x]P1) Φ; Γ ⊢GC [es ′/x]es2 { e ′t2 : G2 | (C
′′
2 , [P

′/x]P2)
Directly from our induction hypotheses we have Φ ⊢c e ′t1 | (C

′′
1 , [P

′/x]P1) and Φ ⊢c
e ′t2 | (C

′′
2 , [P

′/x]P2). Notice that due to the structure of↘ we have↘ (e ′t1 e
′
t2) =↘ (e ′t1) ↘

(e ′t2). We can then use App with these hypotheses to conclude:

Φ ⊢c↘ (e ′t1 e
′
t2) |C

′′
1 +C

′′
2 ⊕ ([P ′/x]P1 [P ′/x]P2)

From the definition ⊕, the potential of this approximation is solely formed from
([P ′/x]P1 [P ′/x]P2) and via a usual definition of substitution, we see that the potential
of [e ′s/x]es is [P ′/x](P1 P2)

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:31

Case Deref: We have es = ! es1 and↘ (et ) =↘ (! et1) =↘ (et1) (). This means that the potential
must be P = (P1 0) where (P1) is the potential for↘ (et1) and 0 is the potential for (). Our
induction hypotheses are:

Φ; Γ ⊢GC es1 { et1 : G1 | (C1, P1) Φ; Γ ⊢GC [es ′/x]es1 { e ′t1 : G1 | (C
′′
1 , [P

′/x]P1)
From the induction hypothesis we have Φ ⊢c e ′t1 | [P

′/x]P1. We know that ↘ (! e ′t1) =
↘ (e ′t1) () and by definition we know 0 = [es ′/x]0. With this, we can use App to derive:

Φ ⊢c↘ (e ′t1) () |C
′′
1 ⊕ [es ′/x]P1 [es ′/x]0

We can then use the definition of substitution to see that the potential for [es ′/x]es1 is
[es ′/x](P1 0).

The rest of the cases follow easily from the induction hypothesis, since the transformation
algorithm does not change the structure of the top level target expressions. □

For the proof Theorem 4.3, we will discuss the most interesting terms only, namely function
application and recursive let bindings. To state termination, we informally use an evaluation relation
without presenting a full dynamic semantics for the language, since the input language is fairly
standard. The only aspect of termination that complicates the combined cast insertion and costing
process is the actual cost analysis derivations in ⊢C , so we ignore presenting termination arguments
for the cast insertion and transformation algorithm.

Proof of Theorem 4.3. The proof proceeds by induction over the target language expressions,
with the induction hypothesis et ⇓ v ⇒ Φ ⊢c↘ (et ) |A.
Case App: We have the following induction hypotheses:

et1 ⇓ λx.e
′
t1 ⇒ Φ ⊢c↘ (et1) | (C1,Λx .A

′
1) et2 ⇓ v2 ⇒ Φ ⊢c↘ (et2) | (C2, P2)

From the statement of the theorem, we know that et1 et2 ⇓ v . This implies that:

λx.e ′t1 v2 = [v2/x]e ′t1 = v

To generate the cost for↘ (et1) ↘ (et2) we use App to derive:

Φ ⊢c↘ (et1) ↘ (et2) |C1 +C2 ⊕ (Λx .A′1 P2)

The only term that causes concerns about non-termination comes from (Λx .A′1 P2). By
definition, this term equals:

[P2/x]A′1
Since each subterm of [v2/x]e ′t1 evaluates, we can apply the induction hypothesis to each
corresponding cost subterm generated in [P2/x]A′1 and consequently the evaluation of this
cost analysis term terminates.

Case Letrec: We assume that letrec is defined in terms of a fixed point operator, that is used to
eventually evaluate et1 to a value. We then have the following induction hypotheses:
et1 ⇓ v1 ⇒ Φ ⊢c↘ (et1) | (C1, P1) [v1/x]et2 ⇓ v2 ⇒ Φ,x 7→ l · nl · P ′ ⊢c↘ (et2) | (C2, P2)

By definition we have↘ (letrec x = et1 in et2) = letrec x =↘ (et1) in ↘ (et2) Directly from
the induction hypotheses, we know that producing P1 terminates. The other premises for Letrec
calculate S , n, P ′, and l and none of these calculations can cause non-termination. From this and
the induction hypotheses, we know that production of (C2, P2) completes. Consequently, know
Letrec terminates and derives:

Φ ⊢c↘ (letrec x = et1 in et2) | (C1 +C2, P2)

□

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Anon.

In the following proofs for theorem 5.1 and theorem 5.2 we will only relate the typing and cast
insertion of the two systems and will ignore relating the costs, because we would need to invoke
the rules in Figure 7, and overall the structure arguments using variations and decisions are similar
to what is done for cast insertion. For the following theorems we only consider cases for more
interesting rules, namely variable references, function abstractions, and function applications. The
machinery for other cases follow from what is shown for these cases.

Proof of Theorem 5.1. This theorem’s proof follows from induction over the rules in Figure 5.
The general structure of the induction hypothesis is: KΓ ⊢G es { et : G ⇒ Γ ⊢v es { evt : M | Ω
where G=⌊M⌋δ and K=⌊Ω⌋δ .
Case Var: Since we have x 7→ G ∈ Γ and we can directly use this environment to derive Γ ⊢v x {

x : G | ∅ where K = ∅ and δ = ∅.
Case Abs: We first focus on the case where the abstraction contains a static annotation.

Subcase G=T Given that we know:
KΓ, x 7→ T ⊢G es { et : G Γ ⊢G λx : T .es { λx : T .et : T →G

Our induction hypotheses are:
Γ ⊢v es { evt : M | Ω ⌊M⌋δ=G ⌊Ω⌋δ = K ⌊evt ⌋δ = et

With the induction hypotheses it’s very easy to see that we can use AbsV to conclude:

Γ ⊢v λx : T .es { λx : T .evt : T →M | Ω

We can see that from the induction hypothesis that ⌊T →M⌋δ=⌊T ⌋δ →⌊M⌋δ=T →G and
we also know ⌊Ω⌋δ=K . Finally, we need to show ⌊λx : T .evt ⌋δ=λx : T .et . We already know
from the induction hypotheses that ⌊evt ⌋δ=⌊et ⌋δ , and so it’s clear that we can expand the
selection on the entire abstraction to get the desired result.

Subcase G=Dyn: Given that we know:

KΓ, x 7→ Dyn ⊢G es { et : G2 Γ ⊢G λx : Dyn.es { λx : Dyn.et : G1→G2 KΓ ⊢G x { x : G1
Our induction hypotheses are:

Γ ⊢v es { evt : M | Ω ⌊M⌋δ=G ⌊Ω⌋δ = K ⌊evt ⌋δ=et
From the induction hypotheses, we can directly use AbsDynV to conclude:

Γ ⊢v λx : Dyn.es { λx : Dyn.et : d⟨Dyn,V ⟩→M | Ω ∪ {x 7→ d⟨Dyn,V ⟩}

From the induction hypothesis, we already know ⌊M⌋δ = G. We just need to show
⌊d⟨Dyn,V ⟩⌋δ = G1. First, notice that since ⌊Ω⌋δ = K , we have K (x ) = ⌊Ω(x )⌋δ =
⌊d⟨Dyn,V ⟩⌋δ . Finally, we need to show ⌊λx : Dyn.evt ⌋δ=λx : Dyn.et . We already know from
the induction hypotheses that ⌊evt ⌋δ=⌊et ⌋δ , and so it’s clear that we can expand the selection
on the entire abstraction to get the desired result.

Case App: We are given the following:
KΓ ⊢G es1 { et1 : G1 KΓ ⊢G es2 { et2 : G2 dom (G1) ∼ G2

We have the following induction hypotheses:
Γ ⊢v e1s { ev1t : M1 | Ω1 ⌊M1⌋δ = G1 ⌊Ω1⌋δ = K ⌊ev1t ⌋δ = e1t
Γ ⊢v e2s { ev2t : M2 | Ω2 ⌊M2⌋δ = G2 ⌊Ω2⌋δ = K ⌊ev2t ⌋δ = e2t

Themain difficulty we face is showing that there is always some arbitraryM1 andM2 such that
M1 ≈ M2. We always haveG1 ∼ G2 and so at the very least, we can haveM1 = G1 andM2 = G2
and then we have M1 ≈ M2. The rest of the results for this case follow straightforwardly
with δ = ∅. Otherwise, assume that this is not the case but we haveM1 ≈ M2 and from our

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Casts and Costs: Harmonizing Safety and Performance in Gradual Typing 1:33

induction hypotheses we have⌊M1⌋δ = G1 and ⌊M2⌋δ = G2. We can use AppV to conclude:

Γ ⊢v es1 es2 { Vdom (M )→ cod (M1) ⇐ M1Wevt1Vdom (M1) ⇐ M2W evt2 : cod (M1) | Ω1 ∪ Ω2

Since we already had ⌊Ω1⌋δ = K and ⌊Ω2⌋δ = K , it is clear that

⌊Ω1 ∪ Ω2⌋δ = K

Moreover, since we already had ⌊M1⌋δ = G1, it’s clear that we have:

⌊cod (M1)⌋δ = cod (G1)

Additionally, the induction hypotheses make it clear that ⌊Vdom (M1)→ cod (M1) ⇐ M1W⌋δ =
Vdom (G1)→ cod (G2) ⇐ G1W and ⌊Vdom (M1) ⇐ M2W⌋δ = Vdom (G1) ⇐ G2W, since the
selections on the casts eliminate the variational types. With the induction hypotheses for the
target expressions, we can conclude:

⌊Vdom (M1)→ cod (M1) ⇐ M1Wevt1 Vdom (M1) ⇐ M2Wevt2⌋δ =
Vdom (G1)→ cod (G1) ⇐ G1Wet1 Vdom (G1) ⇐ G2Wet2

□

Proof of Theorem 5.2. This theorem’s proof follows from induction over the rules in Figure 9.
Case Var: The proof of this case is straightforward in that ⌊Ω⌋δ is used for the configuration, and

if x is not bound in Ω then it was already in Γ.
Case AbsDynV: We are given the following:

Γ, x 7→ d⟨Dyn,V ⟩ ⊢v es { evt : M | Ω′
Γ ⊢v λx : Dyn.es { λx : Dyn.evt : d⟨Dyn,V ⟩→M | Ω′ ∪ {x 7→ d⟨Dyn,V ⟩}

Let Ω= Ω′ ∪ {x 7→ d⟨Dyn,V ⟩}. We have the following induction hypothesis:

⌊Ω⌋δ Γ, x 7→ Dyn ⊢G es { evt : ⌊M⌋δ

Since we know that x ∈ ⌊Ω⌋δ , we know that the type of x will be updated to use ⌊Ω(x)⌋δ =
⌊d⟨Dyn,V ⟩⌋δ . We can then use Abs to conclude the following:

⌊Ω⌋δ Γ ⊢G λx : Dyn.es { λx : Dyn.⌊evt ⌋δ : ⌊d⟨Dyn,V ⟩⌋δ →⌊M⌋δ

It is clear that λx : Dyn.⌊evt ⌋δ = ⌊λx : Dyn.evt ⌋δ and ⌊d⟨Dyn,V ⟩⌋δ →⌊M⌋δ = ⌊d⟨Dyn,V ⟩→M⌋δ .
Case AbsV: This case proceeds quite similarly to the case for AbsDynV except that the steps involv-

ing the configuration is unnecessary.
Case AppV: We are given the following:

Γ ⊢v es1 { evt1 : M1 | Ω1 Γ ⊢v es2 { evt2 : M2 | Ω2
Γ ⊢v es1 es2 { Vdom (M1)→ cod (M1) ⇐ M1Wevt1 Vdom (M1) ⇐ M2Wevt2 : cod (M1) | Ω1 ∪ Ω2

We have the following induction hypotheses:
⌊Ω1⌋δ Γ ⊢G es1 { ⌊e

v
t1⌋δ : ⌊M1⌋δ ⌊Ω2⌋δ Γ ⊢G es2 { ⌊e

v
t2⌋δ : ⌊M2⌋δ

Note that since we know that we have:

Γ ⊢v es1 es2 { Vdom (M1)→ cod (M1) ⇐ M1Wevt1 Vdom (M1) ⇐ M2Wevt2 : cod (M1) | Ω1 ∪ Ω2

we also know that dom (M1) ≈ M2. The definition of compatability implies that we have:

⌊dom (M1)⌋δ ∼ ⌊M2⌋δ

, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Anon.

This allows us to use App to conclude:

⌊(Ω1 ∪ Ω2)⌋δ Γ ⊢G es1 es2 {

V⌊dom (M1)⌋δ →⌊cod (M1)⌋δ ⇐ ⌊M1⌋δW⌊evt1⌋δ V⌊dom (M1)⌋δ ⇐ ⌊M2⌋δW⌊evt2⌋δ : ⌊cod (M1)⌋δ

□

, Vol. 1, No. 1, Article 1. Publication date: January 2018.


	Abstract
	1 Introduction
	1.1 Performance Problem of Gradual Typing
	1.2 Program Migration Scenarios
	1.3 Capabilities of a Tool to Support Program Migration
	1.4 Relation with Previous Work and Contributions of this Work

	2 Typing, Gradually and Variationally
	2.1 Gradual Typing
	2.2 Variational Typing

	3 The Workflow of Herder
	4 Costs for a Single Configuration
	4.1 The Cost of a Basic Cast
	4.2 Estimating Cast Costs in Programs
	4.3 Cast Insertion Rules
	4.4 Cost of Wrapped Casts
	4.5 Cost Computing Rules
	4.6 Properties

	5 Costs for All Configurations
	5.1 Syntax
	5.2 Variational Cost Analysis
	5.3 Properties
	5.4 Uses of Variational Costs

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation of Effectiveness
	6.3 Evaluation of Efficiency

	7 Related Work
	7.1 Static Cost Analysis
	7.2 Gradual Typing Performance
	7.3 Migrational and Variational Typing

	8 Conclusion
	References
	A Proofs

