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In 1967, Blau and Duncan proposed a path model for education and 
stratification. This is one of the most influential applications of statistical 
modeling technique to social data. There is recent use of the same technique 
in Hope's (1984) comparative study of Scotland and the United States, As 
Others See Us: Schooling and Social Mobility in Scotland and the United 
States. A review of path analysis is offered here, with Hope's model used 
as an example, the object being to suggest the limits of the method in 
analyzing complex phenomena. 

Argumentation cannot suffice for discovery of any new work, since the subtlety 
of nature is greater many times than the subtlety of argument. 

Francis Bacon 

Introduction 
The path model for education and social stratification proposed by Blau 

and Duncan (1967) was one of the first applications of that method in the 
social sciences, and certainly the most influential. It is often cited as a great 
success story: see, for example, Adams, Smelser, and Treiman (1982, p. 46). 
And it set the pattern for much subsequent research. 

Indeed, path models are now widely used in the social sciences, to disen- 
tangle complex cause-and-effect relationships. Despite their popularity, I 
do not believe they have in fact created much new understanding of the 

I would like to thank Persi Diaconis, Otis Dudley Duncan, Arthur Goldberger, 
Erich Lehmann, Thomas Rothenberg, Juliet Shaffer, and Amos Tversky for many 
useful discussions-without implying their agreement (or disagreement) on the 
issues. Neil Henry was a wonderful referee. 

The quotations from Keith Hope (1984), and Figure 6, are reprinted with permis- 
sion from As Others See Us: Schooling and Social Mobility in Scotland and the 
United States, copyright ? 1984, Cambridge University Press. The research in this 
paper was partially supported by NSF Grant DMS 86-01634. 
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phenomena they are intended to illuminate. On the whole, they may divert 
attention from the real issues, by purporting to do what cannot be done- 
given the limits on our knowledge of the underlying processes. 

One problem noticeable to a statistician is that investigators do not pay 
attention to the stochastic assumptions behind the models. It does not seem 
possible to derive these assumptions from current theory, nor are they 
easily validated empirically on a case-by-case basis. Also, the sheer techni- 
cal complexity of the method tends to overwhelm critical judgement. 

I have no magical solution to offer as a replacement. On the other hand, 
repeating well-worn errors for lack of anything better to do can hardly be 
the right course of action. If I am right, it is better to abandon a faulty 
research paradigm and go back to the drawing boards. 

Blau and Duncan (1967) may seem like ancient history, so I will illustrate 
the argument by reference to Hope (1984). This is a comparative study of 
education and stratification in Scotland and the United States. Different 
chapters of the book take up different substantive issues (which are all 
interesting); it seems fair to look only at the first chapter. I ask Hope's 
pardon for using his work this way, but it provides a convenient example of 
the path-analytic paradigm in action. 

At bottom, my critique is pretty simple-minded: Nobody pays much 
attention to the assumptions, and the technology tends to overwhelm com- 
mon sense. Since the point is such an elementary one, the argument should 
start close to the beginning. After saying in statistical language what path 
models assume and what they do, I will outline Hope's model, and point to 
the absence of anything connecting it to reality-other than the conventions 
of the paradigm and his desire. Finally, some of the metamodeling litera- 
ture will be reviewed. 

A Research Fable 
Later sections will review the foundations of regression models in formal 

detail. This section presents an informal example, to identify the issues. 
Statistical models are often used to make causal inferences, for example, 
estimates of the impact of interventions: If we put a tariff of $10 a barrel 
on imported oil, how much will that affect the price level? the Gross 
National Product? If we spend another million dollars on schools, how 
much will that affect test scores? 

Other kinds of causal inferences, more relevant to the stratification lit- 
erature, do not feature such explicit interventions, but raise similar issues: 
How much of a salary difference between men and women is due to sex 
bias, and how much to differences in productivity? Where does ability 
count for more in getting high status jobs: Scotland or the United States? 

In this section, I would like to present one highly stylized example, to 
focus the issues: How much does education affect income? Suppose we take 
a large random sample (so the distinction between parameters and esti- 
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mates can be slurred over), and observe in the data that log income has a 
linear regression on education: 

log (income) = a + b x (education) + error. 

The errors seem to have nearly constant variance, and follow the normal 
curve quite nicely. We estimate a and b by ordinary least squares; b turns 
out to be .05, and the conclusion is that sending people to school for 
another year will increase their incomes on average by 5%. 

This conclusion, however, cannot rest on the way the data look, or even 
on replication across time or geography. It must depend on a theory of how 
the data came to be generated. (This is very well known to working social 
scientists, and I will sketch their argument in a moment; the novelty, if any, 
is only in the formulation.) 

In effect, the theory has to be (or at least have as a consequence) that we 
are observing the results of a controlled experiment conducted by Nature. 
Subjects are given some number of years of schooling, and then the logs of 
their incomes are generated as if by the following two-step procedure: 

(i) compute a + b x (education); 
(ii) add noise. 

For want of a better term, I will refer to this procedure as a linear statistical 
law, connecting log income and education; and the whole thing can be 
called the as-if-by-experiment assumption. A slightly more dramatic theory: 
We might assume that Nature has randomly assigned people to the different 
educational levels-an as-if-randomized assumption. (Then the log-linear 
functional form can be estimated from the data.) 

These sorts of theories seem to be implicit in the idea of "structural" or 
"causal" equations. Of course, it is impossible to tell just from data on the 
variables in it whether an equation is structural or merely an association. In 
the latter case, all we learn is that the conditional expectation of the re- 
sponse variable shows some connection to the explanatory variables, in the 
population being sampled. The decision as to whether an equation is struc- 
tural must ride either on prior theory or on close examination of data 
outside the equation. Considering the impact of interventions is a useful 
armchair exercise to perform in trying to reach the decision, or at least 
figuring out what it means. 

Coming back to income and education, it may be obvious by now that the 
equation is not structural, even if the data look just like textbook regression 
pictures. There is a third variable, family background, which drives both 
education and income. Our coefficient b in the equation picks up the effect 
of the omitted variable, and is therefore a biased estimate of the impact of 
the proposed intervention-sending people back to school. Well, responds 
a strawman investigator, here's a path model to take care of the problem: 

education = c + d x (family background) + error 
log (income) = e +f x (education) + g x (family background) + error. 
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This model consists of two equations, assumed to be structural-as if the 
results of an experiment of nature. (These equations are hard to interpret 
on the as-if-randomized basis, but they do make sense-right or wrong-as 
linear statistical laws.) Anyway, says the strawman, now we've got it: f 
represents the impact of education on income, with family background 
controlled for. 

Unfortunately, it is not so easy. How do we know that it is right this time? 
What about age, sex, or ability, just for starters? How do we know when 
the equations will reliably predict the result of interventions-without 
doing the experiment? In a cartoon example, the objection is clear. In other 
cases, the point is easily lost in the shuffle. Sad experience shows that all 
too often, the real modelers pay as little attention to justifying their 
assumptions as the strawman, and their results are no more convincing. 

Of course, the methodological issues are extremely perplexing, and any 
attempt to bring evidence to bear on the substantive issues deserves consid- 
erable sympathy. Duncan (1975) and Wright (1934) stressed the assump- 
tions and the limitations of the technique. Simon (1954) presented a sophis- 
ticated defense of our strawman; and see Zellner (1984, chapter 1.4) for a 
critique of Simon. Many investigators seem to focus only on the statistical 
calculations. This essay can be viewed as an attempt to put the spotlight 
back on the assumptions. 

Regression Models 
This section will discuss regression models when the explanatory variable 

X is under experimental control, and modifications for observational data. 
Some threats to validity will be identified, and the first successful use of 
regression models will be noted. 

To begin with, suppose that a variable X is under experimental control, 
and it "causes" Y in the sense that 

Y = a + bX + U. (1) 
In this equation, U is a random variable-like a draw made at random from 
a box of tickets. Y is observable, but U is not. The stochastic assumptions 
are as follows: 

The distribution of U is the same, no matter what 
value of X is selected by the experimenter. (2.1) 
The expected value of U is 0. (2.2) 
The variance of U is finite. (2.3) 
Each time the system is observed, an independent 
value of U is generated. (2.4) 

(The first and last of these are serious restrictions; the two middle ones have 
a more technical character.) 

In this model, ordinary least squares (OLS) is a sensible way to estimate 
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the parameters a and b. (Optimality and robustness are among the least of 
our worries here.) Furthermore, the coefficient b has a straightforward 
causal interpretation: It is the expected change in Y, if the experimenter 
intervenes and increases X by one unit. 

Of course, many interesting variables are not under experimental con- 
trol. On the other hand, given the experimental model (1-2), it does not 
matter how the data on X are collected, provided the distribution of U is 
not disturbed. (An example to motivate the caveat: Selecting observational 
units on the basis of their Y-values can lead to systematic errors.) 

Consider next a model like (1-2), but for observational data. This is a 
major transition; from now on, I will be discussing only studies where the 
investigator does not intervene to set the values of the explanatory vari- 
ables. The first part of the model is a theory about the relationship between 
X and Y, the two variables of interest. This can be stated, a bit quaintly, 
as follows: Nature selects X according to some distribution, generates Y 
according to the experimental model (1-2), and then presents the pair 
(X, Y) to the investigator, but hides U. This is a linear statistical law con- 
necting Y and X. 

Much (but not all) of this can be formalized starting from an equation like 
(1), with a slightly different interpretation: 

Y = a + bX + U. (3) 
The equation says that the random variable Y depends linearly on the 
random variable X, with an unobservable random error or disturbance 
term U. The parameters of this linear statistical law are a, b, and the 
variance of U. In this equation, X is random. 

The stochastic assumptions on U and X are parallel to the ones in the 
experimental model, except that (2.4) is dropped for now: 

The disturbance term U is independent of the 
explanatory variable X. (4.1) 
The disturbance term U has mean 0. (4.2) 
The disturbance term and the explanatory variable 
have finite variance. (4.3) 

The disturbance term U is often interpreted as "the effect of omitted 
variables." If so, intervening to change X should not change U, and this is 
perhaps the strongest form of the independence hypothesis (4.1). Also, the 
omitted variables must be assumed independent of the included variables. 
(See Pratt & Shlaifer, 1984 for discussion.) 

With path models, one convention is to standardize the random variables 
X and Y in Equation (3) to have mean 0 and variance 1. The parameter a 
will then be 0. (This convention will be followed here for expository rea- 
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sons, and its logic will be reviewed later.) To make the variance of Y come 
out to 1, another condition is needed: 

var U = 1 - b2. (4.4) 

So far, X and Y are somewhat platonic. The next part of the model 
introduces data, an X-value and Y-value for each observational unit; these 
units will be indexed by i. This part of the model is intended to connect the 
data with the assumed relationship (3-4), and is the analog of (2.4). The 
data are modeled as observed values of pairs of random variables (Xi, 17), 
which are independent from unit to unit, and obey the assumptions (3-4). 

Technically, the conditions on the data are as follows: 

The triplets (Xi, Ui, Y) are independent across units i. (5.1) 
For each i, the triplet (Xi, U1, Yi) is distributed 
like (X, U, Y) in (3-4). (5.2) 

The explanatory variable is Xi, the response variable is 1Y, and the dis- 
turbance term Ui is not observable. This sampling model is the basis for 
estimating b from the data by OLS. (Of course, in the present setup it is the 
random variables that are standardized, not the data: Standardizing the 
data is one step in estimating the parameters. Also, some investigators 
prefer to condition on the X-values; this hardly affects the present argu- 
ment, but would complicate the exposition, which attempts to define a 
sampling model and give theorems in terms of population parameters. Be 
the conditioning as it may, in the present setup the X-values are not under 
the investigator's experimental control, and that is what matters.) 

To make the assumptions more vivid, imagine two boxes of tickets, an 
X-box and a U-box. In each box, the tickets have numbers on them. The 
tickets in the X-box average out to 0 with a variance of 1 (the standard- 
ization). The tickets in the U-box average out to zero with a variance of 
1 - b2. The data are generated as follows. For each observational unit i, 
draw one ticket at random (with replacement) from the X-box and another, 
independently, from the U-box. The first ticket shows the value of Xi, and 
the second, Ui. Now use Equation (3) to compute Y (Figure 1). 

This set of assumptions lies behind the simple path diagram in Figure 2. 
The straight arrow leading from X to Y represents the X-term in Equation 
(3); the coefficient is shown near the arrow. The free arrow leading into Y 
represents the disturbance term U. 

The assumptions (3-4-5) are not explicit in the diagram. These assump- 
tions are relatively strong, but something rather like them seems necessary 
to justify the full range of operations made by path analysts. For some 
applications, especially with relatively small samples, normality would have 
to be assumed too. (Of course, weaker assumptions can be used to justify 
partial conclusions in specific cases.) 
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I I I 
the X- box the U-box 

Y = bX + Ui 

FIGURE 1. The observational model 

The division of the model into two parts 

(i) the theoretical relationship between X and Y, 
(ii) the connection with the data on the observational units 

is not standard but can be helpful analytically. For example, (3-4) may 
hold, but if the data are collected on a stratified sample then (5) fails. Or 
the data could be for a simple random sample so (5) holds, but the the- 
oretical relationship (3-4) could be wrong. 

Also, the two parts of the model play different roles. Part (i) underlies 
the causal interpretation of the parameter b, as the expected change in Y 
if we intervene and change X by one unit. The idea behind (i) is that 
changing X by intervention makes no systematic impact on U, because the 
two are independent. So the expected change in Y is just b times the 
proposed change in X. On the other hand, part (ii) enables us to learn b 
from the data by OLS. 

In particular, a causal inference can be made from observational data- 
but its validity depends on the validity of the assumptions on the re- 
lationship between X and Y for the interpretation of b, and the connection 
with the data for its estimation by OLS. Together, the conditions say that 

FIGURE 2. A first path diagram 

X b-- Y 

107 



D. A. Freedman 

the observational data on X and Y are generated as if by experiment, with 
Nature setting the values of X by drawing them at random from a distribu- 
tion, and then generating the Ys from the Xs through a linear statistical 
law. 

This set of conditions is somewhat more restrictive than assuming, for 
example, that X and Y are jointly normal and (Xi, Y) are independent 
replicates of (X, Y); and is not fully captured by (3-4-5). However, the 
as-if-by-experiment condition seems to be the hallmark of a structural 
equation or causal model, as opposed to a mere regression equation. One 
useful way to think about this distinction is to consider what the equation 
says about interventions. 

The technical assumptions in a path model involve the chance behavior 
of the disturbance terms Ui. These terms are in principle not observable, so 
the assumptions are difficult to verify directly. Nor is the chance behavior 
of an unobservable quantity a topic that fires the imagination. Perhaps as 
a result, it is hard to get path analysts to focus on the chance assumptions. 
On the other hand, these assumptions do have empirical content-and 
should be tested before the model is taken seriously. 

What are the main threats to the validity of the assumptions? Three will 
be mentioned now (cf. Tukey, 1954, p. 46): 

(i) measurement error in X, 
(ii) nonlinearity, 
(iii) omitted variables. 

Problem (i) is often recognized by workers in the field, and handled by 
"latent variable" models of the type popularized by Joreskog and Sorbom 
(1981) or Wold (1985); see Noonan and Wold (1983) for an example. 
However, the purported solution involves the introduction of yet another 
layer of assumptions, that there are repeated measurements linearly related 
to the latent variables. In my view, this only begs the question, by moving 
the kind of difficulties under discussion here to other (even less accessible) 
realms. See Freedman (1985) for a discussion. 

Problems (ii) and (iii) will be discussed a bit abstractly in this section and 
the next, and illustrated on Hope's model. Take nonlinearity first. Instead 
of (1), suppose the generating equation is 

Y = a + bX + cX2 + U. (6) 
An investigator who fits a linear model like (1) will get an error term 
uncorrelated with X, but dependent on it. Then, changing X must change 
the error in a systematic way, and the causal inference is invalid. 

For an extreme case, suppose X is uniformly distributed on the interval 
[-1, 1], and Y = X2. Fitting (1) gives a = 1/3 and b = 0, suggesting that a 
change in X will cause no change in Y. That is clearly wrong: The effect of 
X and Y is all in the nonlinear error U = X2 - 1/3. In particular, the path- 
analytic notion of "cause" is intimately bound up with linear statistical 
laws. 
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In this example, b can be interpreted as the average change in Y per unit 
change in X, that is, the average over X of dldxE{YIX =x}. On this 
interpretation, however, b depends on the distribution of X. And the whole 
"average change" idea breaks down if, for example, U = X3 - 3X/5 and 
Y = U so a = b = 0. The reason is that U takes different values when X = 1 
and X = -1 (cf. Tukey, 1954, p. 42). 

Moving on to (iii), suppose the generating equation is (1), but the ex- 
pected value of U increases linearly with X. Then OLS will produce a 
biased estimate of b. Put another way, causal inference fails because chang- 
ing X makes a systematic change in U. One source of such dependence is 
omitted variables-problem (iii). 

This problem too is well known to workers in the field, and their solution 
is to expand the system by adding more variables. That is what path models 
are all about. In sum, if the main variables in the system can be identified, 
and their causal ordering, and the form of the regression functions, the 
models can be more or less easily adapted. But there is a major difficulty: 
Current social science theory cannot deliver that sort of specification with 
any degree of reliability, and current statistical theory needs this informa- 
tion to get started. 

Indeed, the method of least squares was developed by Gauss (1809/1963) 
for use in situations where measurements are well defined, where func- 
tional forms are dictated by strong theory, and where predictions are rou- 
tinely tested against observations. The story is worth retelling: Astrono- 
mers discovered the asteroid Ceres while making telescopic sweeps, but lost 
it when it got too close to the Sun. Finding Ceres became one of the major 
scientific problems of the day. 

To solve this problem, Gauss derived the equations connecting the obser- 
vations on Ceres to the parameters of the orbit, using Newtonian mechan- 
ics. He then linearized the equations of motion and estimated the parame- 
ters by least squares, making careful estimates of the errors due to the 
linearization and due to random variation in the data. Finally, he used the 
equations to predict the current position of Ceres-a prediction borne out 
by astronomical observation. 

In this example, Gauss started from well-established theory that specified 
the relevant variables and the functional form of their relationship. Much 
careful work had already been done on the error structure of the astrono- 
mical measurements. Finally, the model was tested against reality. These 
characteristics differentiate the original application of least squares from 
the application in path models. In situations where theory and measure- 
ment are less well developed, simpler and more informal statistical tech- 
niques might be preferable. 

Path Models 

This section will develop path models, as linked sets of structural equa- 
tions, with the response variable from one equation being an explanatory 
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variable in a second. The assumptions will be highlighted, and the possi- 
bility of testing discussed; threats to validity will be discussed. The develop- 
ment is parallel to the one in the previous section, and it is convenient to 
use the example of X and Y in Equation (1). Suppose that there are two 
additional variables in the system, Z and W. Suppose that together, Z and 
W cause X; then, Z and X cause Y; and the causation is through linear 
statistical laws. This theory about the relationships of the variables can be 
expressed in a path diagram (Figure 3). 

The straight arrow leading from, for example, Z to X indicates that Z 
appears in the equation explaining X; the free arrow leading into X stands 
for the disturbance term in that equation. The path diagram, then, repre- 
sents two linear statistical laws: 

X = aZ + bW + U (7.1) 
Y = cX + dZ + V. (7.2) 

The random variables Z and W are "exogenous": They are viewed as 
causing the other variables in the model, but are not themselves explained. 
This is signaled by the curved, double-headed arrow in the diagram; next 
to the arrow is the correlation between these two variables. The variables 
X and Y are "endogenous"-explained within the model. 

The random variables U and V in (7) are disturbance terms. Equation 
(7.1) relates X to the exogenous variables; then (7.2) relates Y to X and the 
exogenous variables. As is usually said, the system is "recursive" rather 
than "simultaneous." (For more careful definitions, see the next section.) 

Informally, Nature selects (Z, W) from some distribution, and generates 
some noise (U, V). The she or he computes X and Y from (7) and shows 
(Z, W, X, & Y) to the investigator. The disturbances U and V remain 
hidden. 

The parameters a, b, c, d in (7) are called "path coefficients" and are 
usually unknown. The following are the stochastic assumptions: 

FIGURE 3. A path diagram 

-7 
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thc Z-box the W-box the U-box the, V-box 

Xi = aZ + bWi + 

"Yi = cX -t- dZi - V 

FIGURE 4. Box model for path diagram 

The disturbance terms U and V are independent of each other 
and the exogenous variables (Z, W). (8.1) 
The disturbance terms U and V have mean 0. (8.2) 
The disturbance terms and exogenous variables have 
finite variance. (8.3) 

Z, W, X, and Y are all standardized to have mean 0 
and variance 1. (8.4) 
Now for the connection between the theory and the data. There are n 

observational units, indexed by i; for each unit, there are measurements on 
the four variables Z, W, X, and Y. These data are modeled as observed 
values of random variables Zi, W, X;, and Yj, which are independent from 
unit to unit and obey the theory expressed in (7) and (8): 

The six-tuplets (Zi, W, U1, Vi, X1, Y) are 
independent across units i. (9.1) 
For each i, the six-tuplet (Z,, W,, U1, V, X;, Y) is 
distributed like (Z, W, U, V, X, Y) in (7-8). (9.2) 

These assumptions are shown schematically in Figure 4. 
For a moment, come back to the omitted-variables problem. If (7-8) are 

right, then a regression of Y on X alone gives a biased estimate of the effect 
of X, because the regression coefficient picks up part of the effect of the 
omitted variable Z. Specifying the right path model fixes this problem. 

By virtue of assumption (9), the full system can be estimated by OLS. 
And the parameters of the linear statistical laws do have causal inter- 
pretations, as in the previous section. For example, suppose we intervene 
by keeping W and Z fixed but increasing X by one unit: On average, this 
will cause Y to increase by c units-because the disturbance V in Y is 
unrelated to Z, W, or X, so the intervention has no systematic impact on 
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V. (The usual interpretation of the coefficients does present some diffi- 
culties, to be discussed below in the section on direct and indirect effects.) 

Again, a causal inference has been made from observational data. This 
is, I think, the most attractive feature of the methodology. However, its 
validity depends on the assumption that the variables are related through 
linear statistical laws-and the path analyst got the variables and arrows 
right. 

These assumptions are embodied in the path diagram and equations 
(7-8-9). They are inputs to the statistical analysis rather than outputs. All 
the statistical analysis can do (and it is no mean feat) is to estimate the 
correlations and path coefficients, or test that particular coefficients are 
zero-given the assumptions. Standard theory does not offer any strong 
tests of those assumptions; and the existing ones (plotting residuals, cross- 
validation, examining subgroups) are seldom done by path analysts. 

The point may be a bit obscured by the somewhat technical way the term 
causal inference is being used. To restate matters: A theory of causality is 
assumed in the path diagram (the causal ordering, linear statistical laws, 
etc.). Within this context, what the path analysis does is to provide a 
quantitative estimate of the impact of interventions. The path analysis does 
not derive the causal theory from the data, or test any major part of it 
against the data. Assuming the wrong causal theory vitiates the statistical 
calculations. 

The Fundamental Theorem 
One object of path analysis is to decompose correlation coefficients into 

additive components. Consider for now a general path diagram. The vari- 
ables are still standardized, and the analogs of (7-8) are in force. The 
"fundamental theorem" is an identity among correlation coefficients and 
path coefficients. 

First, some terminology and the assumptions. Say a variable X is a 
"proximate cause" of Y if there is a straight arrow leading from X to Y in 
the path diagram (i.e., X appears in the regression equation explaining Y). 
By definition, an "exogenous" variable has no proximate cause whereas an 
"endogenous" variable has at least one proximate cause. (In this paper, I 
am taking the exogenous variables to be random, and will state the funda- 
mental theorem and related decompositions at the level of population 
parameters, rather than sample estimates.) 

There is a curved arrow joining every pair of exogenous variables, and 
one free arrow leading into each endogenous variable. But no free arrows 
lead into exogenous variables, or curved arrows into endogenous variables. 
Say X is a "remote cause" of Y if there is a sequence of straight arrows 
leading from X to Y in the diagram. Assume that the path diagram is 
recursive, in the following sense: 

No variable can be a cause of itself, proximate or remote. (10) 
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li~ xa z >?-- X 

W - Y Z< Y j7 T 

FIGURE 5. Violating the conditions. In the left diagram X causes Y and Y 
causes X. At the right, X is a remote cause of itself. 

In particular, X may be a remote cause of Y, or Y a remote cause of X, or 
neither-but not both. Figure 5 shows two diagrams that violate the condi- 
tions. 

(The left hand diagram in Figure 5 provides an example of "simulta- 
neity": X and Y are obtained from Z and W by solving the pair of simulta- 
neous linear equations: 

X = aZ +bY + U 

Y = cW + dX + V. 

Such systems are common in econometric work, but less common in other 
social science fields. The new difficulty is that the right hand side variables 
become correlated with the errors, so OLS must be replaced by more 
complex estimation procedures.) 

The "fundamental theorem" (Duncan, 1975, pp. 36ff or Wright, 1921) is 
the following: 

Suppose Y is endogenous and not a cause of X, 
proximate or remote. Then (11) 

rxy = zP z prxz, 

where 
pyz is the path coefficient from Z to Y, 
rxy is the correlation coefficient between X and Y, and 
the sum is over all Z that are proximate causes of Y. 

Technically, the set of exogenous variables is assumed independent of the 
disturbance terms, which are independent among themselves, as in (8.1). 

113 



D. A. Freedman 

It follows that an endogenous variable is independent of all the disturbance 
terms-except those among its causes. The identity (11) can be applied 
recursively, to express any correlation in terms of the path coefficients and 
the correlations among the exogenous variables. This leads to the deep 
"path tracing rule" of Wright (1921). 

Direct and Indirect Effects 
One object of path analysis is to measure the "direct" and "indirect" 

effects of one variable on another. Take, for example, the path diagram in 
Figure 3. Successive applications of (11) show 

rzy = d + ac + rzw bc. 

Associated with this identity is some terminology: 

rzy is called the "total effect of Z on Y," 
d is the "direct effect of Z on Y," 
ac + rzwbc is the "indirect effect of Z on Y," and 
ac is the "effect of Z on Y through X. " 

The relationship between the terminology and the diagram is pretty 
clear, but the connection to causal inference more problematic. Take the 
last effect first: We intervene by holding W fixed but increasing Z by one 
unit; this increases X by a units, which in turn makes Y go up ac units. So 
far, so good. 

Now try the direct effect of Z on Y: We intervene by fixing W and X but 
increasing Z by one unit; this should increase Y by d units. However, this 
hypothetical intervention is self-contradictory, because fixing W and in- 
creasing Z causes an increase in X. Or is the disturbance term U in (7.1) 
supposed to come down? How does that square with independence? Or the 
idea that U represents "omitted variables?" 

This may seem like a pointless tease about semantics, but given the 
research effort spent in composing and decomposing correlations, surely 
some attention to interpretation is called for. The only possibility for d 
seems to be the rate of change of E (Y I X, Z) with respect to Z, and calling 
this a "direct effect" is rather strange. 

My view, stated in detail earlier, is that a path model represents the 
analysis of observational data as if it were the result of an experiment. At 
points such as this, it would be helpful to know more about the structure 
of such hypothetical experiments: What is to be held constant, and what 
manipulated? 

Standardizing the Variables 
Should path models be given in terms of variables in their natural scale, 

or should they be standardized? The question is hardly a new one-see, for 
example, Achen (1982, p. 76), Blalock (1964, p. 51), Tukey (1954, p. 41), 
or Wright (1960). Apparently, standardizing only matters when comparing 

114 



Case Study in Path Analysis 

path coefficients estimated from different populations, that is, different 
distributions for the exogenous variables. And the answer depends on what 
is considered to be invariant across populations-that is, on the form of the 
social law assumed to govern the data. In other words, there is an empirical 
issue. 

To focus ideas, consider the simple regression model of Equation (1). Let 
X and Y denote the variables in their natural scale (dollars, years of school- 
ing completed, etc.); let X and f denote the standardized variables. There 
are two versions of the equation, raw and standardized: 

Y = a + bX + U (1) 

f = 6X+ . (1) 

Suppose first that equation (1) expresses a social law, with parameters a, 
b, and var U, which are invariant across populations (X-distributions). Now 
the path coefficient 6 depends on the scale of X: 

6 = b VvarX/[b2 varX + var U]. 

Two investigators who work with different populations and standardize will 
get different path coefficients-and miss the invariance of a and b. This is 
not a good research strategy. 

On the other hand, the law governing the data could be in terms of 
standard units-Equation (i). That is, 6 could be invariant across popu- 
lations. Then fitting (1) in "natural" units will miss the invariance, because 
a and b vary across populations. Of course, the situation could be more 
complicated than (1) or (i). 

Even if (1) is the right choice, the standard deviations of the disturbance 
terms in more complex models need not be invariant across populations. 
Consider, for example, the path model in Figure 3. Suppose that the law 
(7-8) underlying the social process is in standard units, so the variables Z, 
W, X, and Y should be standardized. And the path coefficients will be 
stable across populations (joint distributions for Z and W). But the stan- 
dard deviations of the disturbance terms U and V depend on the path 
coefficients and rzw, so these standard deviations will change from popu- 
lation to population, because rzw depends on the joint distribution of the 
exogenous variables. 

The point can be illustrated on var U in (7.1): 
1 = varX 

= a2 var Z + b2 var W + var U 
+ 2ab cov (Z, W) + 2a cov (Z, U) + 2b cov (W, U) 

= a2 + b2 + var U + 2ab rzw. 

The first line holds by the standardization. For the same reason, in the 
second line, var Z = var W = 1 and cov (Z, W) = rzw. The other two covar- 
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iances in line 2 vanish by (8.1). Now the equation can be solved for var U: 

var U = 1 - a2 - b 2 - 2ab rzw. 

Thus, the unexplained variation depends on the population being studied. 

Hope's Model 
In this section, I will describe Hope's model, and then review it under the 

headings proposed earlier, stressing the weakness of the connection be- 
tween the model and the underlying social process. One of Hope's technical 
innovations is the "autonomy coefficient," which may be viewed as an 
attempt to deal with certain kinds of measurement error. It will be dis- 
cussed too. Along the way, I will try to give the flavor of the conclusions 
drawn from the model. 

First, some background for the model. Since the publication of the Cole- 
man et al. report (1966), there has been an extended debate concerning the 
impact of schools on the educational attainments of students, and the 
achievements afterward. Jencks et al. (1972) is often cited in this con- 
nection. Chapter 1 of Hope (1984) is a contribution to this literature. It 
addresses the following sorts of questions: Do schools matter? Does edu- 
cation have more of an impact in Scotland or in the United States? Of 
course, to answer these questions, the terms have to be defined, and back- 
ground variables controlled. 

Hope measures outcomes in terms of the occupations of his subjects. 
Only secondary education is considered. The background variables are 
two: IQ and father's occupation. The American data are drawn from Jencks 
and will not be discussed here. For Scotland, Hope measures occupations 
on a 9-point scale, ranging from "professionals and large employers" at the 
top to "agricultural workers" at the bottom (1984, p. 17). For the path 
model, occupations were ranked according to "social standing" by 12 col- 
lege students, and the principal component of the 12 rankings was used as 
the occupation variable (p. 18). 

Secondary education in Scotland was on a track system, and Hope mea- 
sures this variable on a 7-point scale, according to the track taken by the 
subjects (1984, p. 14). The top track "completed five years of secondary 
education in a general course with two foreign languages." The bottom 
track "three years of secondary education in a modified class (for less able 
and backward children in an ordinary school)." 

The data are from the "Scottish Mental Survey." The sample was drawn 
in 1947, and consists of all 11-year-old boys born on the first day of every 
other month. The children were followed until 1964, and data are available 
on nearly 600 of them, including anthropometry, scores on Form L of the 
Stanford-Binet IQ test, and a "sociological schedule" that included father's 
occupation. Sample attrition was less than 10%. 

Hope proposes a path model for his four variables; it is shown in Figure 
6, with coefficients estimated from the American and Scottish data. There 
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are two structural equations: 
education = a x IQ + b x (father's occupation) + error (12.1) 

occupation = c x (education) + d x IQ + e x (father's occupation) 
+ error. (12.2) 

(In these equations, of course, IQ, education, and occupation are attributes 
of the sons.) This model will now be reviewed under the headings proposed 
earlier, starting with measurement issues. 

The difficulties in measuring intelligence and success in life are only too 
well known. But what about education? For one thing, the school variable 
in the United States is quite different from the one in Scotland (years 
completed rather than track). And this kind of difference can have a sub- 
stantial impact on the path coefficients. (A similar issue is noted in the 
section on standardization, above.) 

Moreover, the school variable in Scotland includes not only character- 
istics of the schools, but also characteristics of the students. For example, 
the difference between tracks 1 and 3 lies in whether the students com- 
pleted the course: This is a measure of students' ability and character, as 
well as of the education received. The path analysis is being used to sepa- 
rate the inputs to the school from outputs, but the two are already entan- 
gled in the school variable-before the path analysis can do anything. 

This point has been questioned by some readers. To make the issue 
clearer, suppose the measured school variable is just another IQ score- 
like form M instead of form L. None of the analysis would then have any- 
thing to do with education. For a second example in a similar vein, suppose 
the path model in Figure 6 is right-for some variable that represents 

FIGURE 6. Hope's path model 

.466 \758654 \55 IQ .- Education IQ o. Education 
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United States Scotland 

Source: Hope (1984, pp. 26-27). 
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educational quality. In this second hypothetical world, the path from IQ to 
education represents the fact that brighter students choose better schooling, 
on average. Suppose too that the measured school variable is a linear com- 
bination of IQ and the underlying educational quality variable. In this sec- 
ond hypothetical, the estimated path coefficients are substantially biased; 
and the bias depends on the unknown error structure in the measurements. 

One of Hope's technical innovations might be viewed as an attempt to get 
around the second sort of measurement problem. He decomposes the 
direct effect of education on occupation into an "autonomous" and a "het- 
eronomous" component (1984, pp. 9, 24ff). To define these terms, assume 
the relationships part of the model in Figure 6, that is, the analog of (7-8). 
Let E and O be the endogenous variables, education and occupation; let 
the exogenous variables be I and F, IQ and father's occupation. Hope's 
decomposition can be expressed as an equation: 

POE = POE V + POEPEJ rEI + POEPEF rEF. (13) 
The first term on the right is the "autonomous effect" of education on 
occupation; v is the variance of the disturbance term in the equation for E. 

To understand this term geometrically, let L and 6 be the projections of 
E and O on the space spanned by I and F; let E = E - Land 0- = O - 0, 
so E' and O are the projections on the orthocomplement. In other words, 
E' and 0' represent education and occupation, net of IQ and father's 
occupation: "net" means, after subtracting out the projections. The "au- 
tonomous effect" of education on occupation, that is, the first term on the 
right of (13), turns out to be the covariance of 0' and E'. Since E' is not 
standardized, the covariance is not a regression coefficient; apparently, 
division by v = var E' just gives you back POE, as is also clear from (13). 

(The remaining two terms in the equation seem to be part of the "heter- 
onomous effect"; however, I see no direct geometric interpretation for 
them, nor do Hope's verbal descriptions in his table 1.6 make much sense 
to me, let alone the identification of these terms with the "universalistic" 
and "particularistic" in education.) 

In principle, it is harmless to compute a covariance. But what is Hope's 
interpretation? 

The aim of the research is ... to quantify the effects of education over and 
above any effects which it transmits from input variables [I and F]. To 
accomplish that aim, we must ask ourselves a very simple question: 
To what extent is education acting as a transmitter (heteronomously) and 
to what extent is it contributing its own autonomous effect, over and above 
the transmitted effects, to the process of stratification? (1984, p. 9) 

There is at least one peculiarity in this interpretation: Suppose the path 
model in Figure 6 is right. If we intervene by holding IQ and father's 
occupation fixed but increase education, then it is POE that measures the 
change in the subject's occupation, not the "autonomous effect." Similarly, 
if the measured school variable is a linear combination of IQ and the 
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underlying educational quality variable, the autonomy coefficient is quite 
a biased estimate of the path coefficient for educational quality. On the 
other hand, if the measured school variable is just another IQ score, the 
autonomy coefficient may say something about the relationship of IQ tests 
to occupational achievement-but nothing about schools, because these are 
absent from the model. Statistical computations are no substitute for a 
proper specification. 

Hope cites Finney (1972) in defense of the autonomy coefficient, but 
Finney's message is more that the "indirect effect" of an exogenous vari- 
able on an endogenous one includes the correlations among the exogenous 
variables, and is therefore noncausal; also, this indirect effect depends on 
the population, that is, the joint distribution of the exogenous variables, 
and so is not comparable across populations (cf. previous sections on direct 
effects and standardization). Finney's second criticism applies directly to 
Hope's autonomy coefficient. 

Now let me quote Hope (1984) again: 

The basic idea [of the autonomy coefficient] can be quite adequately 
represented by the following simple analogy. If we think of the paths in a 
path model as pipes along which water flows, and if we imagine one pipe 
connecting A and B, and another connecting B and C, then we naturally 
wonder whether the flow between B and C is entirely accounted for by the 
flow between A and B, or whether more water comes into the system at 
B. Such incoming water models our idea of the autonomous effect of B 
which, in our application of the analogy, stands for education. (p. 8) 

This analogy does not really serve to differentiate among disturbance 
terms, direct effects, or autonomy coefficients. Indeed, since correlation 
and regression coefficients describe changes rather than levels, the passage 
seems to be a confusion: The statistical constructs in the path model relate 
less to the flow of water than to variations in the flow-ripples. 

This completes the discussion of measurement issues and the autonomy 
coefficient. Now we come to the stochastic assumptions. Why do the vari- 
ables satisfy a linear statistical law? Nowhere does Hope ask this question. 
With a 7-point scale for education, linearity is hard to take seriously; and 
Hope himself points to noticeable skewness in the IQ data. Also, the 
impact of the fast track may be larger on the brighter students. Hetero- 
scedasticity is another problem: American data suggest that variance of 
intelligence and schooling depend on occupational level (see, e.g., Crouse 
& Olneck, 1979). 

Omitted variables must be considered too. Is the process of social 
stratification the same in the Highlands as in the cities? Geography does not 
appear in the model. Are schools in Edinburgh similar to those in Glasgow? 
Schools per se do not appear in the model, except through the tracks 
variable. To have schools omitted is peculiarly ironic in a study of their 
effects, especially when the author thinks (as Hope does, see pp. 19-20) 
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that it is the individual characteristics of different schools that make for 
strong educational effects. 

Given such problems, what connects the model to reality? What makes 
Hope think the assumptions hold? I could only find a few sentences re- 
sponsive to these questions, and quote them in full (1984, pp. 14-15): 

The theoretical model that informs our analysis of the effects of education 
on stratification was implicit in the design of the Scottish Mental Survey 
(Hope, 1980). It postulates that, for boys, the significant inputs they bring 
to the social system are cleverness, character, and class. Since we lack 
comparative data on character, we omit that variable from the current 
model (it was included in the model in Hope, 1980). 

At best, this passage justifies including IQ and father's occupation in 
(12). It does not justify the linearity or the stochastic assumptions. Nor does 
it justify treating the equations in (12) as structural, rather than mere 
associations; on the contrary, it flags another important missing variable. 
And so in the end Hope does not connect Figure 6 with real boys who go 
to school, graduate, and get jobs. Neither does the cited article (Hope, 
1980), which presents a path model rather like Figure 6, but including 
variables labeled "personality" and "qualifications." In that article, there 
is much ingenuity devoted to the geometry of factor analysis-and none to 
elucidating the relationship between the geometry and the boys. 

Hope is not alone in these respects. Indeed, I do not think there is any 
reliable methodology in place for identifying the crucial variables in social 
systems or discovering the functional form of their relationships. In such 
circumstances, fitting path models is a peculiar research activity: The com- 
puter can pass some planes through the data, but cannot bind the arithmetic 
to the world outside. 

At such points as this, modelers will often explain that nothing is perfect, 
all models are approximations, so maybe Hope's model is good enough: 
How much difference can the blemishes make? In this particular case, 
blemishes could really matter, because the differences in path coefficients 
between Scotland and the U.S. are small (the largest is for the direct effect 
of IQ on education). And substantial conclusions are drawn from these 
differences: 

What we have shown is that Scotland... is more merit[ocratic] than the 
United States. Taking transmission of IQ as universalistic and transmission 
of father's occupation as particularistic, we may say that the ratio of 
universalism to particularism in education... is 2 to 1 in the United States 
and more than 4 to 1 in Scotland. The overall direct effect of education on 
occupation is about .47 in both. Within this total, the ratio of autonomous 
effect: universalism :particularism is 57 : 27 : 15 in the United States, as 
against 43:47:10 in Scotland. We conclude, therefore, that data which 
have previously been held to manifest negligible autonomous effects of 
schools (in the United States) in fact ascribe a stronger effect to schools 
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than they do to the characteristics of students entering those schools. 
(Hope, 1984, p. 30) 

This sort of finding has to be really sensitive to the rather arbitrary 
specification. To illustrate the sensitivity: Adding "personality" and 
"qualifications" to the model, as in Hope (1980), makes the direct effect of 
education on occupation drop from .47 to .23. (This is rather close to the 
autonomy coefficient, but I do not see much logical connection between 
adding those two variables and projecting out the two exogenous vari- 
ables.) 

The differences in path coefficients between Scotland and the United 
States may be largely due to the scaling, or the differential impact of 
omitted variables and measurement error. In any case, the central issue is 
what connects the path model and the process by which boys get jobs; this 
connection is simply not established. Assumptions matter, and with path 
models it is too easy to lose track of this. 

Modelers may then explain that they are only doing data reduction. Let 
us agree for the moment that Hope's data look more or less like a sample 
from the multivariate gaussian distribution, and that standardization is 
appropriate. (Otherwise, his analysis goes off the rails almost immedi- 
ately.) Now the data for each country can be summarized by a table of six 
correlation coefficients. However, the path model has six parameters too, 
and Hope's table 1.6 analyzes these into a dozen components. Data reduc- 
tion is not the game here. 

Other readers may feel that nobody could be taking the models so seri- 
ously; after all, a model is just some way of looking at the data. Well, here 
is Hope's view: 

We begin our study by asking whether Scotland was indeed the meritoc- 
racy it is often alleged to have been. In the course of answering this 
question we will refine the definition of meritocracy to the point where its 
presence or absence, or rather the degree to which it is present, can be 
assessed in precise, quantitative terms. Of course, no such quantification 
can be final or irrevocable; nevertheless, it has distinct advantages over 
imprecise and impressionistic statements. In the first place, it gives us 
some idea of an order of magnitude we did not possess before. Second it 
enables us to compare degrees of magnitude in different societies. And in 
the third place it is disputable on empirical grounds and corrigible accord- 
ing to rational criteria of evidence and rebuttal. But the really significant 
effect of quantification is, or ought to be, none of these. Rather does it lie 
in the effort at refining and exploring the meaning of analytical concepts 
which employment of a model calls for. ... But in so constraining them we 
will make every effort to see to it that meaning is not warped beyond the 
bounds of normal usage, but rather is tightened up in a way which will 
command general approval. (1984, p. 6) 

Hope is doing something much more ambitious than data analysis. But 
his statistical technique has led him astray, and he almost knows it: 
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It will become apparent to the reader that the following work is not modest 
in its aims. And to those who observe that extensive conclusions are built 
on fairly exiguous foundations, the author can only reply that this is indeed 
the case. (1984, p. 3) 

Hope's starting point may have been that a son's intelligence and his 
father's occupation jointly influence the boy's education, and then all three 
factors influence the boy's choice of occupation-influence but do not 
determine. Look back at Figure 6. Fixing IQ, fathers' occupational status, 
and education still leaves about 70% of the variation in sons' occupational 
status, both in the U.S. and in Scotland-in good agreement with Blau and 
Duncan (1967, p. 170). 

These seem to me to be quite interesting facts, not much affected by the 
difficulties in path modeling under discussion. Scotland may be more 
meritocratic than the U.S., but on the evidence of Figure 6 neither country 
is exactly caste-ridden; rough insights whose value is considerable. (Some- 
thing like this is at the core of Blau & Duncan, 1967.) 

There are now some interesting questions, and to answer them, Hope 
takes for granted that his measurements on the variables are connected 
through linear statistical laws. He can hardly be blamed for doing so, 
because nearly everyone does the same; but it is precisely the move from 
rough insight to full-blown path model that seems so counterproductive to 
me. 

The path model might be useful to predict the results of interventions, or 
of changing circumstances, or to provide a better understanding of the 
stratification process. But this sort of interpretation must ride on a theory, 
because something is needed to connect the statistical calculations to the 
process. As far as I can see, this theory is exactly what is missing. 

Meta-Arguments 
For a historical discussion of path models in sociology, see Bernert 

(1983). These models were developed by Wright (e.g., 1921, 1934) for use 
in genetics. But later applications even in that field remain controversial: 
see Karlin (1979), or Karlin, Cameron, and Chakraborty (1983), with dis- 
cussion by Wright et al. Tukey (1954, pp. 60-66) found the method attrac- 
tive, but had doubts about the one specific example he presented. 

Many investigators have written about the problem of drawing causal in- 
ferences from observational data. Some have stressed the as-if-randomized 
assumption: for example, see Holland (1986) or Pratt and Shlaifer (1984). 
Others have focused on the weaknesses of causal models: see Baumrind 
(1983), Cliff (1983), de Leeuw (1985), and Ling's (1983) scathing review of 
Kenny (1979). Lieberson (1985) is quite skeptical about the possibility of 
making statistical adjustments that bring observational data into the as-if- 
randomized condition. 

Econometrics is an interesting test case for the modeling approach, be- 
cause the technique is extremely sophisticated, and commercial services 
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using macro-models make real forecasts whose accuracy can be tracked: see 
Christ (1975), Litterman (1986), McNees (1979, 1986), and Zarnowitz 
(1979). Basically, the major forecasting models do not do at all well unless 
their equations are revised frequently, and the intercepts reestimated sub- 
jectively by the modelers. Even then, such modeling groups do no better 
than the forecasters who proceed without models. Finally, the different 
modeling groups tend to make quite similar forecasts; but their models 
often disagree sharply about the projected impact of policy actions. 

There are prominent critiques of standard econometrics and the under- 
lying data by insiders, starting with the classic exchange between Keynes 
(1939, 1940) and Tinbergen (1940). More recent citations are Hausman and 
Wise (1985), Hendry (1980), Leamer (1983), Leontief (1971), Lucas and 
Sargent (1979), Morgenstern (1963), and Sims (1980). In some cases, of 
course, the proposed cure may be worse than the disease. 

My own views have been argued in Daggett and Freedman (1985), and 
Freedman (1985), with discussion by Joreskog and Fienberg; in the context 
of energy models, see Freedman (1981), or Freedman, Rothenberg, and 
Sutch (1983), with discussion by Hogan and Smith; in the context of census 
adjustment, see Freedman and Navidi (1986), with discussion by Kadane 
et al. 

One line of defense against foundational attack is Bayesian, as in Sims 
(1982). The disturbance terms are held to represent not omitted variables 
but a component of subjective uncertainty; another component of subjec- 
tive uncertainty is expressed by a prior on the parameters of the model. The 
functional form of the model is common ground, on which all such Bayesian 
econometricians meet. Given the great diversity of functional forms in the 
econometric literature, and their transience, his argument does not seem to 
reach an important question: What is the relevance of textbook linear 
models to the economy? 

Another interesting line of defense is sketched by Achen (1982), who 
says that we can use data to learn about social process. He proves the point, 
drawing on Veblen (1975) to make a charming and prima facie persuasive 
argument that the Manchester Union-Leader influenced elections in New 
Hampshire. A major tool is regression equations. He and Veblen think 
through a variety of qualitative positions about the political process, and 
their implications for the regressions. Then they look at the data, and only 
one position survives the test. But as Achen notes (p. 29), there is no 
pretense of developing a structural model; the equations are purely descrip- 
tive. 

In some circumstances, regression equations are useful ways to look at 
data; the coefficients and the standard deviation around the regression 
plane can be good summary statistics. This is so, at least when the data look 
something like a sample from a multivariate gaussian distribution. Achen 
and Veblen have one success story along these lines. So did Blau and 
Duncan (1967). And so does Hope, as noted above. But there is a real 
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difference between summarizing data and building path models. To take a 
simpler example, you can report a batting average without adopting count- 
ably additive probability theory and the strong law of large numbers. 

The critique of path models in this paper is hardly original. A few words 
more about some of the conventional responses may be in order. Models 
are often held to be of value in offering guidelines to decisionmakers rather 
than descriptions or forecasts of behavior. The test often proposed for such 
models is whether decisionmakers find them useful. (The argument is 
strongest for normative models, but is often made for descriptive models as 
well.) In the present context, this argument seems circular. 

Decisionmakers may like path analysis because the models appear to 
provide answers to important questions, but it is the use of the models by 
academic investigators that makes the process respectable. (For example, 
there are plenty of chartists on Wall Street, but their technique is not 
prominent in our literature.) The real issue is old-fashioned: Why are the 
answers from the path model at all dependable? In the end, we still need 
to verify the model's assumptions, by some combination of theory and 
practice, before recommending its conclusions to the decisionmaker. 

We arrive, then, at the descriptive aspect. Here, two points are often 
made: 

(i) Valid inferences can be drawn from axioms known to be false. 
(ii) No model is perfect; what counts is that the model should be better 

than the next-best alternative. 

Both points are quite weak. In the present context, the first is almost 
irrelevant, because the conclusions of path models are so close to their 
assumptions. More generally, argument (i) can only shift the burden from 
the assumptions to the conclusions. After all, if the modeler doesn't believe 
those assumptions, they can hardly be part of his or her reason for believing 
the conclusions. 

Even in the best of theories, individual axioms may not be testable, so the 
modeler has to consider several axioms in combination and derive testable 
implications from the set: compare Blalock (1969, chapter 2). So there is a 
grain of truth to argument (i). However, the street version almost relies on 
a parody: If A then B, and A is false, therefore B. The anti-syllogism can 
be traced back to Friedman (1953), but that time he had to be kidding us. 

Argument (ii) has some merit in some situations, but its relevance to 
statistical modeling in the social sciences is slight. The reason is that there 
is a wide range of imperfection in human knowledge, and it is not so 
obvious where to locate path models in that spectrum. The results of a path 
analysis depend for their validity on some underlying causal theory. If the 
theory is rejected, the interpretations have no foundation. Why, then, 
should they be held to dominate alternatives? And other modes of enquiry 
do exist: De Tocqueville was making comparative studies of the new world 
and the old long before path models arrived on the scene. 
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Conclusion 

This kind of negative article may seem incomplete. Path analysts will ask, 
not unreasonably, "Well, what would you do?" To this question, I have no 
general answer, any more than I can say in general how to do good math- 
ematical research. Still, social science is possible, and needs a strong empir- 
ical component. Even statistical technique may prove useful-from time to 
time. 

There are some such techniques on the horizon, which do not depend on 
prior specification the way path models do: see Asimov (1985), Breiman, 
Friedman, Olshen, and Stone (1984), Fisherkeller, Friedman, and Tukey 
(1975), Huber (1985), or McDonald (1984). It remains to be seen whether 
these innovations can be used to make improvements over path analysis. 
They do offer better data-analytic capabilities. Log linear models should 
also be mentioned (and their problems noted). 

My opinion is that investigators need to think more about the underlying 
social processes, and look more closely at the data, without the distorting 
prism of conventional (and largely irrelevant) stochastic models. Estimat- 
ing nonexistent parameters cannot be very fruitful. And it must be equally 
a waste of time to test theories on the basis of statistical hypotheses that are 
rooted neither in prior theory nor in fact, even if the algorithms are recited 
in every statistics text without caveat. 
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