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Casual Models Do Not Support Scientific 
Conclusions: A Comment in Support of Freedman 

David Rogosa 
Stanford University 

Overview 
A critical distinction in methodological work is between (a) building (and 

applying) statistical models for the processes that generate the social sci- 
ence data and (b) tossing the data at available statistical methods. In my 
own work I strive for (a) and discourage others from settling for (b). 
Regrettably, expositions and applications of the popular causal modeling 
methods (under the various names path analysis, structural equation mod- 
els, LISREL, etc.) contain much of (b) and little of (a). In fact, my favorite 
typographical error "casual models" (which I've suffered in print) is enjoy- 
able in large part because of its accidental accuracy. And an argument can 
be made that the methodological proselytizing for and dominance of causal 
models has retarded the much more useful methodological work of (a). 

A similar theme is present throughout Freedman's paper, as in the last 
paragraph of his conclusion which begins "My opinion is that investigators 
need to think more about the underlying social processes... ". Earlier in 
the paper Freedman requires that the "as-if-by-experiment" conclusions 
"must depend on a theory of how the data came to be generated." The 
translation of substantive theory into methods for data collection and analy- 
sis is where I think the fertile interaction between statisticians and social 
scientists lies (rather than in arguing a "thumbs up" or "thumbs down" on 
path analysis). 

My subtitle "in support of Freedman" is to congratulate him for his 
energy and courage in assuming the role of point person in what I feel is an 
attempt to stimulate serious and critical discussion of the proper role of 
these causal models in behavioral and social science. Freedman is not the 
first to voice serious concerns, nor should he be the last. For example, de 
Leeuw's (1985) review essay of causal model texts does a good job of 
discussing the casual attention given to model construction and the indefen- 
sibility of "cause-effect" (i.e., as-if-by-experiment) conclusions: 

It seems to me that the use of cause-effect terminology cannot be de- 
fended, except in those rare cases (such as Mendelian genetics) in which 
information is available from other sources. If all the information we have 
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is a set of correlations, then we can try to describe these correlations 
'parsimoniously' in terms of restrictive models. But that is about all we can 
do. There is no LISREL method of theory construction. (p. 372) 

Others have expressed distress much more bluntly: for example Ling's 
(1982) review of David Kenny's book Correlation and Causation. Rather 
than cheerleading for Freedman's specific technical critique of Hope, I'll 
use my space to focus on two general themes: (i) the importance of mod- 
eling the process that generates the data and (ii) the formidable difficulties 
in making as-if-by-experiment conclusions from nonexperimental data. 

My own view and (limited) historical perspective does not see causal 
models as inherently a negative force. The introduction of path analysis 
into sociology, psychology, and education 15-20 years ago did have the 
very positive effect of stimulating the translation (some might say trans- 
mogrification) of often vague verbal statements of theory into forms suit- 
able for empirical investigation. The primary heuristic for this process was 
the construction of the path analysis diagram: simply multiple regression 
with pictures, where the pictures are presumed to be meaningful. State- 
ments of theory in the form of path analysis diagrams do provide a statisti- 
cal model for the empirical research. Alas, a statistical model is not neces- 
sarily a scientific model; statistical models may have little substantive 
meaning or interpretability even when their technical assumptions are 
satisfied by the data. In the spirit of the path analysis discussion I use the 
following picture: 

no statistical scientific 
model model model 

Freedman makes a related distinction between statistical models of asso- 
ciations and the "structural equations" that would support as-if-by- 
experiment conclusions. My informal use of "scientific model" is a bit 
broader and is intended to describe serious representations of the substan- 
tive (psychological, sociological, etc.) processes that generate the data but 
are not always intended to support explanatory or as-if-by-experiment con- 
clusions. Building scientific models for the social sciences is very hard work 
and requires orders of magnitude more thought, preliminary empirical 
research, careful data analysis, and creativity in statistical modeling than is 
now evident. My own view is that, at best, the path analysis (causal) models 
may be useful until a field acquires some insight into what's going on and 
then moves to appropriate models and methods. 

Another relevant distinction is that between illustrations of a statistical 
method (even using actual data) and applications of the statistical model 
and method. I first came to appreciate that distinction in the context of 
causal models when I was asked to review the volume of collected papers 
Advances in Factor Analysis and Structural Equation Models (J6reskog & 
Sqrbom, 1979). I found the volume loaded with detailed illustrations of 
LISREL and covariance structure analyses, but found little that went be- 
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yond the illustrations to reveal something important about psychological 
processes. At the same time I realized that I wasn't aware of any covariance 
structure analyses that I felt were serious applications. Since then I've come 
to feel that models for relations among variables are fundamentally off the 
mark, and almost preclude successful applications. I come back to this idea 
in my closing section. 

My own personal history includes some interest/flirtation with causal 
models including a chapter (Rogosa, 1979) in the Baltes-Nesselroade vol- 
ume on longitudinal research. My technical work over the last 7 years on 
statistical methods for longitudinal research serves as a useful context for 
explaining in some detail my disillusionment with causal models. Besides 
being an area I know well, longitudinal panel data are commonly analyzed 
using path analysis and covariance structure methodologies, and longitudi- 
nal data often serve as the basis for expositions of these methods. 

Causal Models and Longitudinal Data Analysis 
The first part of this section attempts to illustrate, in the context of 

longitudinal methodology, simple ideas of using statistical models to repre- 
sent the process generating the data. The basic tools I use are statistical 
models for individual growth and individual differences in growth. Then I 
use the growth curve representation to show the unattractiveness of three 
related causal modeling approaches to the analysis of longitudinal data: 
path analysis, latent-variable (LISREL) regressions, and simplex models. 
These three procedures all use the between-wave covariance matrix as the 
starting point for the statistical analysis. My main message is that the 
between-wave covariance matrix provides little information about change 
or growth. Thus, regardless of the sophistication of the modeling of the 
relations between manifest or latent variables, the causal model analysis is 
fatally flawed. Finally, I discuss the popular method of cross-lagged correla- 
tion which has an even weaker justification than path analysis yet attempts 
to make as-if-by-experiment inferences from nonexperimental, longi- 
tudinal data. 

Statistical Models for Longitudinal Panel Data 
The basic model for longitudinal data is a two-part representation using 

a pair of statistical models: (a) a model for individual growth and (b) a 
model for how the parameters of the individual growth curves vary over 
individuals. The individual growth curves are functions of true score over 
time, kp(t). Research questions about growth, development, learning, and 
the like center upon the systematic change in an attribute over time, and 
thus the individual growth curves are the natural foundation for modeling 
the longitudinal data. The simplest example is straight-line growth, which 
specifies a constant rate of change denoted by 0. The straight-line growth 
curve for individual p is written: 

Sp(t)= p(O) + opt. (1) 
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Individual differences in growth exist when the individual growth curves 
have different values of rate of change Op. Systematic individual differences 
in growth exist when individual differences in a parameter of the individual 
growth curve (Op) can be linked with exogenous individual characteristics. 
The constant rate of change model in (1) is used in this discussion for 
simplicity in the exposition and mathematical results. Moreover, straight- 
line growth often serves as a useful approximation to more complex growth 
trajectories; for example, if the growth curve is a second-order polynomial 
0 has the interpretation of an "average rate of change" (Hui & Berger, 
1983; Seigel, 1975). Rogosa and Willett (1985a) consider a variety of more 
complex models for individual growth and individual differences in growth. 

The most prevalent type of longitudinal data in the behavioral and social 
sciences is longitudinal panel data. Longitudinal panel data consist of ob- 
servations on many individual cases (persons) on relatively few (2 or more) 
occasions (waves) of observation. An observation on a variable X at time 
ti for individual p is written as Xip where i = 1,..., Tandp = 1,..., n. The 
Xi, are presumed to be composed of a true score ?p(ti) and an error of 
measurement Eip. The value of the growth curve (Equation 1) at a discrete 
time ti yields the po(ti), and the X1, are formed by the addition of measure- 
ment error according to the classical test theory model: Xip = p(ti) + Eip. 

Path Regressions 
Path analysis models for longitudinal data use the temporal ordering of 

the measurements to delimit the possible paths between the variables. 
Consider the example of a three-wave design with measures on X at times 
t1, t2, t3. The path regressions for the unstandardized variables are: 

X2 o2 + •1Xl + e2 
X3 = 33 +P2X2 + P3X + e3. (2) 

Thus the path analysis model includes direct paths from X, to X2 and to X3 
(parameters 31 and 33, respectively) and from X2 to X3 (parameter P2). The 
path coefficients are functions of the entries of the between-wave covar- 
iance matrix. An example of the use of this model is Goldstein (1979) in 
which X is a reading test score obtained on a nationwide British sample with 
measurements of ages 7, 11, and 16. This simple 3-wave path model was 
also discussed in a number of the early expositions of path analysis in the 
social sciences. However, the comparison below between the path analysis 
and the mathematical results for straight-line growth illustrates some of the 
perils of summarizing the longitudinal data by the analysis of the between- 
wave covariance matrix of the Xi or even the (ti), thereby ignoring the 
analysis of individual growth. 

The properties of the path coefficients in (2) illustrate the meaning- 
lessness of models for relations among variables. To take the simplest 
situation let the true scores 

* 
(tA) (i = 1, 2, 3) be determined by a straight- 
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line growth curve for each individual (c.f. Equation 1) and assume perfect 
measurement of the Xi. For this specification the population partial re- 
gression (path) coefficients from (2) are: 

t2 - t3 

t2 - tl 

t3 - tl 

P32 - >0. (3) t2 - tl 

[Note: the results in (3) are easily verified by using (1) to substitute 
X2 = X1 + 0(t2 - tl) into the X3 equation in (2). Substituting the values for 
P2 and 33 from (3) and collecting terms yields X3 = X1 + 0(t3 - t/).] The implications of (3) for the path analysis model in (2) are devastating. 
Remarkably, the parameters depend only on the times at which the obser- 
vations were taken; thus neither path regression coefficient contains any 
information about growth! One might think that because X3 is perfectly 
predicted from X1 and X2 the analysis of relations among variables would 
be informative. Yet, under this simple structure estimates of either param- 
eter are totally independent of the information in the data. Exclusion of 
measurement error does not mitigate the import of this example; after all, 
a statistical procedure that works poorly with perfect measurement can 
hardly be expected to perform better with fallible measurement. (Different 
forms of the individual growth curve will alter somewhat the results for the 
coefficients in (2); exponential growth to an asymptote for each individual 
does produce results similar to Equation 3.) 

For estimation of (2) using the reading test data, Goldstein obtains the 
following estimates: , P2 = 1.11, 3 3= -.147 (and also P, = .841). Gold- 
stein's analysis employs complex transformations of the measures to 
straighten the between-wave scatterplots of the Xi prior to the estimation 
of (2) and also uses disattenuation procedures in an attempt to remove the 
effects of measurement errors of the sample regression coefficients. The 
results in (3) agree with Goldstein's negative value of P3, with the magni- 
tude likely affected by deviations from straight-line individual growth 
curves in (1), the data transformations and the errors of measurement in the 
test scores. Also the results in (3) are consistent with Goldstein's positive 
value for P2 . The negative estimate for 33 causes considerable discomfort, 
summarized by Goldstein (1979, p. 139): 

This is difficult to interpret and may indicate that non-linear or interaction 
terms should be included in the model, or perhaps that the change in score 
between seven and 11 years is more important than the seven-year score 
itself. However, the addition of non-linear terms does not change this 
picture to any extent. 

Latent Variable (LISREL) Regression Models 
Latent variable regression models are a more sophisticated, but equally 
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flawed, approach to the analysis of longitudinal data. These structural 
equation models incorporate regression relations among latent variables 
(i.e., t (ti)) with measurement models relating the observed indicators (Xi) 
to the latent variables. Estimation of these models is based on fitting the 
covariance structure implied by the structural equation model to the 
between-wave covariance matrix of the observations. Consider the simple 
structural regression model with one latent variable t observed at times tx 
and t2 and a latent exogenous measure, W illustrated in Figure 1. Each 
latent variable has two indicators. This model is equivalent to the model for 
change in alienation that appears frequently as an example in J6reskog's 
papers. In J6reskog's examples t is alienation and W is socioeconomic 
status. The path from W to t2 represents the exogenous influence on 
change. The structural parameter for that path is the regression coefficient 
for the latent variable at time 2 on the exogenous variable, with the latent 
variable at time 1 partialled out, 

f3(t2)W.(t1)). In terms of the simple growth model in Equation 1, parameters of inter- 
est for the relationship between the exogenous variable and change are the 
correlation between true rate of change and the exogenous variable, pow, or 
the analogous regression parameter Bow. What does the regression param- 
eter P•(t2)W. (tl) reveal about exogenous influences on growth? Not very 
much. For the simple case of a collection of straightline growth curves, this 
structural parameter has a complicated functional form that depends 
strongly upon the time chosen for the initial measurement. Rogosa and 
Willett (1985a, Section 3.2.2) give mathematical results for the form of the 
structural regression parameter. For a specified relation between the exoge- 
nous variable and the individual growth parameter 0, the structural param- 
eter may be positive, negative, or zero depending upon the choice of time 
of initial status. Also, the structural parameter increases with the length of 
the interval between measurements. Numerical examples of the bizarre 
properties of the structural regression parameter are given in Rogosa (in 
press). 

FIGURE 1. Two-wave structural regression model with exogenous variable 

I I 

?; ? 
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Simplex Models 

A third example of longitudinal analyses based on the between-wave 
covariance matrix is the simplex model, which specifies a first-order auto- 
regressive process for true-scores. The numerical example of Rogosa and 
Willett (1985b) in this journal seeks to caution against the propensity to 
base many analyses of longitudinal data on a simplex structure without 
careful consideration of the longitudinal data or of alternative growth mod- 
els. Expositions of covariance structure analyses have encouraged such 
thinking; for example, Jireskog states "For one measure administered 
repeatedly to the same group of people, an appropriate model is a simplex 
model" (J6reskog, 1979, p. 94). Moreover, Werts, Linn, and Joreskog 
(1977, p. 745) assert "The simplex model appears to be particularly appro- 
priate for studies of academic growth." 

Rogosa and Willet (1985b) present an example of a 5 x 5 covariance 
matrix for observed scores Xip over five occasions of observation. To the 
eye, the correlation matrix corresponds extremely well to a simplex. Our 
analysis shows that a simplex covariance structure marvelously fits this 
covariance matrix although it was generated by growth curves that max- 
imally violate the assumptions of the simplex growth model. The conse- 
quences are far from benign because even when the simplex model fits 
wonderfully, the results of the covariance structure analysis can badly mis- 
lead. The covariance structure analyses usually go on to compute growth 
statistics and reliability estimates based on the simplex model, and these 
growth statistics (such as the correlation between true change and true 
initial status) estimated from the LISREL analysis can differ markedly from 
the actual values. Covariance structure analyses provide very limited infor- 
mation about growth in the sense that covariance matrices arising from very 
different collections of growth curves can be indistinguishable. Therefore, 
analyses of covariance structures cannot support conclusions about growth. 
Analysis of the collection of growth curves cannot be ignored. 

Cross-Lagged Correlation 
It seems appropriate to make the point that social scientists frequently 

have been attracted to methods for the analysis of nonexperimental data 
that are far more flawed and less justified than path analysis and relatives. 
A most vivid example is provided by the method of cross-lagged correla- 
tion, which remains a very popular procedure for the analysis of reciprocal 
effects from nonexperimental, longitudinal data. Cross-lagged correlation 
purports to answer the question-Does X cause Y or does Y cause X?-by 
a simple comparison of the lagged correlations between X and Y (i.e., the 
correlations between X1 and Y2 and Y1 and X2 for two time points). A 
remarkable attribution of as-if-by-experiment is provided by Crano and 
Mellon (1978): "With the introduction of the cross-lagged panel correlation 
method... , causal inferences based on correlational data obtained in lon- 
gitudinal studies can be made and enjoy the same logical status as those 
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derived in the more standard experimental settings" (p. 41). In other 
words, the use of cross-lagged correlation dispenses with the need for 
experiments, statistical models, or careful data analysis; a quick compari- 
son of a few correlation coefficients is all that's required to study reciprocal 
effects. 

Rogosa (1980) was only one in a tradition of papers, starting with Duncan 
(1969), Goldberger (1971), and Heise (1970), sharply critical of cross- 
lagged correlation. Even Cook and Campbell (1979, Chap. 7) are unen- 
thusiastic about the usefulness of cross-lagged correlation; yet most 
advocates and users of this procedure remain undaunted. Rogosa (1980) 
exposits a number of simple statistical models for reciprocal effects between 
two variables-path analysis models, continuous-time feedback models, 
and multiple time series models. The mathematical results in Rogosa (1980) 
demonstrate the inability of the method of cross-lagged correlation to re- 
cover the structure of the reciprocal effects specified by these models. 
Results and numerical examples are presented for two-wave and multi- 
wave data. Rogosa (1985) provides a nontechnical overview and extensive 
references on approaches to the analysis of reciprocal effects. 

The mathematical and numerical demonstrations of the failures of cross- 
lagged correlation in Rogosa (1980) had the following simple, limited struc- 
ture. Start with a basic path-analysis regression model for two variables X 
and Y measured at times 1 and 2 (the popular two-wave, two-variable panel 
design) 

X2 30 1 + P1X1 + Y2 Y1 + u, 

Y2 = o Y 2 Xl + Y1 Y1 + v . (4) 
In the context of the statistical model in (4) the parameters P1 and •1 
represent the influence of a variable on itself over time. The parameters 32 
and Y2 represent the lagged, reciprocal effects between X and Y; thus the 
relative magnitudes of 32 and y2 are presumed to indicate the nature of the 
reciprocal causal effects. In Rogosa (1980) combinations of P2 and y2 values 
are compared with the results of the method of cross-lagged correlation. 
The major (and perhaps only) virtue of the path analysis model (4) is the 
identification of specific parameters believed to represent the reciprocal 
effects. If this model of the reciprocal influences between X and Y were 
valid, then estimation of 32 and Y2 would inform about reciprocal effects. 
Perhaps the best way to think about (4) and the related structural regression 
models is that these comprise a simple statistical model for reciprocal 
effects that, however, may be a far-from-satisfactory scientific model of the 
psychological (etc.) process. 

The real moral about the analysis of reciprocal effects is that you can't 
estimate something without first defining it, and statistical models at least 
allow definition of key parameters. Regrettably, the seductive simplicity of 
cross-lagged correlation has inhibited serious work on the complex question 
of reciprocal effects. Despite the complexity of research questions about 
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reciprocal effects, empirical research has attempted to answer the over- 
simplified question, Does X cause Y or does Y cause X? by casually 
comparing a couple of correlations. 

Model Building in the Social and Behavioral Sciences 
The material on longitudinal panel data has a broader purpose than the 

direct message of "Don't use path analysis or covariance structure analysis 
to analyze longitudinal data." The basis of my own work on longitudinal 
data analysis is to begin by constructing models for the individual time 
trajectory and then to represent individual differences by differences over 
individuals in the values of the model parameters (or even the form of the 
individual time trajectory). This type of modeling for longitudinal data is 
also used in the so-called "hierarchical models" of Bryk and Raudenbush 
(1987), and in random coefficient models for longitudinal data at least since 
Rao (1965). Furthermore, my work on statistical models and methods 
for behavioral observations (Rogosa, Floden, & Willett, 1984; Rogosa & 
Ghandour, in press) is based on the same approach, using a renewal process 
model for the behavioral observations on an individual unit and allowing 
the parameters of the model to vary over individuals. Similarly, in Item 
Response Theory models, the probability of a correct response by an indi- 
vidual to a given item is modeled in terms of an individual ability parameter 
0,, and individual differences in ability are represented by the distribution 
of 0 over individuals. The common idea is that it is necessary first to 
represent the individual process by a statistical model and be able to iden- 
tify the parameters of the individual process model. I feel you have to 
understand individual processes before attempting to understand individ- 
ual differences, and this modeling strategy allows a commonsense under- 
standing and interpretation of the model parameters. 

The critical distinction is between models that start with the individual 
process as opposed to models for relations among variables, of which path 
analysis, covariance structure analysis, and other causal modeling strategies 
are prominent examples. I see these models for relations among variables 
as statistical models without a substantive soul. Substantive processes hap- 
pen to or act on individual units (persons), not to variables. And a useful 
model should be a representation of the relevant phenomena. Otherwise, 
as Freedman finds with path analysis, "the technology tends to overwhelm 
common sense," and I feel that's because the technology has little or no link 
to common sense. 

I've come to view the phrases causal inference, explanatory research, and 
so forth, as often deceptive and polarizing ways of thinking. My view is that 
investigators set out to address research questions, and not all important 
research questions are explanatory in the sense of seeking as-if-by- 
experiment inferences. Attempts to answer experimental (i.e., causal, ex- 
planatory, etc.) research questions with nonexperimental data seem funda- 
mentally askew. And it seems this mismatch generates some adversarial 
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feelings between statisticians and social scientists. Statisticians can't work 
magic nor can they be effective policemen. The divisions in thinking about 
nonexperimental research may be summarized by use of a familiar format: 

Causal inference from non-experimental research is 
(a) made easy with LISREL 
(b) possible if some attention is given to standard assumptions of the 

statistical analysis 
(c) nearly impossible, unless an exhaustive set of theoretical and statis- 

tical assumptions (often untestable) are satisfied 
(d) a grand oxymoron. 

Observing how causal model methodology has progressed (?) in the last two 
decades has made me increasingly partial to (d). 

What can be done with nonexperimental data is to address important 
research questions that do not require as-if-by-experiment inferences. In- 
vestigating carefully the research questions that are appropriate with non- 
experimental data seems far superior to the house of cards (or chicken wire) 
provided by the path analyses. Successful research will be based on substan- 
tive insight and careful modeling of the processes generating the data (not 
path analysis or LISREL). An example from my own research is the ques- 
tion about correlates of change-for example, "What kinds of persons grow 
(learn) fastest?" (see Rogosa & Willett, 1985a, p. 203). Rogosa and Willett 
(1985a) develop models for systematic individual differences in growth that 
are based on the individual processes generating the data. Certainly, an- 
swers to this question do not provide the prescriptive information that 
would be provided by a causal explanation of the factors influencing student 
learning. Yet those answers should provide a basis for knowledge to accu- 
mulate, and eventually, causal explanations may be attained by building a 
dependable base of empirical knowledge. Statisticians can be very produc- 
tive partners in addressing focused research questions by development and 
application of a technology for the collection and summary of data. 

That is my optimistic closing. My pessimistic closing is that regardless of 
presentations of the vivid shortcomings of path analysis and related proce- 
dures, its proselytizers and practitioners will pay little heed. 
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