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INTRODUCTION

1/f noise in semiconductor devices has been explained using the number fluctuation model
[1-3] as well as the mobility fluctuation formula [4,5]. The first experimental hint towards a con-
nection between lattice scattering and mobility fluctuation was by Hooge and Vandamme [6].
Using the idea of phonon population fluctuations [7,8] we shall estabhsh this connection in detall
Also, the effect of a finite electric field will be examined.

ESTABLISHMENT OF g-r SPECTRUM FOR PHONON POPULATION FLUCTUATIONS

Consider pflonons with wave vector g. The number of such phonons = n,. From statisti-

cal considerations, we have ¢

ag = 1/l(exp(Fw,/KT) — 1. §))
Also we have

Anf = ig(L + ). @

Both eqs (1) and (2) do not refer to any specific mechanism for this phonon population
fluctuation. In general, there are a number of mechanisms which can give rise to phonon scatter-
ing and hence population fluctuations. From the experimental data [9,10], for germanium and sil-
icon, it can be inferred that thermal conductivity, above 30K is dominated by isotope scattering
for fairly pure samples. For samples with higher doping, phonon scattering from chemical impuri-
ties lowers the thermal conductivity further. However, whatever be the mechanism, the existence
of time constant Tq gives,
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San(f) = an2 T;—i—z A3)
q

ESTIMATION OF 7, FOR ISOTOPE SCATTERING
From [9], we get

4r M2

= “)
sq* AM? (m

m = atomic mass, AM? =3, x;(AM;)?

J
where x; is the fraction of isotopes with mass M; and p = density of crystal.

Tq=

Substituting typical numbers for silicon, ie., AM?=0.209, M =28, p=2.33 g/cm3,
s = 8X10> m/sec, m = 28 atomic mass units we get

* Now with Bell Laboratories, Murray Hill, N. J. 07974.
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74 = AemX3.7X10%)*  sec. (%

Then for 7, = 107 sec, A = 86A, and for T, = 106 sec, A =8.6 um. Thus for a range of 12
decades, the corresponding phonon wave lengths are quite meaningful.

ABSOLUTE LIMITS FOR 1/f SPECTRUM

The limits of 7, are the limits of the 1/f spectrum. An upper bound can be derived by tak-
ing A = lattice spacmg

for A =S5A, fypa=14X10""Hz

Also, since the ¢ = 0 mode always exists (if not for the sample then for the noise cage as a
whole), it would seem that there is no lower limit for the 1/f spectrum. However, bounds more
restrictive than those derived above, might exist, from other considerations.

PHONON MEAN-FREE PATH AND SAMPLE LENGTH

Note that even for 7, = 1076 sec, the phonon has a mean-free path of 0.8 cm. It therefore
seems likely that for a sample whose dimensions are smaller than 0.8 cm, boundary scattering [11]
should become important.

However, one should note that this is true only for ‘“‘perfectly rough” surfaces. From
[12,13], it is clear, that the roughness of the surface dcpends upon the phonon wave length. Thus
for surface roughness <<86A (corresponding to 7, =10"¢ sec), we will have specular reflection
which does not give rise to scattering. Hence the estlmate of mean-free path ( ¢ and relaxation
time 7, are valid. '

MEAN-FREE PATH FORMULATION FOR CARRIERS

In order to determine the momentum relaxation tlme, we shall evaluate the collision term in
Boltzmann Transport Equation.

From time dependent perturbation theory, we get

af — €azt: 1 _92_ _ )
at ]co“ Qm)? p J v, [(ng+l)f(k)[l f(k)].

—nf @) 1~ £ )]s few) — )t ®)

To be able to extract momentum relaxation time under low electric field conditions, we have
to assume

fe " "
ng +1
or for n >> 1, we have
Ang < ng Q)
Now
— s _
Anﬂ Lctual - nﬂ(l+n¢)

Therefore, let

ZL - 2 2
Anq llowed Anq hctual®a

=1 +i)a}, 0<a, <l ®)
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We shall refer to this as the small fluctuation approximation. Then under the small fluctuation
approximation and assuming elastic collisions [f (k) = f((k")], we get after some manipulation
1 1

_ 1
( v 4r ) 0(0,9)

((6,¢) = average distance travelled by carriers before they are scattered in (8,¢) direction. In this
case, it is independent of the electron energy.

FLUCTUATIONS IN CARRIER MEAN-FREE PATH
1 _ mPeg

(0,6)  =hC,
Using (3) and (8), we get

(1 —cos 0)sin 0dod¢ 9)

Tiwq ng. (10)

Sy(8 =((0,¢9) —L1— a2 ‘ 11
10.8)() ={(0,9) —— 1+w21'2 : (11
We shall now average this over electrons travelling along the z axis with different speeds (Fig. 1).
' z
k

Fig. 1 Coordinate axes showing the
direction of motion of the carrier along
the vector K before scattering and along
k’ after scattering.

<>

%
ind -4
Now sin 2 %
Hence, as we vary k, keeping 0 and ¢ constant, we are in effect varying the magnitude q. How-

ever, q is related to 7. Thus averaging over energy is effectively an average over a time constant
distribution. We shall presently show that,

dr 1 .
g(r)dr = . (12)
Now
— m?eihw m2e2,
((0,) =———L 7, KT. (13)

=
*xC;, * FaxCy

This is independent of gq. Therefore, averaging over energy and dropping the subscript q, we get
from (11) .
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s _(@9) o for L << w << (14)
10.00) In(ry/rg) f or 7o ¢ 2]

From (9) and (14) we get
S¢(f) al 1

= —. 15

e G/ f (13)

1
Now u = Tne;] <—V->Q

S,) _ el 1

1 (7
”'2 ln(‘fl/fo) f
Since { for different carriers fluctuate independently, we get for N carriers
Su(f) — a}v 1l _ « (18)
u? In(7y/79) fN SN
where
2
Qg
-=————— 19
*= Mn(ri/o) | (19)

Note for —- = 10'2 and a, =~ 0.2 we get @ =1.4X1073 which is close to Hooge’s parameter

70
ag = 2X1073. A detailed determination of a, and its dependence on doping is still to be investi-
gated.

DETERMINATION OF THE TIME CONSTANT DISTRIBUTION FUNCTION

The averaging over the magnitude of g is done for g pointing in a particular direction.
Hence we are concerned with phonons with g pointing along a specific direction. Hence the pho-
non distribution can be treated to be one dimensional.

The number of states which are responsible for generating the modulation with time con-
stant 7, is proportional to the number of phonons with wave vector g.

Number of phonons with wave vector g

_ KT

=ig=2— (KT >>Tw,) (20)
. q9

_ , _ KT
g(r)dr anyd, = T %- . , 1)
Now, for point defect scattering in general, we have

1

T —r (22)
q
This yields,
4q __1d7
q 4 7
Comparing with (21) and normalizing, we get
g(r)dr=—7>t 47 (23)

In(ry/79) 7
as assumed in (12).
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NOISE IN PRESENCE OF OTHER SCATTERING MECHANISMS

According to the model presented here, 1/ 'f noise is generated by fluctuations in the popula-
tion of acoustic phonons and hence in the zero electric field acoustic mobility u,.,. In the pres-
ence of other noiseless scattering mechanisms, following Hooge and Vandamme [6], we get

’ 2

I

Kaco

(24)

a= aac[

ELECTRIC FIELD DEPENDENCE OF 1/f NOISE
Experimentally it has been shown [16] that
a(E) = a(0)/[1 + [E/E{)A. (25)

where uoEC = speed of sound in the medium. This can be explained [17] in terms of the
present model by considering the acoustic and optical mode scattering jointly and letting only g,
generate I/f noise. The field dependence for p, that fits with the above analysis is given by

Bac = Hacoll + (E/E)2. ' (26)
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