Name: ___ CLID # ________________________________

LAST NAME, First
(Circle the alphabet segment of your LAST NAME): A-B C-F G-L M-O P-Z

Please answer the following questions:

Part I: Multiple Choices (44 pts: 11 @ 4 pts each). Circle the **ONE best answer:**

1. Solid gold(I), AuCl (K_sp = 2.0 x 10^{-13}) is dissolved when excess, CN^- is added to give a water soluble complex ion, Au(CN)_2^-. If K_f for Au(CN)_2^- from Au^+ and CN^- is 2.0 x 10^{38}. What is the value of K for the following reaction:
 \[\text{AuCl (s) + 2 CN}^- (aq) \rightarrow \text{Au(CN)}_2^- (aq) + \text{Cl}^- (aq) \]
 a) 4.0 x 10^{25} b) 8.0 x 10^{12} c) 2.0 x 10^{38} d) can’t be calculated from the given data.

2. Which of the following statements is FALSE:
 a) Reactions with negative \(\Delta H^\circ_{\text{rxn}} \) and positive \(\Delta S^\circ_{\text{rxn}} \) are *product-favored* at all temperatures.
 b) The entropy of a pure, perfect crystal is zero at 0 K.
 c) A sample of pure I_2 vapor has higher entropy than pure solid I_2 (both at room temperature).
 d) At the same temperature a gaseous CH_4 molecule has more entropy than a gaseous C_4H_{10} molecule.

3. The following reaction is endothermic: 3 O_2 (g) \rightarrow 2 O_3 (g). The reaction is:
 a) spontaneous at all temperatures
 b) non- spontaneous at all temperatures
 c) spontaneous at high temperatures
 d) spontaneous at low temperatures.

4. What is the standard cell potential, E^\circ, for the reaction?
 \[\text{Br}_2 (l) + 2 \text{Ce}^{3+} (aq) \rightarrow 2 \text{Br}^- (aq) + 2 \text{Ce}^{4+} (aq) \]
 \[
 \begin{align*}
 \text{Given that} & \quad 2 \text{Ce}^{4+} (aq) + 2e^- \rightarrow 2 \text{Ce}^{3+} (aq) \quad E^\circ = +1.61 \text{ V} \\
 \text{and} & \quad \text{Br}_2 (l) + 2e^- \rightarrow 2 \text{Br}^- (aq) \quad E^\circ = +1.08 \text{ V} \\
 \end{align*}
 \]
 a) -2.69 V b) + 0.53 V c) - 0.53 V d) + 2.69 V

5. For which of the following processes is most likely to have the most positive change in entropy?
 a) Hg (l) \rightarrow Hg (s)
 b) 4 Fe (s) + 3 O_2 (g) \rightarrow 2 Fe_2O_3 (s)
 c) 2 SO_2 (g) + O_2 (g) \rightarrow 2 SO_3 (g)
 d) 2 NH_3 (g) \rightarrow N_2 (g) + 3 H_2 (g)
6. Which of the following sulfate salts is the least soluble in water?
 a) BaSO₄ (Ksp = 1.1 x 10⁻¹⁰) b) SrSO₄ (Ksp = 2.8 x 10⁻⁷)
 c) PbSO₄ (Ksp = 1.8 x 10⁻⁸) d) Ag₂SO₄ (Ksp = 1.7 x 10⁻⁵)

7. For Zn(OH)₂ (Ksp = 4.5 x 10⁻¹⁷), what is the maximum concentration of Zn²⁺ in a solution of pH = 10.0
 a) 4.5 x 10⁻⁹ b) 4.5 x 10⁻⁷ c) 4.5 x 10³ d) 4.5 x 10⁻¹³

8. For a certain reaction, the enthalpy change is -148.5 kJ, the entropy change is 256 J/K, and the free energy change is -250.1 kJ. At what temperature is the reaction occurring in ºC?
 a) 124 b) 102 c) 85 d) 210

9. Using Nernst equation, what is the Ecell, at 25 ºC for the reaction:
 Zn (s) + Cu²⁺ (aq) Zn²⁺ (aq) + Cu (s)
 Given that Eºcell = +1.100 V, [Cu²⁺] = 1.0 M and [Zn²⁺] = 0.10 M
 a) 1.13 V b) 1.16 V c) 1.10 V d) 1.07 V

10. Given the following data, calculate ∆G, in kJ, for the following reaction at 25ºC:
 2 NH₃ (g) N₂ (aq) + 3 H₂ (g)
 ∆Gf (kJ/mol) -16.48
 a) 32.96 b) -32.96 c) -16.48 d) 16.48

11. Calculate the molar solubility of PbI₂ (Ksp = 7.1 x 10⁻⁹).
 a) 1.2 x 10⁻³ b) 1.9 x 10⁻³ c) 8.4 x 10⁻⁵

Part II. (12 pts: 3 @ 4 pts): Fill the blanks in each of the following sentences (positive, negative, zero, oxidation, reduction, spontaneous, non-spontaneous, < 1, > 1, anode, cathode, electrolysis):
 a) The solubility product expression for Mg₃(PO₄)₂ is evaluated by the expression:
 Ksp = ---------------------------
 b) In voltaic cells, reduction takes place at the ------------------ , and ∆G is always -----------------.
 c) The conditions that would apply to a reaction that is spontaneous at room temperature:
 ∆Gº = ------------------------ and K ----------------

Part III (48 pts) Calculations: Show all work for full credit. Please express all answers with proper units and correct number of significant figures.
1. **(10 pts)** Will a precipitate form when 150. mL of 1.5 x 10^{-3} M Pb(NO_3)_2 is mixed with 100. mL of 0.025 M NaCl? (K_{sp} for PbCl_2 = 1.6 x 10^{-5}). Explain your answer.

\[
P (9 \times 10^{-8}) < K_{sp}
\]

2. **(10 pts)** Using the standard electrode potentials given in the data sheet, calculate \(\Delta E^\circ_{\text{cell}} \) and \(\Delta G^\circ_{\text{cell}} \) for the following reaction:

\[
\text{Cl}_2 (g) + 2 \text{Br}^- (aq) \rightleftharpoons 2 \text{Cl}^- (aq) + \text{Br}_2 (l)
\]

\[
\Delta E^\circ_{\text{cell}} = +0.283 \text{ V} \quad \Delta G^\circ_{\text{cell}} = -54.6 \text{ kJ}
\]

3. **(12 pts)** For the following reaction at 298 K:

\[
\text{Al}_2\text{O}_3 (s) + 2 \text{H}_2 (g) \rightarrow 2 \text{Al (s)} + 3 \text{H}_2\text{O (g)}
\]

<table>
<thead>
<tr>
<th>(\Delta H_f^\circ) (kJ/mol)</th>
<th>(S^\circ) (J/K.mol)</th>
<th>(\Delta G^\circ_{\text{rxn}}) (kJ)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1669.8</td>
<td>51.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>130.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>28.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-241.8</td>
<td>188.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Calculate \(\Delta G^\circ \) in kilojoules
b) Calculate the equilibrium constant for the reaction at 298 K.
4. (16 pts) In the titration of 25.0 mL of 0.120 M formic acid, HCO₂H (Ka = 1.8 x 10⁻⁴) with 0.100 M NaOH solution:

a) What is the pH of HCO₂H solution before the titration begins?

 pH =

b) What is the pH at the mid point of the titration?

 pH =

c) What is the pH at the equivalence point?

 pH =

d) What is the pH of the solution when 31.0 mL of NaOH was added?

 pH =
Useful Equations:

\[\text{Cl}_2 (g) + 2e^- \rightarrow 2 \text{Cl}^- (aq) \quad E^0 = +1.360 \text{ V} \]

\[\text{Br}_2 (l) + 2e^- \rightarrow 2 \text{Br}^- (aq) \quad E^0 = +1.077 \text{ V} \]

Useful Information:

- Faraday’s constant, \(F = 9.65 \times 10^4 \text{ C/mol} = 9.65 \times 10^4 \text{ J/K.mol} \)
- 1 V = 1 J.C\(^{-1}\)
- Standard temperature = 298.15 K
- 1 atm = 760 torr = 760 mmHg
- \(K = 273 + °C \)

Periodic Table of the Elements

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td>1.01</td>
<td>4.00</td>
<td>6.94</td>
<td>9.01</td>
<td>10.81</td>
<td>12.01</td>
<td>14.01</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Li</td>
<td>Be</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
</tr>
<tr>
<td>6.94</td>
<td>9.01</td>
<td>22.99</td>
<td>24.30</td>
<td>26.98</td>
<td>28.09</td>
<td>30.15</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
</tr>
<tr>
<td>39.1</td>
<td>40.08</td>
<td>44.96</td>
<td>47.88</td>
<td>50.94</td>
<td>52.00</td>
<td>54.94</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
</tr>
<tr>
<td>85.47</td>
<td>87.62</td>
<td>88.91</td>
<td>91.22</td>
<td>92.91</td>
<td>95.44</td>
<td>98.90</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
</tr>
<tr>
<td>132.9</td>
<td>137.3</td>
<td>138.9</td>
<td>178.5</td>
<td>181.0</td>
<td>183.8</td>
<td>186.2</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Rf</td>
<td>Db</td>
<td>Sg</td>
<td>Bh</td>
</tr>
<tr>
<td>(223)</td>
<td>226.0</td>
<td>227.0</td>
<td>(261)</td>
<td>(262)</td>
<td>(263)</td>
<td>(262)</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td>Np</td>
<td>Pu</td>
<td>Am</td>
<td>Cm</td>
</tr>
<tr>
<td>232.0</td>
<td>231.0</td>
<td>238.0</td>
<td>237.0</td>
<td>244.0</td>
<td>243.0</td>
<td>247.0</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Ce</td>
<td>Pr</td>
<td>Nd</td>
<td>Sm</td>
<td>Eu</td>
<td>Gd</td>
<td>Tb</td>
</tr>
<tr>
<td>140.1</td>
<td>140.9</td>
<td>144.2</td>
<td>150.4</td>
<td>152.0</td>
<td>157.2</td>
<td>158.9</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Tb</td>
<td>Dy</td>
<td>Ho</td>
<td>Er</td>
<td>Yb</td>
<td>Lu</td>
<td>Vb</td>
</tr>
<tr>
<td>162.5</td>
<td>164.9</td>
<td>167.3</td>
<td>168.9</td>
<td>173.0</td>
<td>175.0</td>
<td>(222)</td>
</tr>
</tbody>
</table>