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Abstract. We classify all essential extensions of the form

0 → B → D → C(X) → 0

where B is a nonunital simple separable finite real rank zero Z-stable C*-
algebra with continuous scale, and where X is a finite CW complex. In fact,
we prove that there is a group isomorphism

Ext(C(X),B) → KK(C(X),M(B)/B).

1. Introduction

Motivated by the problem of classifying essentially normal operators on a sep-
arable infinite dimensional Hilbert space, Brown, Douglas and Fillmore (BDF)
classified all C*-algebra extensions of the form

0 → K → D → C(X) → 0

where K is the C*-algebra of compact operators on a separable infinite dimensional
Hilbert space, and X is a compact metric space. This was a starting point for much
interesting phenomena in operator theory and has led to the rapid development of
extension theory with many effective techniques (especially from KK theory) to
compute the Ext-group Ext(A,B).

However, in general, Ext(A,B) does not capture all unitary equivalence classes
of extensions. Among other things, there can be many nonunitarily equivalent
trivial extensions, and also, an extension φ with [φ] = 0 in Ext(C(X),B) need not
be trivial. (For these and other shortcomings, see, for example, [36], [40], and [41].)

One of the implicit reasons for the success of the original BDF Theory is that
B(l2) and the Calkin algebra B(l2)/K have particularly nice structure. Among
other things, B(l2) has strict comparison and real rank zero (it is a von Neumann
algebra), and B(l2)/K is simple purely infinite. (For example, the BDF–Voiculescu
result that roughly speaking says that all essential extensions are absorbing would
not be true without the simplicity of B(l2)/K.)

It would be nice to find a class of corona algebras which generalize nice features
from B(l2)/K, with the goal of developing operator theory and extension theory in
an agreeable context, among other things generalizing further the theories developed
by BDF, Voiculescu and other workers. These ideas were clearly present1 in the
early literature.

Simple purely infinite corona algebras have been completely characterized. Re-
call that a simple C*-algebra has continuous scale if, roughly speaking, it has a
sequential approximate identity which is like a “Cauchy sequence”. More precisely:

1as a proper subset

1
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Definition 1.1. Let B be a nonunital separable simple C*-algebra. Then B has
continuous scale if B has an approximate identity {en}

∞
n=1 such that en+1en = en

for all n, and for every b ∈ B+ − {0}, there exists an N ≥ 1 such that for all
m > n ≥ N ,

em − en � b.

(See, for example, [34].)

In the above, � is a subequivalence relation for positive elements (generalizing
Murray–von Neumann subequivalence for projections) given as follows: for a C*-
algebra D, for a, d ∈ D+, a � d if there exists a sequence {xn} in D such that
xndx

∗
n → a.

Theorem 1.2. Let B be a nonunital separable simple nonelementary C*-algebra.
Then the following statements are equivalent:

(1) B has continuous scale.
(2) M(B)/B is simple.
(3) M(B)/B is simple and purely infinite.

([34], [46]; see also [10], [60])

We note that purely infinite simple C*-algebras have real rank zero ([62]). We
further note that for a general nonunital separable simple C*-algebra D, an exten-
sion of D by C(X) can often be decomposed in a way where one piece sits inside
the minimal ideal of M(D)/D, and this piece is essentially an extension of a sim-
ple continuous scale algebra (e.g., [41]; see also [27]). Thus, simple purely infinite
corona algebras are not just a very nice context, but are part of the general picture.2

Nonetheless, difficulties still arise that are not present in the case of B(l2)/K.
For example, for simple continuous scale B, the K-theory of M(B) and M(B)/B
can be much more complicated than that of B(l2) and B(l2)/K. Moreover, in the
case where B is nonstable, we do not have infinite repeats and the powerful tools of
the classical theory of absorbing extensions (e.g., [2], [7], [13], [30], [31], [45], [58])
are no longer completely available.

In effect, one needs to develop a type of nonstable absorption theory, where one
takes into account the fine structure of the K-theory. Such a theory has previously
been considered with definite results (e.g., [36], [40], [41]). The author of the
aforementioned results studied the case where the ideal was a simple nonunital
continuous scale algebra with real rank zero, stable rank one, strict comparison and
unique tracial state. In the present paper, one of the results removes the unique
tracial state condition, but with the addition of the highly restrictive condition of
Jiang–Su-stability.

As part of the program, we also have results characterizing (not necessarily
simple) purely infinite corona algebras. Under mild regularity conditions on a
simple C*-algebra B, we have the equivalences: B has quasicontinuous scale ⇔
M(B) has strict comparison ⇔ M(B)/B is purely infinite ⇔ M(B) has finitely
many ideals ⇔ Imin = Icont ⇔ V (M(B)) has finitely many order ideals. We
believe that this category is suitable to the development of a definitive and elegant
extension theory, and should be the first case before the construction of an even

2And thus, also, the nonstable case is important even for understanding the stable case. We
further note that nonstabilization has been a key part of some of the most interesting and difficult
results in the field. See, for example, [4], [38], [43], [45].
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more general theory. Furthermore, all such corona algebras have real rank zero,3

and many other related and fundamental results have been investigated. (E.g., [26],
[27], [28], [33], [50], [53].)

1.1. Notation. We end this section with some brief remarks on notation. In the
last part, we also spell out some necessary prerequisites for reading this paper.

For a C*-algebra B, M(B) denotes the multiplier algebra of B. Thus, M(B)/B
is the corresponding corona algebra.

For each extension

0 → B → D → C → 0

(of B by C)4, we will work with the corresponding Busby invariant which is a *-
homomorphism φ : C → M(B)/B. We will always work with essential extensions
which is equivalent to requiring that the corresponding Busby invariant be injec-
tive; hence, throughout the paper, when we write “extension”, we mean essential
extension. An extension is unital if the corresponding Busby invariant is a unital
map.

Say that φ, ψ : C → M(B)/B are two extensions. We say that φ and ψ are
unitarily equivalent (and write φ ∼ ψ) if there exists a unitary u ∈ M(B) such that

φ(c) = π(u)ψ(c)π(u)∗

for all c ∈ C. Here, π : M(B) → M(B)/B is the quotient map.
Ext(C,B) denotes the set of unitary equivalence classes of nonunital extensions

of B by C. If, in addition, C is unital, Extu(C,B) is the set of unitary equivalence
classes of unital extensions.

For a unital simple C*-algebra C, T (C) denotes the tracial state space of C. If
C is a nonunital simple C*-algebra, T (C) will denote the class of (norm-) lower
semicontinuous, densely defined traces which are normalized at a fixed element
e ∈ C+ −{0}, where e is in the Pedersen ideal of C (of course, for statements in this
paper involving T (C), where C is nonunital, the choice of e will not be relevant). For
τ ∈ T (C) (where C is unital or nonunital), for c ∈ C+, dτ (c) =df limn→∞ τ(c1/n).
(Good references are [26] and [27].)

For a C*-algebra D and for a, b ∈ D+, a � b means that there exists a sequence
{xn} in D such that xnbxn → a. (This subsequivalence generalizes Murray–von
Neumann subsequence for projections.) For a ∈ D+, we let herD(a) =df aDa, the
hereditary C*-subalgebra of D generated by a. Sometimes, for simplicity, we write
her(a) in place of herD(a). Similarly, for a C*-subalgebra C ⊆ D, we let herD(C)
or her(C) denote CDC, the hereditary C*-subalgebra of D generated by C. Finally,
for a subset S ⊆ D, we let IdealD(S) denote the ideal of D which is generated by
S. Again, we often write Ideal(S) in place of IdealD(S).

In this paper, any simple separable stably finite C*-algebra is assumed to have
the property that every quasitrace is a trace.

3We note that real rank zero was a reoccurring, though implicit, theme in the proof of the
original BDF index theorem. Moreover, the Kasparov technical lemma, which is a foundation for
the construction of the Kasparov product and the important properties of KK, implies that the
corona algebra of a σ-unital algebra is an SAW*-algebra, a property with formal similarities to
real rank zero.

4In the literature, the terminology is sometimes reversed and this is sometimes called an
“extension of C by B”. Following Arveson, BDF, Voiculescu and others, we prefer “B by C”.
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Throughout this paper, Z denotes the Jiang–Su algebra ([25]). A C*-algebra C
is said to be Z-stable if C ⊗ Z ∼= C.

Let A, C be C*-algebras. Throughout this paper, we will write that a map
φ : A → C is c.p.c. if it is linear and completely positive contractive. Let F ⊂ A be
a finite subset and let δ > 0. A c.p.c. map ψ : A → C is said to be F-δ-multiplicative
if ‖ψ(fg)− ψ(f)ψ(g)‖ < δ for all f, g ∈ F .

We will be using, without definition or explanation, many notations and results
from KK theory and other theories. The reader will be required to be familiar with
the references listed below.

Good references for basic multiplier algebra theory, extension theory, K theory,
and KK theory are [5], [29], [44], and [59]. See also [26], [27] and [28] for much of the
advanced multiplier algebra machinery. We emphasize that we will be extensively
using, without definition or explanation, notation and results from [5], [29] and [44].

For the notation and basic KK-theoretic tools (which, again, we will freely use
without definition or explanation), we refer the reader to [15], [16], [23], [36], [40],
[45], [43], [44], [48], [52], [54], and the references therein. We emphasize, once more,
the nonstable aspects of the theory which can be found in, say, [15] as well as other
references mentioned above.

References for simple continuous scale algebras are [34] and [46]. Section 1 of
[47] contains computations of the K theory for the multiplier and corona algebras
of simple separable continuous scale C*-algebras with real rank zero, stable rank
one and strict comparison (see also [50] Propositions 4.2, 4.4 and Corollary 4.6; and
also [12]). Other good sources are [26] and [27]. We note that simple continuous
scale algebras play a key role in recent outstanding breakthroughs (see, for example,
[11]).

The reader should also be familiar with [1], [2], [3], [4], [7], [8], [21], [22], [37],
[38], [58], [61], [62].

2. Some results in nonstable absorption

This section is a brief exposition of some results from [54]. Precursors to the
results in this section are [2], [7], [13], [30], [32], [36], [41], [58]. This section has
the flavour of operator theory, especially Halmos’ proof of the Weyl–von Neumann–
Berg theorem. (See also the historical remark before Definition 2.2.) We note that
this is true also for later parts of the paper (e.g., see Proposition 4.2).

Recall, from the end of the first section, that all our extensions are assumed to
be essential.

The following definition/lemma is [54] Remark 1 (after Proposition 2.5).

Definition 2.1. (And also Lemma.)
Let B be a nonunital separable simple continuous scale C*-algebra such that

[1M(B)/B] = 0 in K0(M(B)/B), and let X be a compact metric space.
Then there is an addition on the class of unital extensions of B by C(X). More

precisely, say that φ, ψ : C(X) → M(B)/B are two *-monomorphisms. Then the
BDF sum of φ and ψ is given by

Sφ(.)S∗ + Tψ(.)T ∗

where S, T ∈ M(B)/B are isometries such that SS∗ + TT ∗ = 1. We denote the
above sum by φ⊕ ψ.
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The above sum is well-defined up to unitary equivalence. Thus, the above sum
induces an addition and hence a semigroup structure on Extu(C(X),B) (and also
on Ext(C(X),B)).

The concepts of null and totally trivial extensions (see 2.2 and 2.5) are due to
Lin (e.g., see [36] and [41]), though we have modified the definitions. Early versions
of these concepts were already present in [7].

Recall that in the original BDF case, when X is a compact subset of the plane,
uniqueness of the trivial element of Ext(C(X),K) essentially follows from the Weyl–
von Neumann–Berg Theorem. Recall also that for a simple separable real rank zero
C*-algebra B, M(B) has the classical Weyl–von Neumann Theorem if and only if
M(B) has real rank zero (e.g., [61], [62]; see also [37]). This is perhaps one clue for
the reasons for the assumption that M(B) has real rank zero in some early papers
(see, for example, [36], [41]). All this also indicates the operator-theoretic nature
of the present study.

Recall, from the end of the first section, that for extensions φ and ψ, φ ∼ ψ
means that φ and ψ are unitarily equivalent. The next definition is for both the
unital and nonunital cases:

Definition 2.2. Let B be a simple nonunital separable continuous scale C*-algebra.
Let X be a compact metric space and let φ : C(X) → M(B)/B be an essential
extension.

(1) φ is said to be null if there exists a commutative AF-subalgebra C ⊂ M(B)/B
such that Ran(φ) ⊆ C and [p] = 0 in K0(M(B)/B) for every projection
p ∈ C.

(2) If, in addition, [1M(B)/B] = 0 in K0(M(B)/B), then φ is said to be self-
absorbing if φ⊕ φ ∼ φ.

Proposition 2.3. Let B be a nonunital simple separable C*-algebra with continuous
scale and let X be a compact metric space. Then we have the following:

(1) There exists a null extension φ : C(X) → M(B)/B. Moreover, we can
require φ to be nonunital or unital (if, additionally, [1M(B)/B] = 0 in
K0(M(B)/B)).

Suppose, in addition, that [1M(B)/B] = 0 in K0(M(B)/B). Then we have
the following:

(2) Every null extension C(X) → M(B)/B is self-absorbing.
(3) Any two unital self-absorbing extensions C(X) → M(B)/B are unitarily

equivalent. The same holds for any two nonunital self-absorbing extensions.
(4) Every self-absorbing extension must be null.

Proof. This is [54] Theorem 3.4. �

Theorem 2.4. Let B be a nonunital separable simple continuous scale C*-algebra
such that [1M(B)/B] = 0 in K0(M(B)/B).

Let X be a compact metric space.
Then Extu(C(X),B) is a group where the zero element is the class of a null

extension. The same holds for Ext(C(X),B).

Proof. This is [54] Theorem 3.5. �
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Definition 2.5. Let B be a nonunital separable C*-algebra, and let X be a compact
metric space.

An extension φ : C(X) → M(B)/B is totally trivial if there exist a strictly
converging properly increasing sequence {en}

∞
n=1 of projections in B, and a dense

sequence {xn}
∞
n=1 in X, with each term repeating infinitely many times, such that

φ = π ◦ ψ

where ψ : C(X) → M(B) is the *-homomorphism given by ψ(f) =df

∑∞

n=1 f(xn)(en−
en−1), and where π : M(B) → M(B)/B is the quotient map. (Here, e0 =df 0.)

Sometimes, to save writing, we call a *-homomorphism ψ : C(X) → M(B) a
totally trivial extension if it has the form in Definition 2.5 above.

Theorem 2.6. Let X be a finite CW complex and let B be a nonunital separable
simple continuous scale C*-algebra with real rank zero, stable rank one and weak
unperforation.

Then an extension φ : C(X) → M(B)/B is null if and only if φ is totally trivial
and K0(φ) = 0.

Proof. This is a part of [54] Theorem 4.10. �

3. Aspects of operator theory: KK Theory

In this section, we gather some relevant results which have their origins in BDF
theory and closely related phenomena like Lin’s important work on almost com-
muting self-adjoint matrices. This interesting phenomena have had manifold impli-
cations including the important uniqueness and stable uniqueness theorems (e.g.,
see [15], [16], [17], [43], [45], [48]). We also briefly discuss results concerning the
complementary problem of stable existence.

As noted at the end of the first section, we will be freely using, without defi-
nition or explanation, notation and basic results from standard references on KK
theory, especially with regard to parts of the theory concerning existence, unique-
ness, absorbing extensions and nonstable aspects of the theory. A key reference is
[44]. Other references are [5], [15], [17], [29], [43], [45], [48], and the other references
listed at the end of the first section. The reader is assumed to be familiar with the
notation and contents of these references.

Finally, recall that one of our standing hypotheses is that for the unital separable
simple stably finite C*-algebras discussed in this paper, we always assume that every
quasitrace is a trace.

Let X be a compact metric space and let A be a C*-algebra. Recall that a
*-homomorphism φ : C(X) → A is said to be finite dimensional if there exist
x1, x2, ..., xn ∈ X and pairwise orthogonal projections p1, p2, ..., pn ∈ A such that
φ(f) =

∑n
j=1 f(xj)pj for all f ∈ C(X). In this case, the spectrum sp(φ), of φ, is

defined to be sp(φ) =df {x1, x2, ..., xn}.
For all m ≥ 1, let Ym be the 2-dimensional CW-complex obtained by attaching

a 2-cell to S1 via the degree m map from S1 to S1. Let C0(Ym) be the C*-algebra
of continuous functions on Ym which vanish at a fixed point ∞ ∈ Ym. Recall that
K0(C(Ym)) = Z ⊕ Z/m, K0(C0(Ym)) = Z/m, and K1(C(Ym)) = K1(C0(Ym)) = 0.

Recall that for any unital C*-algebra C, P(C) is notation for the collection of
projections in

⋃∞
m=1 M∞(C(S1) ⊗ C(Ym) ⊗ C). Recall that K(C)+, the image of
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P(C) in K(C)+, is a positive cone for K(C). (See, for example, [40] Section 2.1 or
[44].)

To simplify notation, for a subset P ⊆ P(C), we also often use P to denote its
image in K(C)+.

Definition 3.1. Let X be a compact metric space, and let A be a C*-algebra.
Let P ⊆ P(C(X)). Then NP denotes the set of all maps α : P → K(A) such

that there exists a finite dimensional *-homomorphism φ : C(X) → Mk ⊗ A for
which [φ]|P = α.

Let N denote the set of α ∈ KL(C(X),A) such that there exists a finite dimen-
sional *-homomorphism φ : C(X) → Mk ⊗A for which [φ] = α.

Proposition 3.2. Let X be a finite CW complex, and let m =df 2dim(X)+1. Let
ǫ > 0, a finite subset F ⊂ C(X), and a finite subset P ⊂ P(C(X)) be given.

Then there exist a δ > 0 and a finite subset G ⊂ C(X) such that the following
statement is true:

For every unital C*-algebra A and for every unital c.p.c. G-δ-multiplicative map
φ : C(X) → A, there exists a unital c.p.c. F-ǫ-multiplicative map ψ : C(X) →
Mm(A) such that

[φ⊕ ψ]|P ∈ NP .

Proof. This follows from [39] Corollary 1.24. �

Theorem 3.3. Let X be a finite CW complex, ǫ > 0 and F ⊂ C(X) a finite subset.
Then there exists a nonempty finite subset E ⊂ C(X)+ − {0} such that for all

λ > 0, there exist a finite subset G ⊂ C(X), δ > 0, and a finite subset P ⊂ P(C(X))
such that the following hold:

For all unital separable simple finite real rank zero Z-stable C*-algebras A, for
every unital c.p.c.
φ : C(X) → A,
if [φ]|P : P → K(A) lies in NP , and

dτ (φ(g)) > λ

for all τ ∈ T (A) and all g ∈ E,
then there exists a unital *-homomorphism ψ : C(X) → A with finite dimen-

sional range such that
‖φ(f) − ψ(f)‖ < ǫ

for all f ∈ F .

Proof. This is [52] Theorem 2.12. �

We next lemma is a standard exercise.

Lemma 3.4. For every sequence {δn}
∞
n=1 in (0, 1), there exists a sequence {δ′n}

∞
n=1

such that the following statements hold:
Say that X is a compact metric space with metric d and C is a C*-algebra. Say

that f ∈ C(X, C) = C(X) ⊗ C is such that

i. for all t ∈ X, ‖f(t)∗f(t) − 1‖ < 1
10 and ‖f(t)f(t)∗ − 1‖ < 1

10 , and

ii. for all n ≥ 1, for all s, t ∈ X, if d(s, t) < δn then ‖f(s) − f(t)‖ < 1
n .

Let u ∈ C(X, C) be the unitary from the polar decomposition of f .
Then for all n ≥ 1, for all s, t ∈ X, if d(s, t) < δ′n, then ‖u(s) − u(t)‖ < 1

n .
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The next perturbation argument should certainly be well-known, but we nonethe-
less provide a sketch of the proof.

Lemma 3.5. For every ǫ > 0, there exists a δ > 0 such that the following statement
is true:

Let X be a compact metric space, C be a unital C*-algebra, and D ⊆ C a unital
C*-subalgebra. Let f ∈ C(X) ⊗ C be a unitary such that for all s ∈ X, f(s) is
within δ of an element of D.

Then there exists a unitary g ∈ C(X) ⊗D such that ‖f − g‖ < ǫ.

Sketch of proof. SinceX is compact and f is continuous onX , we can find d1, ..., dn ∈
D and an appropriate partition of unity {hl}

∞
l=1 (hl : X → [0, 1] continuous for all

l) such that for all t ∈ X , ‖f(t) −
∑n

l=1 hl(t)dl‖ < 2δ. For δ small enough, the
function t 7→

∑n
l=1 hl(t)dl can be perturbed to a continuous unitary-valued map

g : X → U(D) such that ‖f(t) − g(t)‖ < ǫ for all t ∈ X . �

Recall that for a C*-algebra C, and for all m ≥ 2, K1(C; Z/m) = K1(C0(Ym)⊗C)
and K1(C; Z ⊕ Z/m) = K1(C(Ym) ⊗ C) = K1(C) ⊕K1(C; Z/m). (See, for example,
[44].)

Lemma 3.6. Let {AN}∞N=1 be a sequence of simple, unital, separable, finite, real
rank zero, Z-stable C*-algebras.

Then for all m ≥ 2,
∏

K1(AN ;Z ⊕ Z/m) = K1(
∏

AN ;Z ⊕ Z/m).

Proof. Firstly, by [17] Corollary 2.1,

K1(
∏

AN ;Z ⊕ Z/m) ⊆
∏

K1(AN ;Z ⊕ Z/m).

Hence, it suffices to prove the reverse inclusion.
Let x ∈

∏
K1(AN ; Z ⊕ Z/m) be given. So x has the form x = {xN}∞N=1 where

for all N ≥ 1, xN ∈ K1(AN ; Z ⊕ Z/m).
By [42], for every N ≥ 1, there is unital C*-subalgebra CN ⊆ AN such that

CN is a simple unital separable TAF-algebra, and the inclusion map ι : CN →֒ AN

induces a unital ordered group isomorphism

[ι] : (K(CN ),K(CN )+, [1CN
]) → (K(AN ),K(AN )+, [1AN

]).

Hence, xN ∈ K1(CN ;Z ⊗ Z/m) for all N ≥ 1.
But by [16] Lemma 2.9,

∏
K1(CN ; Z ⊕ Z/m) = K1

(∏
(CN ⊗K); Z ⊕ Z/m

)
.

Hence, let u ∈ (C(Ym) ⊗
∏

(CN ⊗ K))∼ be a unitary such that x = [u] in
K1 (

∏
(CN ⊗K); Z ⊕ Z/m).

Let d be a metric for Ym. Viewing u as a continuous map from Ym into
U((
∏

(CN ⊗ K))∼, let {δn}
∞
n=1 be a sequence in (0, 1) such that for all n ≥ 1

for all s, t ∈ Ym, if d(s, t) < δn then ‖u(s) − u(t)‖ < 1
n .

Plug {δn}
∞
n=1 into Lemma 3.4 to get a sequence {δ′n}

∞
n=1. Then plug {δ′n}

∞
n=1

into Lemma 3.4 again to get another sequence {δ′′n}
∞
n=1.

For all N ≥ 1, let uN be the image of u in (C(Ym)⊗ CN ⊗K)∼. Again, we view
uN as a continuous function from Ym to U((CN ⊗K)∼).
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For allN ≥ 1, let pN ∈ 1C(Ym)⊗CN⊗K be a projection such that pNuN ≈ uNpN ,

(1 − pN)uN (1 − pN ) ≈ αN (1 − pN ) (where αN ∈ S1 is a scalar), and if yN =df

pNuNpN , then ‖y∗NyN −pN‖, ‖yNy
∗
N −pN‖ < 1

10 . Let vN ∈ pN (C(Ym)⊗CN ⊗K)pN

be the unitary in the polar decomposition of yN . In fact, we want the above
approximations to be so close that uN is homotopy equivalent to vN +αN (1− pN )
in U((C(Ym) ⊗ CN ⊗ K)∼).

Now for all n ≥ 1, for all s, t ∈ Ym, if d(s, t) < δn then ‖yN(s) − yN(t)‖ <
1
n . Hence, by Lemma 3.4, for all n ≥ 1, for all s, t ∈ Ym, if d(s, t) < δ′n then

‖vN(s) − vN (t)‖ < 1
n .

Note that xN = [vN ] for all N .
For all N ≥ 1, since CN is TAF and since Ym is compact, let qN ∈ pN(CN ⊗K)pN

be a projection such that the following statements are true:

(a) qN � 1CN
in CN ⊗K.

(b) qNvN ≈ vNqN .
(c) There exists a finite dimension unital C*-subalgebra D ⊆ (pN − qN )(CN ⊗

K)(pN − qN ) such that for all t ∈ Ym, (pN − qN )vN (t)(pN − qN ) is close to
a unitary in D.

(d) If zN =df qNvNqN , then ‖z∗NzN − qN‖ < 1
10 and ‖zNz

∗
N − qN‖ < 1

10 .

We can choose the above approximations close enough so that the map t 7→ (pN −
qN )vN (t)(pN − qN ) can be perturbed to a close unitary valued map X → (pN −
qN )(CN ⊗K)(pN − qN) which, upon application of Lemma 3.5, is close to a unitary
valued map v′N : X → D. Moreover, by choosing the above approximations close
enough, if wN ∈ qN (CN ⊗ K)qN is the unitary in the polar decomposition of zN ,
then v′N ⊕ wN is homotopy-equivalent to vN in pN (C(Ym) ⊗ CN ⊗K)pN .

We may choose D so that each summand has rank greater than 10. Hence,
since the stable rank of C(Ym) is two, and since K1(C(Ym)) = 0, it follows, by
[56] Theorem 10.12, that v′N is homotopic to pN − qN in C(Ym)⊗D. Hence, vN is
homotopic to (pN − qN ) ⊕ wN in pN (C(Ym) ⊗ CN ⊗K)pN .

Clearly, xN = [wN ]. Also, since qN � 1CN
, by conjugating by an appropriate

partial isometry from CN ⊗K if necessary, we may assume wN ∈ CN .
Finally, for all n ≥ 1, for all s, t ∈ Ym, for all N , if d(s, t) < δ′n then ‖zN (s) −

zN(t)‖ < 1
n . Hence, by Lemma 3.4, for all n ≥ 1, for all s, t ∈ Ym, for all N , if

d(s, t) < δ′′n then ‖wN (s) − wN (t)‖ < 1
n .

Thus, w = {wN ⊕ (1CN
− qN )}∞N=1 is a unitary in C(Ym) ⊗ (

∏
CN) ⊆ C(Ym) ⊗

(
∏

AN ) and x = [w]. So x ∈ K1(
∏
AN ; Z ⊕ Z/m). �

Recall that for all m ≥ 1, Im is notation for the (nonunitized) dimension drop

algebra Im = {f ∈ C[0, 1]⊗Mm : f(0) = 0 and f(1) ∈ C}, and Ĩm is the unitization
of Im (i.e., the unitized dimension drop algebra). Recall that for a C*-algebra

C and for m ≥ 2, K∗(C; Z ⊕ Z/m) = KK(Ĩm, C(S1) ⊗ C), K0(C; Z ⊕ Z/m) =

KK(Ĩm, C) and K0(C; Z/m) = KK(Im, C). Under the above identification, recall

that K0(C; Z ⊕ Z/m)++ =df {[φ] : φ : Ĩm → C ⊗ K is a *-homomorphism}, and

K∗(C; Z ⊕ Z/m)++ =df {[φ] : φ : Ĩm → C(S1) ⊗ C ⊗ K is a *-homomorphism}.
K(C)++ is the subsemigroup of K(C) generated by K∗(C) and K∗(C; Z ⊕ Z/m)++

(for all m ≥ 2). Recall that K++(C) is a cone for K(C).
For each x ∈ K(C), we denote x = {x(j,m)}0≤j≤1,0≤m<∞, where x(j, 0) ∈

Kj(C), x(j, 1) = 0 and for all m ≥ 2, x(j,m) ∈ Kj(C; Z/m).



10 P. W. NG

Recall that if C is a unital separable simple finite real rank zero Z-stable C*-
algebra, and if X is a connected compact metric space, then C(X) ⊗ C ⊗ K has
strict comparison of projections by traces in T (C(X)⊗ C) ([57] Corollary 4.10; the
hypothesis of exactness is replaced by our standing assumption that all quasitraces
are traces).

In general, for a C*-algebra C, K(C)+ and K(C)++ need not coincide. However,
this is so under additional hypotheses. More precisely, suppose that C is a unital,
separable, simple, finite, real rank zero and Z-stable C*-algebra. Recall that, in
this case,

K(C)+ = K(C)++ = {0} ∪ {x ∈ K(C) : x(0, 0) > 0}.

Let {AN}∞N=1 be a sequence of unital C*-algebras. Letm ≥ 0. Define
∏

bK0(AN ; Z⊕
Z/m) to consist of all those {xN}∞N=1 ∈

∏
K0(AN ; Z⊕Z/m) such that there exists

an L ≥ 1 where for all N ≥ 1, there exist projections PN , QN ∈ ML ⊗C(Ym)⊗AN

for which xN = [PN ] − [QN ] in K0(AN ; Z ⊕ Z/m).

Lemma 3.7. Let {AN}∞N=1 be a sequence of unital, separable, simple, finite, real
rank zero, Z-stable C*-algebras.

Then for all m ≥ 0,
∏

b

K0(AN ; Z ⊕ Z/m) = K0

(∏
AN ; Z ⊕ Z/m

)
.

Proof. The case m = 0 is proven in [17] Corollary 2.1. (And by definition, when
m = 1, all the groups in the statement of the lemma are zero.)

Hence, let m ≥ 2 be given.
It is not hard to see that

K0

(∏
AN ; Z ⊕ Z/m

)
⊆
∏

b

K0(AN ; Z ⊕ Z/m).

Hence, it suffices to prove the reverse inclusion.
Hence, let x ∈

∏
b K0(AN ; Z⊕Z/m) be given. By [42], for all N ≥ 1, there exists

a unital C*-subalgebra CN ⊆ AN such that C is a unital simple AH-algebra with
bounded dimension growth and real rank zero, and the inclusion map ι : CN → AN

induces a unital ordered group isomorphism

[ι] : (K(CN ),K(CN )+, [1CN
]) → (K(AN ),K(AN )+, [1AN

]).

Note that C(Ym)⊗CN ⊗K has strict comparison of projections, for all N . Hence,
we may assume that

x ∈
∏

b

K0(CN ; Z ⊕ Z/m).

We may further assume that x is positive in each component. More precisely,
for all N ≥ 1, let xN be the projection of x in K0(CN ; Z ⊕ Z/m). We may assume
that there exists L ≥ 1 such that for all N ≥ 1, there exists a projection pN ∈
ML ⊗ C(Ym) ⊗ CN such that xN = [pN ].

For simplicity, we may assume that L = 1.
Fix N ≥ 1. CN can be realized as a C*-inductive limit

CN = lim
k

(CN,k, φk,k+1)
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where each building block CN,k can be decomposed as a finite direct with each
summand being either of the form

rMn(C(Y ))r

where r ∈ Proj(Mn(C(Y ))) and where Y is a finite CW complex from the list
{point, S1, Yj : j ≥ 1}, or of the form

Mn ⊗ Ĩl

for some l. We may assume that the connecting maps φk,k+1 are injective, and that
the matrix sizes n and projection ranks rank(r) get uniformly arbitrarily large as
k → ∞ (i.e., as we move up building blocks).

Let pN (0, 0) be the projection of pN into CN . (Recall that pN ∈ C(Ym) ⊗
CN .) So pN (0, 0) is a projection in CN . Let xN (0,m) be the projection of xN

into K0(CN ,Z/m). So under the identification K0(CN ; Z ⊕ Z/m) = K0(CN ) ⊕
K0(CN ,Z/m), xN = [pN(0, 0)] + xN (0,m). Note that if [pN (0, 0)] = 0 then
xN (0,m) = 0. Hence, we may assume that pN (0, 0) is a nonzero.

Throwing away initial building blocks if necessary, we may assume that pN (0, 0) ∈
φ1,∞(CN,1). Let p′N,1 denote the preimage of pN (0, 0) in CN,1. Throwing away even

more initial building blocks, we may assume that xN (0,m) ∈ K0(φ1,∞(CN,1); Z/m).
Moreover, the ranks of φ1,k(p′N,1) (in each summand of CN,k) get uniformly

arbtrarily large as k → ∞. Hence, it is a standard and well known result in the
field that we can find a K ≥ 1 large enough, and we can find a *-homomorphism
ψN : Im → φK,∞(CN,K) such that [ψN ] = xN (0,m) in KK(Im, φK,∞(CN,K) =
K0(φK,∞(CN,1); Z/m). Moreover, by increasing K if necessary (so that the ranks
of φ1,K(p′1,N ), in each summand, get sufficiently uniformly large), and conjugating

pN(0, 0) by a unitary from CN if necessary, we may assume that for all f ∈ Im,
pN(0, 0)ψN (f) = ψN (f).

Let ψ̃N : Ĩm → CN be given by ψ̃N |Im
= ψN and ψ̃N (1) = pN(0, 0).

Then under the identitfication KK(Ĩm, CN) = K0(CN ; Z ⊕ Z/m), [ψ̃N ] = xN .

Let ψ̃ : Ĩm →
∏

CN ⊆
∏

AN be the *-homomorphism

ψ̃ =df

∏
ψ̃N .

Then [ψ̃] ∈ KK(Ĩm,
∏

AN ) and for allN , the projection of [ψ̃] intoKK(Ĩm,AN )
is equal to xN .

So x = [ψ̃] ∈ KK(Ĩm,
∏

AN ) = KK(
∏

AN ; Z ⊕ Z/m). �

Let X be a finite CW complex. Recall that there exists a finite subset P ⊂
P(C(X)) such that for any C*-algebra D, if α, β ∈ KL(C(X),D) satisfy that
α|P = β|P then α = β in KL(C(X),D).

Lemma 3.8. Let X be a finite CW complex, ǫ > 0 and a finite subset F ⊂ C(X)
be given.

Then there exist an N ≥ 1 and a finite subset P ⊂ P(C(X)) such that the fol-
lowing statement is true:

Suppose that A is a unital separable simple finite real rank zero Z-stable C*-
algebra, and say that α ∈ KK(C(X),A) satisfies that

α([1C(X)]) = [1A]



12 P. W. NG

in K0(A) and

α([p]) ≥ 0

for all p ∈ P.
Then there exist a unital c.p.c. F-ǫ-multiplicative map φ : C(X) → MN+1(A)

and a unital finite dimensional *-homomorphism ψ : C(X) → MN (A) such that

[φ] = α+ [ψ]

in KK(C(X),A).

Proof. Let X be a finite CW complex. We may assume that X is connected. Let
ǫ > 0 and a finite subset F ⊂ C(X) be given.

Suppose, to the contrary, that the conclusion of Lemma 3.8 is false.
Let {PN}∞N=1 be an increasing sequence of finite subsets of P(C(X)), {AN}∞N=1

a sequence of unital separable simple finite real rank zero Z-stable C*-algebras,
and αN ∈ KK(C(X),AN) for all N ≥ 1 such that

αN ([1C(X)]) = [1AN
]

in K0(AN ) for all N ≥ 1,

∞⋃

N=1

[PN ] = K(C(X))+

and there are no unital c.p.c. F -ǫ-multiplicative map φ′ : C(X) → MN+1(AN ) and
no unital finite dimensional *-homomorphism ψ′ : C(X) → MN (AN ) for which

[φ′] = αN + [ψ′]

in KK(C(X),AN ).
We denote the above statement by “(*)”.

Let β : K(C(X)) →
∏∞

N=1K(AN ) be the group homomorphism given by

β =df

∞∏

N=1

αN .

Now let P ∈ P(C(X)) be arbitrary. For simplicity, let us assume that m ≥ 2
is such that [P ] ∈ K0(C(X); Z ⊕ Z/m) = K0(C(Ym) ⊗ C(X)). Choose M ≥ 1 so
that [P ] ≤ M [1C(Ym)⊗C(X)] = M [1C(X)] in K0(C(Ym) ⊗ C(X)) = K0(C(X)) ⊕
K0(C(X); Z/m).

Since {αN} is asymptotically positive, for sufficiently largeN , we must have that
αN ([P ]) ≥ 0 and αN ([P ]) ≤ MαN([1C(X)]) = M [1AN

]. Hence, since C(Ym) ⊗AN

has strict comparison for projections for all N , we must have that

β([P ]) ∈
∏

b

K0(AN ; Z ⊕ Z/m).

Since P was arbitrary, we must have that

Ran(β|K0(C(X);Z⊕Z/m)) ⊆
∏

b

K0(AN ; Z ⊕ Z/m).

Hence, by Lemma 3.6 and Lemma 3.7, we have that

Ran(β) ⊆ K
(∏

AN

)
.
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It is a straightforward (tedious) computation to show that β respects the Bock-
stein operations. Hence,

β ∈ HomΛ

(
K(C(X)),K

(∏
AN

))
.

Hence, by [44] Theorem 6.1.11 (see also [43] Theorem 5.9)5, there is an integer
L ≥ 1, a unital c.p.c. F -ǫ/2-multiplicative map Φ : C(X) → ML+1 ⊗

∏∞
N=1 AN ,

and a finite dimensional unital *-homomorphism Ψ : C(X) → ML⊗
∏∞

N=1 AN such
that

[Φ] = β + [Ψ]

in KK(C(X),
∏∞

N=1 AN ). (Recall that X is a finite CW complex.)
We have decompositions

Φ =

∞∏

N=1

φN

and

Ψ =

∞∏

N=1

ψN

where for all N , φN : C(X) → ML+1 ⊗AN is a unital c.p.c. F -ǫ/2-multiplicative
map, and ψN : C(X) → ML ⊗AN is a unital finite dimensional *-homomorphism
such that

[φN ] = αN + [ψN ]

in KK(C(X),AN ). This contradicts (*). �

The next result is straightforward, but we nonetheless sketch a proof.

Lemma 3.9. Let X be a connected finite CW complex. Then there exists a finite
subset PX ⊂ Proj(C(X) ⊗K) for which the following is true:

For every finite subset P ⊂ P(C(X)), there exists an integer N ≥ 1 such that for
every unital separable simple finite real rank zero Z-stable C*-algebra A, for every
α ∈ KL(C(X),A) with α([1C(X)] = [1A] in K0(A) and

α([p]) ≥ 0

for all p ∈ PX, and for every unital finite dimensional *-homomorphism ψ :
C(X) → MN ⊗A, we have that

(α + [ψ])|P ≥ 0.

Sketch of proof. SinceX is a finite CW complex, let F ⊂ Proj(C(X)⊗K) be a finite
set whose image, in K0(C(X))+, generates K0(C(X)). Say that F = {p1, ..., pK}.

For all 1 ≤ j ≤ K, let Mj ≥ 1 be such that pj �
⊕Mj 1C(X).

Define PX =df {1C(X), pj , rj : 1 ≤ j ≤ K}, where for all j, rj ∈ C(X) ⊗ K is a
projection such that [rj ] = (Mj + 1)[1C(X)] − [pj ].

Say P = {q1, q2, ..., qL} ⊆ P(C(X)). For each 1 ≤ j ≤ L, let qj(0, 0) be a
projection of qj into Proj(C(X) ⊗ K). (Recall that for all j, qj is a projection in
C(Ym)⊗C(S1)⊗C(X)⊗K for somem dependent on j. By taking a point evaluation,
with point in Ym × S1, we get a projection in C(X)⊗K.) Then [qj(0, 0)] is the K0

piece of [qj ] in K∗(C(X); Z ⊕ Z/m) = K0(C(X)) ⊕K1(C(X)) ⊕K∗(C(X); Z/m).

5The hypothesis of separability of the codomain algebra, in Lin’s existence result, can be easily
removed.



14 P. W. NG

For all l, let ml,j be integers such that

[ql(0, 0)] =

K∑

j=1

ml,j [pj ].

Let N =
∑L

l=1

∑K
j=1(Mj + 10)|ml,j| + 1. We would be done since an element

of K(A) is positive if and only if it is either zero or its K0 component is strictly
positive. �

Corollary 3.10. Let X be a finite CW complex. Then there is a finite subset
PX ⊂ Proj(C(X) ⊗K) for which the following is true:

For every ǫ > 0 and finite subset F ⊂ C(X), there exists N ≥ 1 such that for
every unital separable simple finite real rank zero Z-stable C*-algebra A, and for
every α ∈ KK(C(X),A) such that

α([1C(X)]) = [1A]

in K0(A) and
α([p]) ≥ 0

for all p ∈ PX , there exists a unital c.p.c. F-ǫ-multiplicative map φ : C(X) →
MN+1(A) and a unital finite dimensional *-homomorphism ψ : C(X) → MN (A)
such that

[φ] = α+ [ψ]

in KK(C(X),A).

Recall that an extension of C*-algebras

0 → B → D → A → 0

is said to be quasidiagonal if there exists an approximate unit {en}
∞
n=1 of B, con-

sisting of an increasing sequence of projections, such that for all x ∈ D,

‖xen − enx‖ → 0

as n→ ∞.

Proposition 3.11. Let X be a compact metric space, and let B be a nonunital
σ-unital simple C*-algebra with real rank zero and continuous scale.

Suppose that φ : C(X) → M(B)/B is an essential extension such that

[φ] = 0

in KL(C(X),M(B)/B).
Then φ is quasidiagonal.

Proof. This follows from [40] Theorem 1.5. (See also [47] Theorems 7.10 and 7.11.)
�

4. A nonstable Brown–Douglas–Fillmore Theorem

We move towards the technical, operator-theoretic argument of Proposition 4.2.
This result and its proof has many precursors, including the Weyl–von Neumann
theorem and its many generalizations over the years. (The reader is expected to be
comfortable with the references in the last paragraph of Section 1.) We expect the
proof of Proposition 4.2 to take a few days to read, even for a very well-prepared
reader.
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Recall, from previous sections, that we will be using much notation and results
from KK theory without definition or explanation. (See the references from previous
sections, especially those from the end of Section 1.) Recall, also, our standing
assumption that for separable simple unital stably finite C*-algebras, we always
assume that every quasitrace is a trace.

We would additionally like to remind the reader of the references (which the
reader should be familiar with) [26], [27], [34], [46] and [50]. Recall that for a
compact convex set K, Aff(K) is the collection of all real-valued affine continuous
functions onK. Recall that with the uniform norm and the natural strict order (i.e.,
the order where f is below g if f(s) < g(s) for all s ∈ K), Aff(K) is an ordered
Banach space. We let LAff(K) denote the class of affine lower semicontinuous
functions from K to (−∞,∞].

Recall also that Aff(K)++ (LAff(K)++) denotes the functions in Aff(K)
(resp. LAff(K)) which are strictly positive at every point in K.

Let B be a nonunital separable stably finite simple C*-algebra. Here, we fol-
low previously mentioned and universally well-established convention by fixing a
nonzero positive element of the Pedersen ideal of B (if B has real rank zero, a
nonzero projection would do) and defining T (B) to be the set of all densely defined,
(norm-) lower semicontinuous traces on B that are normalized at that fixed positive
element. In what follows, when B is nonunital, the choice of that nonzero positive
Pedersen ideal element will not be relevant. (When B is unital, we always take
the Pedersen ideal element to be the unit.) It is well-known that T (B), with the
topology of pointwise convergence on Ped(B), is a compact convex set. (See [14].)

Suppose that B, as in the previous paragraph (and nonunital), also has real rank
zero. Fix an approximate unit {en}

∞
n=1 for B, consisting of an increasing sequence

of projections. Recall that for every nonzero A ∈ M(B)+, A induces an element

Â ∈ LAff(T (B))++ which is defined by

Â(τ) =df limn→∞τ(enAen).

(Note that when B has continuous scale, Â ∈ Aff(T (B))++, i.e., Â is continuous.)
The above then extends naturally to a map

.̂ : (Mn ⊗M(B))+ → LAff(T (B))++ ∪ {0}

for all n.
Recall that there is an ordered group homomorphism

χ : K0(B) → Aff(T (B))

which is given by

χ([p]) =df [̂p] =df p̂,

for all [p] ∈ K0(B)+.
Finally, for all C*-algebras C,D, for any linear map σ : C → D, we denote again

by σ the natural induced linear map Mn ⊗ C → Mn ⊗ D, for all n. And for a
nonunital C*-algebra B, recall that π : M(B) → M(B)/B is the quotient map.

We remind the reader of the following result, which was essentially proven by
Lin in 1991:

Theorem 4.1. Let B be a nonunital separable simple continuous scale C*-algebra
with real rank zero, stable rank one, and weakly unperforated K0 group. Then we
have the following:
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(1) (K0(M(B)),K0(M(B))+) = (Aff(T (B)), Aff(T (B))++).
(2) For any two projections P,Q ∈ M(B)−B, P ∼ Q if and only if τ(P ) = τ(Q)

for all τ ∈ T (B).
(3) For any f ∈ Aff(T (B))++, there exists k ≥ 1 and a projection P ∈ Mk ⊗

M(B) − Mk ⊗ B such that P̂ = f . Moreover, if f(τ) < τ(1M(B)) for all
τ ∈ T (B), then we can choose P ∈ M(B) − B.

(4) The six-term exact sequence (for the ideal B ⊂ M(B)) induces a short exact
sequence

0 → Aff(T (B))/χ(K0(B)) → K0(M(B)/B) → K1(B) → 0.

Proof. The first three statements were proven in [35]. A more widely available
version is [47] Theorem 1.4. (See also [12] and [50].)

The last statement can be found in [47] Corollary 1.5. �

Proposition 4.2. Let B be a nonunital separable simple finite real rank zero Z-
stable C*-algebra with continuous scale such that [1M(B)/B] = 0 in K0(M(B)/B).

Let X be a finite CW-complex.
Suppose that

φ : C(X) → M(B)/B

is a *-monomorphism such that KL(φ) = 0.
Then φ is a null extension.

Proof. Since [1M(B)/B] = 0, there exist projections P,Q ∈ M(B) − B with P ⊥ Q,
P +Q = 1, and

[π(P )] = [π(Q)] = [1M(B)/B] = 0

in K0(M(B)/B).
By Theorem 2.4, up to unitary equivalence (with unitary from M(B)) we may

decompose φ into

φ ∼= σ ⊕ ψ

with ψ expressible as

ψ = π ◦ ψ′

such that the following is true:

(a) σ : C(X) → P (M(B)/B)P and ψ′ : C(X) → QM(B)Q are *-monomorphisms.
(b) There exist finite dimensional *-homomorphisms ψn : C(X) → QBQ, with

pairwise orthogonal ranges, such that for all f ∈ C(X),

ψ′(f) =

∞∑

n=1

ψn(f)

where the sum converges strictly.
(c) sp(ψn) ⊂ sp(ψn+1) for all n.

(d) X =
⋃∞

n=1 sp(ψn).
(e) KL(ψ) = 0.

Let {ǫn}
∞
n=1 be a decreasing sequence of strictly positive real numbers such that

ǫn → 0.

Let F ⊂ C(X) be a finite subset which generates C(X) as a C*-algebra. We may
assume that for any C*-algebra C, any c.p.c. F -ǫ1-multiplicative map C(X) → C
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induces an element of KL(C(X), C) which is positive on the set [PX ] with PX from
Corollary 3.10.

Note also that, since X is a finite CW complex, we may assume that the set
[PX ] generates K0(C(X)). We may also assume that 1C(X) ∈ PX .

Replacing each ψn by blocks (of the form
∑m′

j=n′ ψj) if necessary, we may addi-

tionally assume that for all n, sp(ψn) is ǫn-dense in X .
For simplicity, let us do some relabelling. For all n ≥ 1, let

ψ′
n =df ψ2n

and

ψ′′
n =df ψ2n+1.

Note that for all n, each of sp(ψ′
n) and sp(ψ′′

n) is ǫ2n-dense in X . Note also that

ψ1(1) ⊥ {ψ′
n(1), ψ′′

n(1) : n ≥ 1}.

For all n, let pn ∈ ψ′′
n(1)Bψ′′

n(1) be a nonzero projection such that

(4.3) pn � p

for every projection p ∈ Ran(ψ′′
n).

For all n, plug X , ǫn and F into Theorem 3.3 to get a finite subset En ⊂
C(X)+ − {0}. Replacing the ψ′

ns by (pairwise orthogonal) blocks (i.e., finite sums

of the form
∑m′

n=n′ ψ′
n) if necessary, we may assume that for all n,

dτ (ψ′
n(g)) > 0

for all g ∈ En and for all τ ∈ T (B). Also, for all n, let qn ≤ pn be a nonzero proper
subprojection such that

(4.4) 1000qn � p

for every nonzero projection p ∈ Ran(ψ′
n) ∪Ran(ψ′

n+1), and

(4.5) 1000qn � pn.

Let ψ′′′
n : C(X) → qnBqn be a finite dimensional *-homomorphism such that

dτ (ψ′′′
n (g)) > 0

for all g ∈ En and for all τ ∈ T (B).
For all n, let p′n ∈ B be a nonzero projection such that

(4.6) p′n � p

for every nonzero projection p ∈ Ran(ψ′′′
n ). Let q′n ≤ pn − qn be a nonzero proper

subprojection such that

(4.7) 1000q′n � p′n and 1000q′n � p′n+1.

Choose λn > 0 so that

(4.8) dτ (ψ′
n(g)) > 100λn

for all g ∈ En and for all τ ∈ T (ψ′
n(1)Bψ′

n(1)), and

(4.9) dτ (ψ′′′
n (g)) > 100λn

for all g ∈ En and for all τ ∈ T (ψ′′′
n (1)Bψ′′′

n (1)).
For all n, plug X , ǫn, F and En and λn into Theorem 3.3 to get a δn > 0 and

a finite subset Pn ⊂ P(C(X)). (The finite subset of C(X) in the conclusion of
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Theorem 3.3 can be taken to be F again, by making δn small enough.) We may
assume that Pn ⊂ Pn+1 and ǫn > δn > δn+1 for all n.

Let m be the topological dimension of X . For all n, plugX , m, δn, F and Pn into
Proposition 3.2 to get δ′n > 0. (Again, the finite subset of C(X) in the conclusion
of Proposition 3.2 can be taken to be F again, by making δ′n small enough.) We
may assume that for all n, δn > δ′n > δ′n+1.

For all n, plug X , F and δ′n into Corollary 3.10 to get an integer Nn ≥ 1. (Recall
our assumption on ǫ1 concerning F and PX .) We may assume that the sequence
{Nn}

∞
n=1 is increasing.

Since KL(φ) = KL(ψ) = 0, it follows that KL(σ) = 0. Hence, by Proposition
3.11, σ is quasidiagonal. Hence, there exist c.p.c. maps σn : C(X) → PBP , with
σn(1) ∈ PBP being projections, and with pairwise orthgonal ranges such that

i. σn(fg) − σn(f)σn(g) → 0 as n→ ∞, for all f, g ∈ C(X),
ii.
∑∞

n=1 σn(f) converges strictly, for all f ∈ C(X), and
iii. σ(f) = π (

∑∞

n=1 σn(f)), for all f ∈ C(X).

We now construct σ0, σ0,0 and sequences {nk}
∞
k=1, {σ

′
k}

∞
k=1, {σ

′′
k}

∞
k=1, {θ1,k}

∞
k=1,

{θ2,k}
∞
k=1, {θ3,k}

∞
k=1, {αk}

∞
k=0, and {uk}

∞
k=1 such that the following statements are

true:

(1) {nk}
∞
k=1 is a subsequence of the positive integers.

(2) For every l ≥ nk + 1, σl is F -δ′k+1-multiplicative.
(3)

∞∑

l=nk+1

100τ(σl(1)) < τ(p)

for every nonzero projection p ∈ Ran(ψ′
k+1) and for every τ ∈ T (B).

(4) σ0, σ0,0 : C(X) → ψ1(1)Bψ1(1) are c.p.c. almost multiplicative maps.
(5) σ′

k, σ
′′
k : C(X) → ψ′′

k (1)Bψ′′
k(1) are c.p.c. maps such that σ′

k(1) ⊥ σ′′
k (1) ⊥

ukψ
′′′
k (1)u∗k ⊥ σ′

k(1), where uk ∈ M(B) is a unitary such that ukψ
′′
k (1) =

ψ′′
k (1)uk.

(6) σ′
k(1)⊕σ′′

k (1) � q′k, σ′
k is F -δ′k+1-multiplicative and σ′′

k is F -δk+1-multiplicative.
(7) [σ′

k + σ′′
k ]|Pk+1

∈ NPk+1
.

(8) θ1,k, θ2,k, θ3,k : C(X) → B are finite dimensional *-homomorphisms.
(9)

θ1,1(1) = σ0,0(1) +

n1∑

l=1

σl(1) + σ′
1(1) + ψ′

1(1)

and

‖θ1,1(f) − (σ0,0(f) +

n1∑

l=1

σl(f) + σ′
1(f) + ψ′

1(f))‖ < ǫ1

for all f ∈ F .6

(10) For all k ≥ 2,

θ1,k(1) = σ′′
k−1(1) +

nk∑

l=nk−1+1

σl(1) + σ′
k(1) + ψ′

k(1)

6The role of ψ′

1 in item (9) is to ensure that the “injectivity” condition of Theorem 3.3 is
satisfied, and thus allowing for finite dimensional approximation. Similar for ψ′

k
in item (10) and

ukψ
′′′

k
(.)u∗

k
in item (11).



PURELY INFINITE CORONA ALGEBRAS AND EXTENSIONS 19

and

‖θ1,k(f) − (σ′′
k−1(f) +

nk∑

l=nk−1+1

σl(f) + σ′
k(f) + ψ′

k(f))‖ < ǫk

for all f ∈ F .7

(11) For all k ≥ 1,

θ2,k(1) = σ′
k(1) + σ′′

k (1) + ukψ
′′′
k (1)u∗k.

(12) For all k ≥ 1,

‖θ2,k(f) − (σ′
k(f) + σ′′

k (f) + ukψ
′′′
k (f)u∗k)‖ < ǫk

for all f ∈ F .
(13) For all k ≥ 1, θ2,k(1) ⊥ θ3,k(1) and ψ′′

k (1) = θ2,k(1) + θ3,k(1).
(14) For all k ≥ 1, ‖ψ′′

k − (θ2,k + θ3,k)‖ < ǫk.
(15) For all k ≥ 0, αk ∈ KK(C(X),B) and

αk = α0 −

nk∑

l=1

[σl].

Moreover, for all p ∈ PX ,

α̂k([p]) =

∞∑

l=nk+1

σ̂l([p]).

(Here, we define n0 =df 0.)
(16) [σ0] − α0 is the KK class of a finite dimensional *-homomorphism.
(17) For all k ≥ 1, [σ′

k]−αk is theKK class of a finite dimensional *-homomorphism.
(18) αk is asymptotically positive, i.e., for all p ∈ P(C(X)), αk([p]) ≥ 0 for

sufficiently large k.8

We denote the above statements by (*).

The construction will be by induction on k.

Basis Steps k = 0, 1

Since {σk}
∞
k=1 is asymptotically multiplicative and since X is a finite CW com-

plex, throwing away finitely many initial σks if necessary, we may assume that for
all n, σn and

∑∞

k=n σk induce elements of KL(C(X),B) and KL(C(X),M(B))
respectively. (See for example, [40] Section 2.1.) Moroever, as n → ∞, the
induced elements (in KL), [σn] and [

∑∞

k=n σk], are asymptotically positive on
(K(C(X)),K(C(X))+).

7This is a key place where the asymptotic multiplicativity of {σl} is used: By Theorem 3.3, the
quantities σ′′

k−1 +
Pnk

l=nk−1+1 σl + σ′
k

+ ψ′

k
have better/closer finite dimensional approximations

(θ1,k) as k → ∞, because said quantities are increasingly multiplicative and satisfying other

conditions.
8Asymptotic positivity is actually stronger than what we need. We actually just need that

αk([p]) ≥ 0 for all p ∈ PX and for all sufficiently large k. Also, since τ(αk([1C(X)])) → 0 uniformly

on T (B) (τ ∈ T (B)), this guarantees, by Corollary 3.10, that we have increasingly multiplicative
maps σ′

k
(as k → ∞) where we can control the size of [σ′

k
(1C(X))]. This is a key point of the

proof.
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Note that since B has continuous scale, the sequence
∑∞

l=n σ̂l(1) converges to
zero uniformly on T (B) as n→ ∞. Recall also that ψ1(1) ⊥ {ψ′

l(1), ψ′′
l (1) : l ≥ 1}.

Hence, again throwing away finitely many initial σks if necessary, we may assume
that for all l, σl is F -δ1-multiplicative, and that there exists a projection r ∈ B
with

r ⊥ {σk(1), ψk+1(1) : k ≥ 1}

such that

(4.10) 100r � p

for every nonzero projection p ∈ Ran(ψ1) ∪ Ran(ψ′
1). We may assume that r ≤

ψ1(1).
Throwing away (finitely) more initial terms σl if necessary, we may also assume

that

(4.11)

∞∑

l=1

100(N1 + 1)2(m+ 1)τ(σl(1)) < τ(r)

for all τ ∈ T (B). (Use Dini’s Theorem.)
Now, let α0 ∈ KL(C(X),B) be an element such that α0([1]) < [r] and for all

p ∈ PX ,

α̂0([p]) =

∞∑

l=1

σ̂l([p]).

(Sketch of straightforward argument: Recall that since B has continuous scale and
since K0(σ) = 0, for every p ∈ PX ,

∞∑

l=1

σ̂l([p]) ∈ χ(K0(B)) ⊆ Aff(T (B)).

Since [PX ] generatesK0(C(X)), this induces a map from K0(C(X)) to χ(K0(B)) ⊆
Aff(T (B)). Since K0(C(X)) is a finitely generated abelian group, there is a de-
composition K0(C(X)) = F⊕T, where F is a free abelian group and T is a torsion
abelian (and hence finite) group. The map from K0(C(X)) to χ(K0(B)) has T

in its kernel, and hence, actually is a map β : F → χ(K0(B)). Let e1, ..., en be
a basis for F. For each 1 ≤ j ≤ n, let e′j ∈ K0(B) be an element such that

ê′j = β(ej). We then get a group homomorphism β′ : K0(C(X)) → K0(B) where

β′|T = 0 and β′(ej) = e′j for all j. Using the Universal coefficient theorem, lift β′

to α0 ∈ KK(C(X),B).)
Note that since

∑∞

l=n σl is asymptotically multiplicative (as n → ∞), [
∑∞

l=n σl]
is asymptotically positive on (K(C(X)),K(C(X))+). Now recall that an element of
K(A) is positive if and only if it is either zero or has strictly positive K0 component.
Hence, α0 −

∑n
l=1[σl] is asymptotically positive on (K(C(X)),K(C(X))+). (I.e.,

for all x ∈ K(C(X))+, α0(x) −
∑n

l=1[σl](x) ≥ 0 for all sufficiently large n.)
By the definitions of P1, δ

′
1, δ1, N1 and r, and by Corollary 3.10 and Proposition

3.2, there exist c.p.c. maps

σ0, σ0,0 : C(X) → rBr

such that σ0(1) and σ0,0(1) are projections, σ0(1) ⊥ σ0,0(1), σ0 is F -δ′1-multiplicative,
σ0,0 is F -δ1-multiplicative, [σ0]−α0 is the class of a finite dimensional *-homomorphism,
and [σ0 ⊕ σ0,0]|P1

∈ NP1
.
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Now choose n1 ≥ 1 so that for all l ≥ n1 + 1, σl is F -δ′2-multiplicative,
∞∑

l=n1+1

100τ(σl(1)) < τ(p)

for every nonzero projection p ∈ Ran(ψ′
2) and for all τ ∈ T (B), and

∞∑

l=n1+1

100(N2 + 1)2(m+ 1)τ(σl(1)) < τ(q′1)

for all τ ∈ T (B).
Let α1 ∈ KK(C(X),B) be given by

α1 =df α0 −

n1∑

l=1

[σl].

Note that for all p ∈ PX ,

α̂1([p]) =

∞∑

l=n1+1

σ̂l([p]).

In particular,

100(N2 + 1)2(m+ 1)τ(α1([1C(X)])) < τ(q′1)

for all τ ∈ T (B).
Hence, by the definitions of P2, δ

′
2 and δ2 and by Corollary 3.10 and Proposition

3.2, there exist c.p.c. maps σ′
0,1, σ

′′
0,1 : C(X) → q′1Bq

′
1 such that σ′

0,1(1) ⊥ σ′′
0,1(1),

σ′
0,1 is F -δ′2-multiplicative, σ′′

0,1 is F -δ2-multiplicative, [σ′
0,1] − α1 is the class of a

finite dimensional ∗-homomorphism, and [σ′
0,1 ⊕ σ′′

0,1]|P2
∈ NP2

. By our choice of
λ1, q

′
1 and ψ′′′

1 , it must be the case that

dτ (σ′
0,1(g) + σ′′

0,1(g) + ψ′′′
1 (g)) > λ1

for all g ∈ E1 and for all τ ∈ T ((σ′
0,1(1) + σ′′

0,1(1) + ψ′′′
1 (1))B(σ′

0,1(1) + σ′′
0,1(1) +

ψ′′′
1 (1))). (Note that by (4.6) and (4.7), 1000q′1 � p for every nonzero projection p

in the range of ψ′′′
1 . Also, recall equation (4.9).)

Hence, by the definitions of δ2 and P2, and by Theorem 3.3, we can find a finite
dimensional *-homomorphism θ0,2,1, : C(X) → (q1 + q′1)B(q1 + q′1) such that

‖θ0,2,1(f) − (σ′
0,1(f) + σ′′

0,1(f) + ψ′′′
1 (f))‖ < ǫ1

for all f ∈ F .
But since (by equations (4.5) and (4.7)) 1000q1 � p1 and 1000q′1 � p′1 � p1,

by (4.3), and since q1 + q′1 ≤ p1 ≤ ψ′′
1 (1), we can find a unitary u1 ∈ M(B) with

u1ψ
′′
1 (1) = ψ′′

1 (1)u1 and we can find finite-dimensional *-homomorphisms θ3,1 :
C(X) → ψ′′

1 (1)Bψ′′
1 (1) such that u1θ0,2,1(1)u∗1 ⊥ θ3,1(1) and

‖ψ′′
1 − (u1θ0,2,1u

∗
1 + θ3,1)‖ < ǫ2.

(Recall also that sp(ψ′′
1 ) is ǫ2-dense in X .)

If we define
σ′

1 =df u1σ
′
0,1u

∗
1,

σ′′
1 =df u1σ

′′
0,1u

∗
1,

and
θ2,1 =df u1θ0,2,1u

∗
1,
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then

‖θ2,1(f) − (σ′
1(f) + σ′′

1 (f) + u1ψ
′′′
1 (f)u∗1)‖ < ǫ1

for all f ∈ F , and

‖ψ′′
1 − (θ2,1 + θ3,1)‖ < ǫ2 < ǫ1.

Now since i. [σ0] − α0 and [σ′
1] − α1 are the classes of finite dimensional *-

homomorphisms, ii. [σ0 + σ0,0]|P1
∈ NP1

, and iii. α1 = α0 −
∑n1

l=1[σl], we must
have that (

[σ0,0] +

n1∑

l=1

[σl] + [σ′
1]

)
|P1

∈ NP1
.

Also, note that by (4.7), (4.6) and (4.4),

σ′
1(1) � q′1 � 1000q′1 � p′1 � ψ′′′

1 (1) ≤ q1 � 1000q1 � ψ′
1(1).

Hence, since σ0,0(1) ≤ r, and by equations (4.10), (4.11) and (4.8), we must have
that

dτ

(
σ0,0(g) +

n1∑

l=1

σl(g) + σ′
1(g) + ψ′

1(g)

)
> λ1

for all g ∈ E1, for all τ ∈ T (her (σ0,0(1) +
∑n1

l=1 σl(1) + σ′
1(1) + ψ′

1(1))).
Note that all the above maps are F -δ1-multiplicative.
Hence, by the definitions of δ1, λ1, E1 and P1, and by Theorem 3.3, let θ1,1 :

C(X) → B be a finite dimensional *-homomorphism with

θ1,1(1) = σ0,0(1) +

n1∑

l=1

σl(1) + σ′
1(1) + ψ′

1(1)

such that ∥∥∥∥∥θ1,1(f) −

(
σ0,0(f) +

n1∑

l=1

σl(f) + σ′
1(f) + ψ′

1(f)

)∥∥∥∥∥ < ǫ1

for all f ∈ F .

Induction Step:

The argument of the Induction Step is very similar to that of the Basis Steps.
We provide the argument for the convenience of the reader.

Suppose that nk, σ′
k, σ′′

k , θ1,k, θ2,k, θ3,k, αk and uk have been constructed.
We now construct nk+1, σ

′
k+1, σ

′′
k+1, θ1,k+1, θ2,k+1, θ3,k+1, αk+1 and uk+1.

Choose nk+1 ≥ nk + 1 so that for all l ≥ nk+1 + 1, σl is F -δ′k+2-multiplicative,

(4.12)
∞∑

l=nk+1+1

100τ(σl(1)) < τ(p)

for every nonzero projection p ∈ Ran(ψ′
k+2) and for all τ ∈ T (B), and

∞∑

l=nk+1+1

100(Nk+2 + 1)2(m+ 1)τ(σl(1)) < τ(q′k+1)

for every τ ∈ T (B).
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Let αk+1 ∈ KK(C(X),B) be given by

αk+1 =df αk −

nk+1∑

l=nk+1

[σl] = α0 −

nk+1∑

l=1

[σl].

Note that for all p ∈ PX ,

̂αk+1([p]) =

∞∑

l=nk+1+1

σ̂l([p]).

In particular,

100(Nk+2 + 1)2(m+ 1)τ(αk+1([1C(X)])) < τ(q′k+1)

for all τ ∈ T (B).
Hence, by the definitions of Pk+2, δ

′
k+2 and δk+2 and by Corollary 3.10 and

by Proposition 3.2, there exist c.p.c. maps σ′
0,k+1, σ

′′
0,k+1 : C(X) → q′k+1Bq

′
k+1

such that σ′
0,k+1(1) ⊥ σ′′

0,k+1(1), σ′
0,k+1 is F -δ′k+2-multiplicative, σ′′

0,k+1 is F -δk+2-

multiplicative, [σ′
0,k+1]−αk+1 is the class of a finite dimensional *-homomorphism,

and [σ′
0,k+1 ⊕ σ′′

0,k+1]|Pk+2
∈ NPk+2

. By our choice of λk+1, q
′
k+1 and ψ′′′

k+1, it must
be the case that

dτ (σ′
0,k+1(g) + σ′′

0,k+1(g) + ψ′′′
k+1(g)) > λk+1

for all g ∈ Ek+1 and for all τ ∈ T (her(σ′
0,k+1(1) + σ′′

0,k+1(1) + ψ′′′
k+1(1))). (Note

that by equations (4.7) and (4.6), 1000q′k+1 � p′k+1 � ψ′′′
k+1(1). Also recall equation

(4.9).)
Hence, by the definition of δk+2 and by Theorem 3.3, we can find a finite di-

mensional *-homomorphism θ0,2,k+1 : C(X) → (qk+1 + q′k+1)B(qk+1 + q′k+1) such
that

‖θ0,2,k+1(f) − (σ′
0,k+1(f) + σ′′

0,k+1(f) + ψ′′′
k+1(f))‖ < ǫk+1

for all f ∈ F .
But by equations (4.5) and (4.7), 1000qk+1 � pk+1 and 1000q′k+1 � p′k+1 �

pk+1. Also, by (4.3), qk+1, q
′
k+1, pk+1 ≤ ψ′′

k+1(1) and pk+1 � p for every nonzero
projection p in the range of ψ′′

k+1. Hence, we can find a unitary uk+1 ∈ M(B) with
uk+1ψ

′′
k+1(1) = ψ′′

k+1(1)uk+1 and we can find a finite dimensional *-homomorphism
θ3,k+1 : C(X) → ψ′′

k+1(1)Bψ′′
k+1(1) such that uk+1θ0,2,k+1(1)u∗k+1 ⊥ θ3,k+1(1) and

‖ψ′′
k+1 − (uk+1θ0,2,k+1u

∗
k+1 + θ3,k+1)‖ < ǫ2k+2 < ǫk+1.

(Recall that sp(ψ′′
k+1) is at least ǫ2k+2-dense in X .)

If we define

σ′
k+1 =df uk+1σ

′
0,k+1u

∗
k+1,

σ′′
k+1 =df uk+1σ

′′
0,k+1u

∗
k+1,

and

θ2,k+1 =df uk+1θ0,2,k+1u
∗
k+1

then

‖θ2,k+1(f) − (σ′
k+1(f) + σ′′

k+1(f) + uk+1ψ
′′′
k+1(f)u∗k+1)‖ < ǫk+1

for all f ∈ F , and

‖ψ′′
k+1 − (θ2,k+1 + θ3,k+1)‖ < ǫk+1.
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Now since i. [σ′
k] − αk and [σ′

k+1] − αk+1 are both classes of finite dimensional
*-homomorphisms, ii. [σ′

k + σ′′
k ]|Pk+1

∈ NPk+1
(by the induction hypothesis), and

iii. αk+1 = αk −
∑nk+1

l=nk+1[σl], we must have that
(

[σ′′
k ] +

nk+1∑

l=nk+1

[σl] + [σ′
k+1]

)
|Pk+1

∈ NPk+1
.

Now, by the induction hypothesis and equations (4.7), (4.6) and (4.4),

1000σ′′
k(1) � 1000q′k � p′k+1 � ψ′′′

k+1(1) � qk+1 � 1000qk+1 � p

for every nonzero projection p in Ran(ψ′
k+1).

Also, by a similar argument,

1000σ′
k+1(1) � 1000q′k+1 � p′k+1 � p

for every nonzero projection p ∈ Ran(ψ′
k+1).

Also, by the induction hypothesis,
∞∑

l=nk+1

100τ(σl(1)) < τ(p)

for every nonzero projection p ∈ Ran(ψ′
k+1) and for every τ ∈ T (B).

Hence, from the above and from (4.8), we must have that

dτ

(
σ′′

k (g) +

nk+1∑

l=nk+1

σl(g) + σ′
k+1(g) + ψ′

k+1(g)

)
> λk+1

for every g ∈ Ek+1 and τ ∈ T (her(σ′′
k (1) +

∑nk+1

l=nk+1 σl(1) + σ′
k+1(1) + ψ′

k+1(1))).
Note that all the above maps are F -δk+1-multiplicative.
Hence, by the definitions of δk+1, λk+1, Ek+1 and Pk+1, and by Theorem 3.3, let

θ1,k+1 : C(X) → B be a finite dimensional *-homomorphism with

θ1,k+1(1) = σ′′
k (1) +

nk+1∑

l=nk+1

σl(1) + σ′
k+1(1) + ψ′

k+1(1)

such that∥∥∥∥∥θ1,k+1(f) − (σ′′
k (f) +

nk+1∑

l=nk+1

σl(f) + σ′
k+1(f) + ψ′

k+1(f))

∥∥∥∥∥ < ǫk+1

for all f ∈ F .

This completes the inductive construction.

Let
Φ : C(X) → M(B)

be the *-homomorphism given by

Φ(f) =df

∞∑

k=1

(θ1,k(f) + ukψ
′′′
k (f)u∗k + θ3,k(f))

for every f ∈ C(X).
Then

π ◦ Φ = φ.
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Moreover, we can vary the spectrum of Φ to get Ψ so that π ◦ Φ = π ◦ Ψ and
where each point in sp(Ψ) repeats infinitely many times.

Hence, φ is totally trivial. Since K0(φ) = 0, it follows, from Theorem 2.6, that
φ is a null extension. �

We note that there is a gap in the proof of [40] Theorem 2.8. In particular, on
page 1280 lines 14–15, the statement “... we may assume that ρ′′n = enρen is also
δn-Gn-multiplicative...” is not correct. However, [40] Theorem 2.8 can be proven by
following the argument of the above proposition.

Let X be a compact metric space and C be a unital C*-algebra. Let γ :
KK(C(X), C) → Hom(K∗(C(X)),K∗(C)) be the surjective map from the Uni-
versal coefficient theorem.

We let KKu(C(X), C) be the set of elements x ∈ KK(C(X), C) such that γ(x)
maps [1C(X)] (in K0(C(X))) to [1C ] (in K0(C)).

Finally, denote by J the natural map Ext(C(X),B) → KK(C(X),M(B)/B) :
[φ]Ext 7→ [φ]KK . Similar for the (natural) analogous map Extu(C(X),B) →
KKu(C(X),M(B)/B).

Theorem 4.13. Let X be a finite CW complex, and let B be a nonunital simple
finite real rank zero Z-stable C*-algebra with continuous scale.

Then the map

J : Ext(C(X),B) → KK(C(X),M(B)/B)

is a bijection.

Proof. The argument is a minor variation on the argument of [40] Theorem 2.10.
We provide the proof for the convenience of the reader.

Firstly, surjectivity of the map J follows from [39] Theorem 1.17. Hence, it
suffices to prove that J is injective.

To prove injectivity of J, we reduce to the unital case. We claim that it suffices
to prove that

J : Extu(C(X),B) → KKu(C(X),M(B)/B)

is injective. We denote the above claim by “(*)”.
Let Y =df {y} ⊔X , where the union is disjoint.
Suppose that φ1 : C(X) → e(M(B)/B)e and φ2 : C(X) → e′(M(B)/B)e′ are

two unital *-monomorphisms with J(φ1) = J(φ2), where e, e′ ∈ M(B)/B are proper
subprojections of the unit. Thus [e] = [e′] in K0(M(B)/B).

Let φ′1, φ
′
2 : C(Y ) → M(B)/B be unital *-monomorphism given by φ′1(f) =df

f(y)(1− e)+φ1(f |X) and φ′2(f) =df f(y)(1− e′)+φ2(f |X) for all f ∈ C(Y ). Then
if φ1 and φ2 are unitarily equivalent then so are φ′1 and φ′2. (See [54] Propositions
2.4 and 2.5.) And if J(φ1) = J(φ2) then J(φ′1) = J(φ′2).

Conversely, suppose that φ′1, φ
′
2 : C(Y ) → M(B)/B are two unital *-monomorphisms.

Then if φ′1 and φ′2 are unitarily equivalent then φ′1|C(X) and φ′2|C(X) are unitarily
equivalent. And if J(φ′1) = J(φ′2) then J(φ′1|C(X)) = J(φ′2|C(X)).

This completes to proof of the claim in (*).
From the claim in (*), we thus proceed to proving injectivity in the unital case.

To finish the proof, we need to diverge into two further cases.

Case 1: Assume that [1M(B)/B] = 0 in K0(B).
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By Theorem 2.4, Extu(C(X),B) is a group. Since J (on Extu(C(X),B)) is
a group homomorphism, it suffices to prove that for all [φ] ∈ Extu(C(X),B), if
J(φ) = 0 then φ is a null extension. But this has been proven in Proposition 4.2.

This completes the proof of Case 1.

Case 2: General case.

Let p ∈ M(B) be a projection such that [π(p)]+ [1M(B)/B] = 0 in K0(M(B)/B).
Let D =df (1 ⊕ p)M2(B)(1 ⊕ p). Then D is a nonunital separable simple real

rank zero finite Z-stable C*-algebra with continuous scale such that [1M(D)/D] = 0
in K0(M(D)/D).

Supose that φ1, φ2 : C(X) → M(B)/B are two unital *-monomorphisms such
that J(φ1) = J(φ2).

Let Y =df {y}⊔X , where the union is disjoint. Let φ′1, φ
′
2 : C(Y ) → M(D)/D be

two unital *-monomorphisms given by φ′1(f) =df f(y)π(p)⊕φ1(f |X) and φ′2(f) =df

f(y)π(p) ⊕ φ2(f |X) for all f ∈ C(Y ). Then J(φ′1) = J(φ′2).
Hence, by Case 1, φ′1 and φ′2 are unitarily equivalent. Hence, φ1 and φ2 are

unitarily equivalent.
This completes Case 2 and the whole proof. �

Remark 4.14. The proof of Theorem 4.13 actually shows that, under the hypothe-
ses of Theorem 4.13, when [1M(B)/B] = 0, the map

J : Extu(C(X),B) → KKu(C(X),M(B)/B)

is a group isomorphism.
Similar for when J maps Ext(C(X),B) to KK(C(X),M(B)/B).

Remark 4.15. As pointed out in [54] Subsection 3.1, one can give a group structure
to Ext(C(X),B) even without the hypothesis that [1M(B)/B] = 0. The idea is due to
[12] and involves a natural generalization of the BDF sum. More precisely, suppose
that B is a nonunital separable simple continuous scale C*-algebra and suppose
that X is a compact metric space. Let φ, ψ : C(X) → M(B)/B be two nonunital
extensions. Then the (generalized) BDF sum of φ and ψ is defined to be

Sφ(.)S∗ + Tψ(.)T ∗

where S, T ∈ M(B)/B are two isometries such that SS∗ + TT ∗ ≤ 1.
The above sum is, up to unitary equivalence, independent of the choices of S and

T . Thus, we get a well defined addition and then group structure on Ext(C(X),B).
(See [54] Subsection 3.1.) And this is so even if [1M(B)/B] 6= 0.

With the aforementioned group structure on Ext(C(X),B), the map J is a group
homomorphism, and thus, the bijection in Theorem 4.13 is a group isomorphism.
We state this result.

Theorem 4.16. Let X be a finite CW complex and let B be a nonunital simple
separable finite real rank zero Z-stable C*-algebra with continuous scale.

Then the map

J : Ext(C(X),B) → KK(C(X),M(B)/B)

is a group isomorphism.
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