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Learning and development are ubiquitous.  When new skills are acquired, when attitudes and 

interests develop, people change.  Measuring change demands a longitudinal perspective, with multiple 

waves of data collected on representative people at sensibly spaced intervals.  Multi-wave data is usually 

analyzed by individual growth modeling using a multilevel model for change (Singer & Willett, 2003).  

Recently, innovative methodologists (McArdle, 1986; Meredith & Tisak, 1990; Muthen, 1991) have 

shown how the multilevel model for change can be mapped onto the general covariance structure model, 

such as that implemented in LISREL.  This has lead to an alternative approach to analyzing change known 

as latent growth modeling.  In this chapter, we describe and link these two analogous approaches. 

Our presentation uses four waves of data on the reading scores of 1,740 Caucasian children from 

the Early Childhood Longitudinal Study (ECLS-K; NCES, 2002).  Children’s reading ability was 

measured in the Fall and Spring of kindergarten and first grade – we assume that test administrations were 

six months apart, with time measured from entry into kindergarten.  Thus, in our analyses, predictor t -- 

representing time – has values 0, 0.5, 1.0 and 1.5 years.  Finally, we know the child’s gender (FEMALE:  

boy = 0, girl = 1), which we treat as a time-invariant predictor of change.1 

 

I. Introducing Individual Growth Modeling 

In Figure 1, we display empirical reading records for ten children selected from the larger dataset. 

 In the top left panel is the growth record of child #15013, a boy, with observed reading score on the 

ordinate and time on the abscissa.  Reading scores are represented by a “+” symbol and are connected by 

a smooth freehand curve summarizing the change trajectory.  Clearly, this boy’s reading ability improves 

                                                           
1  The dataset is available at http://gseacademic.harvard.edu/~willetjo/. 
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during kindergarten and first grade.  In the top right panel, we display similar smoothed change 

trajectories for all ten children (dashed trajectories for boys, solid for girls, plotting symbols omitted to 

reduce clutter).  Notice the dramatic changes in children’s observed reading scores over time, and how 

disparate they are from child to child.  The complexity of the collection, and because true reading ability 

is obscured by measurement error, makes it hard to draw defensible conclusions about gender differences. 

 However, perhaps the girls’ trajectories do occupy higher elevations than those of the boys, on average.  

[Insert Figure 1 here] 

Another feature present in the reading trajectories in the top two panels of Figure 1 is the apparent 

acceleration of the observed trajectories between Fall and Spring of first grade.  Most children exhibit 

moderate growth in reading over the first three waves, but their scores increase dramatically over the last 

time period.  The score of child #15013, for instance, rises modestly between waves 1 and 2 (20 to 28 

points), modestly again between waves 2 and 3 (28 to 39 points), and then rapidly (to 66 points) by the 

fourth wave.  Because of this non-linearity, which was also evident in the entire sample, we transformed 

children’s reading scores before further analysis (Singer & Willett (2003, Chapter 6) comment on 

choosing an appropriate transformation).  We used a natural log transformation in order to “pull down” 

the top end of the change trajectory disproportionally, thereby linearizing the accelerating raw trajectory. 

 In the lower panels of Figure 1, we redisplay the data in the newly transformed logarithmic 

world.  The log-reading trajectory of child #15013 is now approximately linear in time, with positive 

slope.  To dramatize this, we have superimposed a linear trend line on the transformed plot (by simply 

regressing the log-reading scores on time using OLS regression analysis for that child).  This trend line 

has a positive slope, indicating that the log-reading score increases during kindergarten and first grade.  In 

the lower right panel, we display OLS-fitted linear trajectories for all ten children in the sub-sample and 

reveal the heterogeneity in change that remains across children (albeit change in log-reading score).  In 

subsequent analyses, we model change in the log-reading scores as a linear function of time. 

The individual change trajectory can be described by a “within-person” or “level-1” individual 
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growth model  (Singer and Willett, 2003, Ch. 3).  For instance, here we hypothesize that the log-reading 

score, Yij, of child i on occasion j is a linear function of time, t:  

ijjiiij ε}tπ{πY ++= 10         (1)

where i  = 1, 2, … , 1740 and j = 1, 2, 3, 4 (with, as noted earlier, t1 = 0, t2 = 0.5, t3 = 1.0 and t4 = 1.5 

years, respectively).  We have bracketed the systematic part of the model to separate the orderly temporal 

dependence from the random errors, εij, that accrue on each measurement occasion.  Within the brackets, 

you will find the individual growth parameters, π0i and π1i: 

• π0i is the intercept parameter, describing the child’s true “initial” log-reading score on entry into 

kindergarten (because entry into kindergarten has been defined as the origin of time). 

• π1i is the slope (“rate of change”) parameter, describing the child’s true annual rate of change in 

log-reading score over time.  If π1i is positive, true log-reading score increases with time. 

If the model is correctly specified, the individual growth parameters capture the defining features of the 

log-reading trajectory for child i.  Of course, in specifying such models, you need not choose a linear 

specification -- many shapes of trajectory are available, and the particular one that you choose should 

depend on your theory of change and on your inspection of the data (Singer & Willett, 2003, Ch. 6).  

One assumption built deeply into individual growth modeling is that, while every child’s change 

trajectory has the same functional form (here, linear in time), different children may have different values 

of the individual growth parameters.  Children may differ in intercept (some have low log-reading ability 

on entry into kindergarten, others are higher) and in slope (some children change more rapidly with time, 

others less rapidly).  Such heterogeneity is evident in the right hand lower panel of Figure 1.  

We have coded the trajectories in the right-hand panels of Figure 1 by child gender.  Displays like 

these help to reveal systematic differences in change trajectory from child to child, and help you to assess 

whether inter-individual variation in change is related to individual characteristics, like gender.  Such 

“level-2” questions -- about the effect of predictors of change -- translate into questions about “between-



Page 4 of 23 
 

person” relationships among the individual growth parameters and predictors like gender.  Inspecting the 

right hand lower panel of Figure 1, for instance, you can ask whether boys and girls differ in their initial 

scores (do the intercepts differ by gender?) or in the rates at which their scores change (do the slopes 

differ by gender?). 

Analytically, we can handle this notion in a second “between-person” or “level-2" statistical 

model to represent inter-individual differences in change.  In the level-2 model, we express how we 

believe the individual growth parameters (standing in place of the full trajectory) depend on predictors of 

change.  For example, we could investigate the impact of child gender on the log-reading trajectory by 

positing the following pair of simultaneous level-2 statistical models:  

iii

iii

ζFEMALEγγπ

ζFEMALEγγπ

111101

001000

++=

++=
     (2) 

where the level-2 residuals, ζ0i and ζ1i, represent those portions of the individual growth parameters that 

are “unexplained” by the selected predictor of change, FEMALE.  In this model, the γ coefficients are 

known as the “fixed effects” and summarize the population relationship between the individual growth 

parameters and the predictor.  They can be interpreted like regular regression coefficients.  For instance, if 

the initial log-reading ability of girls is higher than boys (i.e., if girls have larger values of π0i, on average) 

then γ01 will be positive (since FEMALE = 1, for girls).  If boys have lower annual rates of change (i.e., if 

boys have smaller values of π1i, on average), then γ11 will be negative.  Together, the level-1 and level-2 

models in (1) and (2) make up the multilevel model for change (Singer & Willett, 2003, Ch. 3). 

Researchers investigating change must fit the multilevel model for change to their longitudinal 

data.  Many methods are available for doing this (see Singer & Willett, 2003, Chs. 2 and 3), the simplest 

of which is exploratory, as in Figure 1.  To conduct data-analyses efficiently, the level-1 and level-2 

models are usually fitted simultaneously using procedures now widely available in major statistical 

packages.  The models can also be fitted using covariance structure analysis, as we now describe. 
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II. Latent Growth Modeling 

Here, we introduce latent growth modeling by showing how the multi-level model for change can 

be mapped onto the general covariance structure model.  Once the mapping is complete, all parameters of 

the multi-level model for change can be estimated by fitting the companion covariance structure model 

using standard covariance structure analysis (CSA) software, such as AMOS, LISREL, EQS, MPLUS, 

etc. 

To conduct latent growth analyses, we lay out our data in multivariate format, in which there is a 

single row in the dataset for each person, with multiple (multi-) variables (-variate) containing the time-

varying information, arrayed horizontally.  With four waves of data, multivariate format requires four 

columns to record each child’s growth record, each column associated with a measurement occasion.  

Any time-invariant predictor of change, like child gender, also has its own column in the dataset.  

Multivariate formatting is not typical in longitudinal data analysis (which usually requires a “person-

period” or “univariate” format), but is required here because of the nature of covariance structure 

analysis.  As its name implies, CSA is an analysis of covariance structure in which, as an initial step, a 

sample covariance matrix (and mean vector) is estimated to summarize the associations among (and levels 

of) selected variables, including the multiple measures of the outcome across the several measurement 

occasions.  The data-analyst then specifies statistical models appropriate for the research hypotheses, and 

the mathematical implications of these hypotheses for the structure of the underlying population 

covariance matrix and mean vector are evaluated against their sample estimates.  Because latent growth 

analysis compares sample and predicted covariance matrices (and mean vectors), the data must be 

formatted to support the estimation of covariance matrices (and mean vectors) – in other words, in a 

multivariate format. 

Note, finally, that there is no unique column in the multivariate dataset to record time.  In our 

multivariate format dataset, values in the outcome variable’s first column were measured at the start of 
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kindergarten, values in the second column were measured at the beginning of spring in kindergarten, etc.  

The time values – each corresponding to a particular measurement occasion and to a specific column of 

outcome values in the dataset – are noted by the analyst and programmed directly into the CSA model.  It 

is therefore more convenient to use latent growth modeling to analyze change when panel data are time-

structured – when everyone has been measured on an identical set of occasions and possesses complete 

data.  Nevertheless, you can use latent growth modeling to analyze panel datasets with limited violations 

of time-structuring, by regrouping the full sample into sub-groups who share identical time-structured 

profiles and then analyzing these subgroups simultaneously with CSA multi-group analysis. 

 

II.1 Mapping the Level-1 Model for Individual Change onto the CSA Y-Measurement Model 

In (1), we specified that the child’s log-reading score, Yij, depended linearly on time, measured 

from kindergarten entry.  Here, for clarity, we retain symbols t1 through t4 to represent the measurement 

timing but you should remember that each of these time symbols has a known value (0, 0.5, 1.0 and 1.5 

years, respectively) that is used when the model is fitted.  By substituting into the individual growth 

model, we can create equations for the value of the outcome on each occasion for child i: 

44104

33103
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11101

iiii

iiii

iiii

iiii

+ εt+ π= πY
+ εt+ π= πY
+ εt+ π= πY
+ εt+ π= πY

     (3) 

that can easily be rewritten in simple matrix form, as follows: 
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While this matrix equation is unlike the representation in (1), it says exactly the same thing -- that 

observed values of the outcome, Y, are related to the times (t1, t2, t3, and t4), to the individual growth 
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parameters (π0i and π1i), and to the measurement errors (εi1, εi2, εi3, and εi4).  The only difference between 

(4) and (1) is that all values of the outcome and of time, and all parameters and time-specific residuals, are 

arrayed neatly as vectors and matrices.  (Don’t be diverted by the strange vector of zeros introduced 

immediately to the right of the equals sign – it makes no difference to the meaning of the equation, but it 

will help our subsequent mapping of the multilevel model for change onto the general CSA model). 

In fact, the new growth model representation in (4) maps straightforwardly onto the CSA Y-

Measurement Model, which, in standard LISREL notation, is: 

εηΛτY  +   +  = yy      (5) 

where Y is a vector of observed scores, τ y is a vector intended to contain the population means of Y , 

Λ y  is a matrix of factor loadings, η  is a vector of latent (endogenous) constructs, and ε  is a vector of 

residuals.2  Notice that the new matrix representation of the individual growth model in (4) matches the 

CSA Y-Measurement Model in (5) providing that the observed and latent score vectors are set to: 
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and providing that parameter vector τy and loading matrix Λy are specified as containing the following 

constants and known times: 

                                                           
2    Readers unfamiliar with the general CSA model should consult Bollen (1989). 
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Check this by substituting from (6) and (7) into (5) and multiplying out -- you will conclude that, with 

this specification of score vectors and parameter matrices, the CSA Y-Measurement Model can act as, or 

contain, the individual growth trajectory from the multi-level model for change. 

 Notice that (1), (3), (4), (5) and (6) all permit the measurement errors to participate in the 

individual growth process.  They state that level-1 residual εi1 disturbs the true status of the ith child on the 

first measurement occasion, εi2 on the second occasion, εi3 on the third, and so on.  However, so far, we 

have made no claims about the underlying distribution from which the errors are drawn.  Are the errors 

normally distributed, homoscedastic and independent over time within-person?  Are they heteroscedastic 

or auto-correlated?  Now that the individual change trajectory is embedded in the Y-Measurement Model, 

we can easily account for level-1 error covariance structure because, under the usual CSA assumption of a 

multivariate normal distribution for the errors, we can specify the CSA parameter matrix Θε to contain 

hypotheses about the covariance matrix of ε .  In an analysis of change, we usually compare nested 

models with alternative error structures to identify which error structure is optimal.  Here, we assume that 

level-1 errors are distributed normally, independently, and heteroscedastically over time within-person:3 
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Ultimately, we estimate all level-1 variance components on the diagonal of Θε and reveal the action of 

measurement error on reading score on each occasion. 

The key point is that judicious specification of CSA score and parameter matrices forces the 

level-1 individual change trajectory into the Y-Measurement Model in a companion covariance structure 

analysis.  Notice that, unlike more typical covariance structure (confirmatory factor) analyses, the Λy 

                                                           
3   Supplementary analyses suggested that this was reasonable. 
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matrix in (7) is entirely specified as a set of known constants and times rather than as unknown latent 

factor loadings to be estimated.  Using the Y-Measurement Model to represent individual change in this 

way “forces” the individual-level growth parameters, π0i and π1i, into the endogenous construct vector η, 

creating what is known as the latent growth vector, η .  This notion – that the CSA η-vector can be forced 

to contain the individual growth parameters – is critical in latent growth modeling, because it suggests 

that level-2 inter-individual variation in change can be modeled in the CSA Structural Model, as we now 

show. 

 

II.2 Mapping the Level-2 Model for Inter-Individual Differences in Change onto the CSA 

Structural Model 

In an analysis of change, at level-2, we ask whether inter-individual heterogeneity in change can 

be predicted by other variables, such as features of the individual’s background and treatment.  For 

instance, in our data-example, we can ask whether between-person heterogeneity in the log-reading 

trajectories depends on the child’s gender.  Within the growth-modeling framework, this means that we 

must check whether the individual growth parameters – the true intercept and slope standing in place of 

the log-reading trajectories – are related to gender.  Our analysis therefore asks:  Does initial log-reading 

ability differ for boys and girls?  Does the annual rate at which log-reading ability changes depend upon 

gender?  In latent growth modeling, level-2 questions like these, which concern the distribution of the 

individual growth parameters across individuals and their relationship to predictors, are addressed by 

specifying a CSA Structural Model.  Why?  Because it is in the CSA structural model that the vector of 

unknown endogenous constructs η  -- which now contains the all-important individual growth 

parameters, π0i and π1i -- is hypothesized to vary across people. 

Recall that the CSA Structural Model stipulates that endogenous construct vector η  is potentially 

related to both itself and to exogenous constructs ξ  by the following model: 
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ζΒηΓξαη  +  +  +  =      (9) 

whereα  is a vector of intercept parameters, Γ is a matrix of regression coefficients that relate exogenous 

predictors ξ  to outcomes η , Β  is a matrix of regression coefficients that permit elements of the 

endogenous construct vector η  to predict each other, and ζ is a vector of residuals.  In a covariance 

structure analysis, we fit this model to data, simultaneously with the earlier measurement model, and 

estimate parametersα , Γ and Β .  The rationale behind latent growth modeling argues that, by 

structuring (9) appropriately, we can force parameter matricesα , Γ and Β to contain the fixed effects 

central to the multilevel modeling of change. 

So, what to do?  Inspection of the model for systematic inter-individual differences in change in 

(2) suggests that the level-2 component of the multilevel model for change can be reformatted in matrix 

form, as follows: 
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which is identical to the CSA Structural Model in (9), providing that we force the elements of the CSA Β  

parameter matrix to be zero throughout: 
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and that we permit the α  vector and the Γ matrix to be free to contain the fixed effects parameters from 

the multilevel model for change: 
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and providing we can force the potential predictor of change – child gender -- into the CSA exogenous 

construct vector, ξ.  In this new level-2 specification of the structural model, the latent intercept vector, α, 
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contains the level-2 fixed-effects parameters γ00 and γ10, defined earlier as the population intercept and 

slope of the log-reading trajectory for boys (when FEMALE = 0).  The Γ matrix contains the level-2 

fixed-effects parameters γ01 and γ11, representing increments to the population average intercept and slope 

for girls, respectively.  By fitting this CSA model to data, we can estimate all four fixed effects. 

When a time-invariant predictor like FEMALE is present in the structural model, the elements of 

the latent residual vector ζ in (10) represent those portions of true intercept and true slope that are 

unrelated to the predictor of change -- the “adjusted” values of true intercept and slope, with the linear 

effect of child gender partialled out.  In a covariance structure analysis of the multilevel model for 

change, we assume that latent residual vector ζ is distributed normally with zero mean vector and 

covariance matrix Ψ, 
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which contains the residual (partial) variances and covariance of true intercept and slope, controlling for 

the predictor of change, FEMALE.  We estimate these level-2 variance components in any analysis of 

change. 

But there is one missing link that needs resolving before we can proceed.  How is the 

hypothesized predictor of change, FEMALE, loaded into the exogenous construct vector, ξ?  This is easily 

achieved via the so-far-unused CSA X-Measurement Model.   And, in the current analysis, the process is 

disarmingly simple because there is only a single infallible predictor of change, child gender.  So, in this 

case, while it may seem a little weird, the specification of the X-Measurement Model derives from a 

tautology: 

( ) ( ) ( ) ( )010  + FEMALE  +  = FEMALE ii     (14) 

Which, while not affecting predictor FEMALE, facilitates comparison with the CSA X-Measurement 
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Model: 

δξΛτX  +   +  = xx      (15) 

By comparing (14) and (15), you can see that the gender predictor can be incorporated into the analysis 

by specifying an X-Measurement Model in which: 

• Exogenous score vector X contains one element, the gender predictor, FEMALE, itself. 

• The X-measurement error vector, δ, contains a single element whose value is fixed at zero, 

embodying the assumption that gender is measured infallibly (with “zero” error). 

• The τx mean vector contains a single element whose value is fixed at zero.  This forces the mean 

of FEMALE (which would reside in τx if the latter were not fixed to zero) into the CSA latent 

mean vector, κ, which contains the mean of the exogenous construct, ξ, in the general CSA model. 

• The matrix of exogenous latent factor loadings Λx contains a single element whose value is fixed 

at 1.  This forces the metrics of the exogenous construct and its indicator to be identical. 

Thus, by specifying a CSA X-Measurement Model in which the score vectors are: 

[ ] [ ]0 =  ,FEMALE = i δX      (16) 

and the parameter matrices are fixed at: 

[ ] [ ]1 = 0 = xx Λτ ,          (17) 

we can make the CSA exogenous construct ξ represent child gender.  And, since we know that exogenous 

construct ξ is a predictor in the CSA Structural Model, we have succeeded in inserting the predictor of 

change, child gender, into the model for inter-individual differences in change.  As a final consequence of 

(14) through (17), the population mean of the predictor of change appears as the sole element of the CSA 

exogenous construct mean vector, κ: 

[ ]FEMALEMean µξ == }{κ      (18) 

and the population variance of the predictor of change appears as the sole element of CSA exogenous 
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construct covariance matrix Φ: 

[ ]σξ 2
FEMALE = }{Cov = Φ      (19) 

Both of these parameter matrices are estimated when the model is fitted to data.  And, although we do not 

demonstrate it here, the X-Measurement Model in (14) through (19) can be reconfigured to accommodate 

multiple time-invariant predictors of change, and even several indicators of each predictor construct if 

available.  This is achieved by expanding the exogenous indicator and construct score vectors to include 

sufficient elements to contain the new indicators and constructs and the parameter matrix Λx is expanded 

to include suitable loadings (Willett and Singer (2003; Ch. 8) give an example with multiple predictors). 

So, the CSA version of the multilevel model for change – now called the latent growth model – is 

complete.  It consists of the CSA X-Measurement, Y-Measurement, and Structural Models, defined in (14) 

through (19),  (4) through (8), and  (9) through (13), respectively and is displayed as a path model in 

Figure 2.  In the figure, by fixing the loadings associated with the outcome measurements to their constant 

and temporal values, we emphasize how the endogenous constructs were forced to become the individual 

growth parameters, which are then available for prediction by the hypothesized predictor of change. We 

fitted the latent growth model in (4) through (14) to our reading data on the full sample of 1740 children 

using LISREL (see Appendix).  Table 1 presents full maximum-likelihood (FML) estimates of all 

relevant parameters from latent regression-weight matrix Γ and parameter matrices Φ, α  and Ψ. 

[Insert Figure 2 and Table 1 here] 

The estimated level-2 fixed effects are in the first four rows of Table 1.  The first and second rows 

contain estimates of parameters γ00 and γ10, representing true initial log-reading ability ( 170.3ˆ00 =γ , 

p<.001) and true annual rate of change in log-reading ability ( 583.0ˆ10 =γ , p<.001) for boys (for whom 

FEMALE = 0).  Anti-logging tells us that, on average, boys:  (a) begin kindergarten with an average 

reading ability of 23.8 (= 1700.3e ), and (b) increase their reading ability by 79% (= )1(100 5828.0 −e ) per year. 
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 The third and fourth rows contain the estimated latent regression coefficients γ01 (0.073, p<.001) and γ11 

(-0.010, p>.10), which capture differences in change trajectories between boys and girls.  Girls have a 

higher initial level of 3.243 (= 3.170 + 0.073) of log-reading ability, whose anti-log is 25.6 and a 

statistically significant couple of points higher than the boys.  However, we cannot reject the null 

hypothesis associated with γ11  (-0.010, p>.10) so, although the estimated annual rate of increase in log-

reading ability for girls is 0.572 (= 0.5828 - 0.0096), a little smaller than boys, this difference is not 

statistically significant.  Nonetheless, anti-logging, we find that girls’ reading ability increases by about 

78% (= )1(100 5828.0 −e ) per year, on average.  We display fitted log-reading and reading trajectories for 

prototypical boys and girls in Figure 3 -- once de-transformed, the trajectories are curvilinear and display 

the acceleration we noted earlier in the raw data. 

[Insert Figure 3 here] 

Next, examine the random effects.  The fifth through eighth rows of Table 1 contain estimated 

level-1 error variances, one per occasion, describing the measurement fallibility in log-reading score over 

time.  Their estimated values are 0.022, 0.023, 0.021, and 0.008, respectively, showing considerable 

homoscedasticity over the first three occasions but measurement error variance decreases markedly in the 

spring of first grade.  The tenth through twelfth rows of Table 1 contain the estimated level-2 variance 

components, representing estimated partial (residual) variances and partial covariance of true initial status 

and rate of change, after controlling for child gender.  We reject the null hypothesis associated with each 

variance component, and conclude that there is predictable true variation remaining in both initial status 

and rate of change. 

 

Conclusion:  Extending the Latent Growth Modeling Framework 

In this chapter, we have shown how a latent growth modeling approach to analyzing change is 

created by mapping the multilevel model for change onto the general CSA model.  The basic latent 
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growth modeling approach that we have described can be extended in many important ways: 

• You can include any number of waves of longitudinal data, by simply increasing the number of 

rows in the relevant score vectors.  Including more waves generally leads to greater precision for 

the estimation of the individual growth trajectories and greater reliability for measuring change. 

• You need not space the occasions of measurement equally, although it is most convenient if 

everyone in the sample is measured on the same set of irregularly spaced occasions.  However, if 

they are not, then latent growth modeling can still be conducted by first dividing the sample into 

sub-groups of individuals with identical temporal profiles and using multi-group analysis to fit the 

multi-level model for change simultaneously in all sub-groups. 

• You can specify curvilinear individual change.  Latent growth modeling can accommodate 

polynomial individual change of any order (provided sufficient waves of data are available), or 

any other curvilinear change trajectory in which individual status is linear in the growth 

parameters. 

• You can model the covariance structure of the level-1 measurement errors explicitly.  You 

need not accept the independence and homoscedasticity assumptions of classical analysis 

unchecked.  Here, we permitted level-1 measurement errors to be heteroscedastic, but other, more 

general, error covariance structures can be hypothesized and tested. 

• You can model change in several domains simultaneously, including both exogenous and 

endogenous domains.  You simply extend the empirical growth record and the measurement 

models to include rows for each wave of data available, in each domain. 

• You can model intervening effects, whereby an exogenous predictor may act directly on 

endogenous change and also indirectly via the influence of intervening factors, each of which may 

be time-invariant or time varying. 
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In the end, you must choose your analytic strategy to suit the problems you face.  Studies of change can 

be designed in enormous variety and the multilevel model for change can be specified to account for all 

manner of trajectories and error structures.  But, it is always wise to have more than one way to deal with 

data -- latent growth modeling often offers a flexible alternative to more traditional approaches.
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Appendix:  Specimen LISREL Program 

/*Specify the number of variables (indicators) to be read from the external data-file of raw data*/ 
 data ni=6 
 
/*Identify the location of the external data-file*/ 
 raw fi = C:\Data\ECLS.dat 
 
/*Label the input variables and select those to be analyzed*/ 
 label 
 id Y1 Y2 Y3 Y4 FEMALE 
 select 
 2 3 4 5 6 / 
 
/*Specify the hypothesized covariance structure model*/ 
 model  ny=4 ne=2 ty=ze ly=fu,fi te=di,fi c   
  nx=1 nk=1 lx=fu,fi tx=fr td=ze ph=sy,fr c   
  al=fr ga=fu,fr be=ze ps=sy,fr   
 
/*Label the individual growth parameters as endogenous constructs (eta’s)*/ 
 le 
 pi0 pi1 
 
/*Label the predictor of change as an exogenous construct (ksi) */ 
 lk 
 FEMALE 
 
/*Enter the required "1's" and measurement times into the Lambda-Y matrix*/ 
 va 1 ly(1,1) ly(2,1) ly(3,1) ly(4,1) 
 va 0.0 ly(1,2) 
 va 0.5 ly(2,2) 
 va 1.0 ly(3,2) 
 va 1.5 ly(4,2) 
 
/*Enter the required scaling factor "1" into the Lambda-X matrix*/ 
 va 1.0 lx(1,1) 
 
/*Free up the level-1 residual variances to be estimated*/ 
 fr te(1,1) te(2,2) te(3,3) te(4,4) 
 
/*Request data-analytic output to 5 decimal places*/ 
 ou nd=5 
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Table 1.  Trajectory of change in the logarithm of children’s reading score over four measurement 
occasions during kindergarten and first grade, by child gender.  Parameter estimates, approximate p-
values, and goodness-of-fit statistics from the multi-level model for change, obtained with latent growth 
modeling (n=1740). 
 

Effect Parameter Estimate 

Fixed Effects: 

 
00γ  3.1700*** 

 
10γ  0.5828*** 

 
01γ  0.0732*** 

 
11γ  -0.0096 

Variance Components: 

 2
1εσ  0.0219*** 

 2
2εσ  0.0228*** 

 2
3εσ  0.0208*** 

 2
4εσ  0.0077*** 

 2
0ζσ  0.0896*** 

 2
1ζσ  0.0140*** 

 
10ζζσ  -0.0223*** 

Goodness of Fit: 

 2χ  1414.25*** 

 df 7 

~ = p<.10, * = p<.05, ** = p<.01, *** = p<.00 
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Figure Captions 

Figure 1.  Observed raw and transformed trajectories of reading score over kindergarten and first grade 

for ten children (boys = dashed; girls = solid).  Top panel:  (a) raw reading score versus time for child 

#15013, with observed data points (+’s) connected by a smoothed freehand trajectory, (b) smoothed 

freehand trajectories for all 10 children.  Bottom panel: (a) log-reading score versus time for child 

#15013, with an OLS-estimated linear change trajectory, (b) OLS-estimated linear trajectories for all 

children. 

Figure 2.  Path diagram for the hypothesized latent growth in reading score.  Rectangles represent 

observed indicators, circles represent latent constructs, and arrows and their associated parameters 

indicate hypothesized relationships. 

Figure 3.  Fitted log-reading and reading trajectories over kindergarten and first grade for prototypical 

Caucasian children, by gender.  
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