CHEM 251 (Fall-2003) Exam 1 (100 pts)

Name:			, SSN										
(Circle	LAST NAME, First the alphabet segment of your LAST NAME): A-C	D-H	I-L	M-S	T-Z								
Please	answer the following questions:												
Part I: Multiple Choices (52 pts: 13 @ 4 pts each). Circle the <u>ONE</u> best answer:													
1.	Which of the following atoms has the lowest first ionization energy (IE ₁)?												
	a) P b) Se c) S		d) Cl	l									
2.	When an element # 119 is discovered, most likely	it will be cla	ssified as a	u(n)									
	a) halogen	b) alkali m	etal										
	c) transition metal	d) noble ga	as										
3.	What is the electron configuration of Bi atom?												
	a) [Xe] $_4f^{14} _{5}d^{10} _{6}s^2 _{6}p^3$	b) [Xe] 4f	$^{4}_{6}d^{10}_{6}s^{2}_{6}$	p ³									
	c) [Xe] $_4f^{14} _5d^{10} _6p^5$	d) [Xe] 5d	$^{10} {}_{6} {\rm s}^2 {}_{6} {\rm p}^3$										
4.	What is the predicted shape of XeF ₄ ?												
	a) Tetrahedral	b) distorte	d tetrahed	ral									
	c) octahedral	d) square	planar										
5.	Which of the following species is expected to be <i>p</i>	volar?											
	a) XeF ₄	b) BeF ₂											
	c) BF ₃	d) SF ₄											
6.	Which one of the following species has a Lewis st	ructure simil	ar to that o	f O ₃ ?									
	a) CO ₂	b) N ₃ ⁻											
	c) OCN	d) SO ₂											
7.	Which of the following species has the shortest S-	O bond?											
	a) SO ₂	b) SO_3^{2-}											
	c) SO ₃	d) SO_4^{2-}											
8.	Which of the following species is expected to be pa	aramagnetic)										
	a) Be ₂	b) Li ₂											

c) B₂ d) F₂

9. Most noble gases do not readly combine with other elements. One exception to this is the combination of Xe with F. This can be explained by considering the relatively:
(1) ionization energy of Xe along with (2) electron affinity of F

(1)	(2)
low	high
low	low
high	high
high	low
	(1) low low high high

- 10. From the top to the bottom within a group of elements in the Periodic Table, the ionization energy generally:
 - a) decreases, because the nuclear charge increases
 - b) decreases, because the atomic size increases
 - c) increases, because the nuclear charge increases
 - d) increases, because the atomic size increases
- 11. Use the shapes of these third shell orbitals to arrange them in order of increasing energy (lowest to highest) for a ground state silicon atom:

a) $1 = 2 = 3 = 4 = 5$	b) 3 < 1 = 2 = 5 < 4
c) 3 < 1 < 4 < 5 < 2	d) 3 < 1 = 5 < 4 = 2

12. For a single electron in the 4d orbital, which of the following set of quantum numbers is NOT considered as allowed values:

a) $n = 4$, $l = 2$, $m_l = -2$, $m_s = +\frac{1}{2}$	b) $n = 4$, $\ell = 2$, $m_{\ell} = 0$, $m_s = -\frac{1}{2}$
c) $n = 4$, $\ell = 2$, $m_{\ell} = 1$, $m_s = -\frac{1}{2}$	d) $n = 4$, $\ell = 3$, $m_{\ell} = +2$, $m_s = +\frac{1}{2}$

13. The first four ionization energies of an atom X are 403, 2633, 3900 and 5080 kJ/mol. To what periodic group X belongs?

a) Group 4	b) Group 2	c) Group 14	d) Group 16
------------	-------------------	--------------------	-------------

<u>Part II</u> (48 pts: 4 @ 12 pts) <u>Show all work for full credit</u>. Please express all answers with <u>proper</u> <u>units</u> and correct number of significant figures.

(a) Construct an MO diagram for the formation of O₂; show only the participation of the valence orbitals of the oxygen atoms. (b) Use the diagram to rationalize the following trend in O-O bond distances: O₂, 121 pm; O₂⁺, 112 pm; O₂⁻, 134 pm; O₂^{2⁻}, 149 pm. (c) Which of these species are paramagnetic?

2. Use te following data to estimate the bond dissociation enthalpy of HF: D(H-H) = 436 kJ/mol; D(F-F) = 158 kJ/mol; χ^{P} (H) = 2.2; χ^{P} (F) = 4.0

D(HF) =		

3. The bond angles 117°, 134°, and 180° belong to the species NO₂⁺, NO₂⁻, and NO₂, but not in that order. Match the species with their bond angles and explain your answer.

4. a) Explain why the laughing gas N₂O exists in the arrangement NNO rather than NON?

b) Carbon monoxide, CO has a small dipole moment (0.12 D). Explain why this molecule binds transition metals from the carbon end and not from the oxygen end?

PREFERENCE SHEET FOR CHEM 251

Exam 1 – Fall 2003

You will have <u>50 minutes</u> to complete this exam.

The exam has 4 pages plus Periodic Table and Reference page.

When you are told to do so, tear off the Periodic Table cover sheet and use as required during exam.

Useful Information:

 $1.0 \text{ eV} \approx 96.5 \text{ kJ/mol}$

Useful Equations:

 $\sqrt{\Delta D} = \chi^{P}(F) - \chi^{P}(H)$

	1	1																2
	1																	2
1	H		Peri	odic	Tab	le of	the	Elem	lents									He
	1.01		7											1	1	1	1	4.00
	3	4											5	6	7	8	9	10
2	Li	Be											B	С	Ν	0	F	Ne
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	Р	S	Cl	Ar
	22.99	24.30											26.98	28.08	30.97	32.06	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
-	39.1	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aσ	Cd	In	Sn	Sb	Те	T	Xe
-	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.1
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Ηf	Тя	W	Re	Os	Ir	Pt	Au	Hσ	ТІ	Pb	Bi	Po	At	Rn
v	132.9	137.3	138.9	178.5	181.0	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
	87	88	89	104	105	106	107	108	109	110	111	112						
7	Fr	Ra	Ac	Rf	Dh	Sσ	Bh	Hs	Mt	Uun	Uuu	Uub						
,	(223)	226.0	227.0	(261)	(262)	(262)	(262)	(265)	(266)	(269)	(272)	(277)						
	· /			()	(202)	(203)	()	()	()]					
				50	50	60	61	62	62	61	65	66	67	60	60	70	71	1
				20	39 D		01	02 C	03	04	03	00	0/	00	09	70	/1	
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0	-
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	