
NONSTABLE ABSORPTION
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Abstract. Let X be a finite CW complex and B be a nonunital separable
simple C*-algebra with continuous scale. We show that Ext(C(X),B) is a
group, and we also characterize the neutral element of Ext(C(X),B), with
further information when B has additional regularity properties. We have
similar results for the unital version Extu(C(X),B).

In the process, we prove some results involving nonstable absorption, some
of which work for general (not necessarily simple) purely infinite corona alge-
bras.

1. Introduction

Motivated by the problem of classifying essential normal operators on a separable
infinite dimensional Hilbert space, Brown, Douglas and Fillmore (BDF) classified
all C*-algebra extensions of the form

0 → K → D → C(X) → 0

where K is the C*-algebra of compact operators on a separable infinite dimensional
Hilbert space, and X is a compact metric space. This was a starting point for
much interesting phenomena in operator theory (including the important stable
uniqueness theorems of Classification Theory; [6], [33]), and has led to the rapid
development of extension theory with many effective techniques (especially from
KK theory) to compute the Ext-group Ext(A,B).

However, in general, Ext(A,B) does not capture all unitary equivalence classes
of extensions. Among other things, there can be many nonunitarily equivalent
trivial extensions, and also, an extension φ with [φ] = 0 in Ext(C(X),B) need not
be trivial. (For these and other shortcomings, see, for example, [26], [29], and [30].)

One of the implicit reasons for the success of the original BDF Theory is that
B(l2) and the Calkin algebra B(l2)/K have particularly nice structure. Among
other things, B(l2) has strict comparison and real rank zero (it is a von Neumann
algebra), and B(l2)/K is simple purely infinite. (For example, the BDF–Voiculescu
result that all essential extensions are absorbing would not be true without the
simplicity of B(l2)/K.)

One would like to single out a class of corona algebras which generalize nice
features from B(l2)/K, with the goal of developing operator theory and extension
theory in an agreeable context, among other things generalizing further the theo-
ries developed by BDF, Voiculescu and other workers. Such thoughts were clearly
present1 in the early literature.

We thank the referee for many detailed and helpful comments.
1as a proper subset
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Simple purely infinite corona algebras have been completely characterized. Re-
call that a simple C*-algebra has continuous scale if, roughly speaking, it has a
sequential approximate identity which is a “Cauchy sequence”. More precisely:

Definition 1. Let B be a nonunital separable simple C*-algebra. Then B has
continuous scale if B has an approximate identity {en}∞n=1 such that en+1en = en
for all n, and for every b ∈ B+ − {0}, there exists an N ≥ 1 such that for all
m > n ≥ N ,

em − en � b.

(See, for example, [24].)

In the above, � is a subequivalence relation for positive elements (generalizing
Murray–von Neumann subequivalence for projections) given as follows: for a C*-
algebra D, for a, d ∈ D+, a � d if there exists a sequence {xn} in D such that
xndx

∗
n → a.

Theorem 1.1. Let B be a nonunital separable simple nonelementary C*-algebra.
Then the following statements are equivalent:

(1) B has continuous scale.
(2) M(B)/B is simple.
(3) M(B)/B is simple and purely infinite.

([24], [34]; see also [7], [45])

We note that purely infinite simple C*-algebras have real rank zero ([47]). We
further note that for a general nonunital separable simple C*-algebra D, an exten-
sion of D by C(X) can often be decomposed in a way where one piece sits inside
the minimal ideal of M(D)/D, and this piece is essentially an extension of a sim-
ple continuous scale algebra (e.g., [30]; see also [18]). Thus, simple purely infinite
corona algebras are not just a very nice context, but are part of the general picture.

Nonetheless, difficulties still arise that are not present in the case of B(l2)/K.
For example, for simple continuous scale B, the K-theory of M(B) and M(B)/B
can be much more complicated than that of B(l2) and B(l2)/K. Moreover, in the
case where B is nonstable, we do not have infinite repeats and the powerful tools of
the classical theory of absorbing extensions (e.g., [1], [4], [10], [20], [21], [33], [43])
are no longer completely available.

In effect, one needs to develop a type of nonstable absorption theory, where one
takes into account the fine structure of the K-theory. Such a theory has previously
been considered with definite results (e.g., [26], [29], [30]). The author of the
aforementioned results studied the case where the ideal was a simple nonunital
continuous scale algebra with real rank zero, stable rank one, strict comparison
and unique tracial state. In the present paper, we develop analogous absorption
results in a more general context. Some results even work for the case where the
corona algebra is nonsimple (purely infinite).

The theory makes use of the techniques from the Elliott Classification Program,
which is interesting since one source of the important stable uniqueness theorems
of the Classification Program is BDF Theory itself 2. Also, in addition to their
importance in extension theory, we note the prominence of continuous scale algebras
in the striking recent classification work of Elliott–Gong–Lin–Niu ([8]).

2Another source is Elliott’s work.
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As part of the program, we also have results characterizing (not necessarily
simple) purely infinite corona algebras. Under mild regularity conditions on a
simple C*-algebra B, we have the equivalences: B has quasicontinuous scale ⇔
M(B) has strict comparison ⇔ M(B)/B is purely infinite ⇔ M(B) has finitely
many ideals ⇔ Imin = Icont. Furthermore, all such corona algebras have real rank
zero, and many related fundamental results have been proven. (E.g., [17], [18], [19],
[23], [37], [40].)

In [41], we will use the results in this paper to classify all extensions of the form

0 → B → D → C(X) → 0

where B is a simple real rank zero finite Jiang–Su-stable continuous scale C*-algebra
and where X is a finite CW complex.

1.1. Notation. We end this section with some brief remarks on notation.
For a C*-algebra B, M(B) denotes the multiplier algebra of B. Thus, M(B)/B

is the corresponding corona algebra.
For each extension

0 → B → D → C → 0

(of B by C3) we will work with the corresponding Busby invariant which is a *-
homomorphism φ : C → M(B)/B. We will always work with essential extensions
which is equivalent to requiring that the corresponding Busby invariant to be injec-
tive; hence, throughout the paper, when we write “extension”, we mean essential
extension. An extension is unital if the corresponding Busby invariant is a unital
map.

Say that φ, ψ : C → M(B)/B are two extensions. We say that φ and ψ are
unitarily equivalent (and write φ ∼ ψ) if there exists a unitary u ∈ M(B) such that

φ(c) = π(u)ψ(c)π(u)∗

for all c ∈ C. Here, π : M(B) → M(B)/B is the quotient map.
Ext(C,B) denotes the set of unitary equivalence classes of nonunital essential

extensions of B by C. If, in addition, C is unital, Extu(C,B) is the set of unitary
equivalence classes of unital essential extensions.

For a unital simple C*-algebra C, T (C) denotes the tracial state space of C. If C is
a nonunital simple C*-algebra, T (C) will denote that class of lower semicontinous,
densely defined traces which are normalized at a fixed element e ∈ C+ −{0}, where
e is in the Pedersen ideal of C (of course, for statements involving T (C), where C
is nonunital, the choice of e is not relevant). For τ ∈ T (C) (where C is unital or
nonunital), for a ∈ C+, dτ (c) =df limn→∞ τ(c1/n). (Good references are [17] and
[18].)

For a C*-algebra D, and for a ∈ D+, we let herD(a) =df aDa, the hereditary
C*-subalgebra of D generated by a. Sometimes, for simplicity, we write her(a) in
place of herD(a). Similarly, for a C*-subalgebra C ⊆ D, we let herD(C) or her(C)
denote CDC, the hereditary C*-subalgebra of D generated by C. Finally, for a
subset S ⊆ D, we let IdealD(S) denote the ideal of D which is generated by S.
Again, we often write Ideal(S) in place of IdealD(S).

3We note that, in the literature, such extensions are often called “extensions of C by B”.
However, like some other authors ([1], [4], [5]), we prefer “extensions of B by C”, and will use this
in the present paper.
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In this paper, any simple separable stably finite C*-algebra is assumed to have
the property that every quasitrace is a trace.

Let A, C be C*-algebras. Throughout this paper, we will write that a map
φ : A → C is c.p.c. if it is linear and completely positive contractive. Let F ⊂ A be
a finite subset and let δ > 0. A c.p.c. map ψ : A → C is said to be F-δ-multiplicative
if ‖ψ(fg)− ψ(f)ψ(g)‖ < δ for all f, g ∈ F .

Good references for basic multiplier algebra theory, extension theory, K theory,
and KK theory are [2], [32], and [44]. See also [17], [18] and [19] for much of the
advanced multiplier algebra machinery.

For the notation and basic KK-theoretic tools from Classification Theory used
in this paper, we refer the reader to [11], [15], [26], [29], [32], [36], and the references
therein.

References for simple continuous scale algebras are [24] and [34]. Section 1 of
[35] contains computations of the K theory for the multiplier and corona algebras
of simple separable continuous scale C*-algebras with real rank zero, stable rank
one and strict comparison (see also [37] Propositions 4.2, 4.4 and Corollary 4.6; and
also [9]). Other good sources are [17] and [18].

2. Some nonstable decomposition theorems for purely infinite

corona algebras

In this section, we provide some Voiculescu-type decomposition theorems for
purely infinite corona algebras. We do not have the strongest possible technical
results, but enough for the main goal of this paper. Precursors to the results in this
section are [1], [10], [20], [22], [43].

The first result partly generalizes [22] Theorem 3.4.

Theorem 2.1. Let B be a simple nonunital separable C*-algebra such that M(B)/B
is purely infinite and has finitely many ideals.4

Let X be a compact metric space and φ : C(X) → M(B)/B be a *-monomorphism.
Say that ψ : C(X) → M(B)/B is a *-homomorphism such that for all f ∈ C(X),

ψ(f) ∈ Ideal(φ(f)).
Then there exists a V ∈ M(B)/B such that

ψ(f) = V φ(f)V ∗

for all f ∈ C(X).

Proof. Since φ is injective, we may assume that C(X) is a C*-subalgebra of M(B)/B
and that φ is the inclusion map.

Let {Fn}∞n=1 be a increasing sequence of finite subsets of C(X)+ such that⋃∞
n=1 Fn is norm dense in the closed unit ball of C(X)+. We may assume that

1C(X) ∈ F1.
Let {ǫn}∞n=1 be a strictly decreasing sequence of numbers in (0, 1) such that∑∞
n=1 ǫn < ∞. Let {δn}∞n=1 be another decreasing sequence of numbers in (0, 1)

such that
∑∞

n=1 δn <∞, and such that for all n, for all f ∈ Fn, for all x, y ∈ X , if
d(x, y) < 2δn then |f(x) − f(y)| < ǫn/10.

For all n, let xn,1, xn,2, ..., xn,kn ∈ X and On,1, On,2, ..., On,kn be open balls in X
such that the following statements are true:

4Actually, under mild regularity conditions on the canonical ideal, purely infinite corona alge-
bras will have finitely many ideals ([19]).
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(1) xn,k ∈ On,k for all n, k.
(2) diam(On,k) < δn/4 for all n, k.

(3) X =
⋃kn
k=1On,k for all n, k.

(4) For all f ∈ C0(On,k)+ such that f(xn,k) 6= 0, IdealM(B)/B(f) = IdealM(B)/B(C0(On,k)).

For all n, let {gn,k}
kn
k=1 be a partition of unity for X subordinate to {On,k}

kn
k=1,

i.e.,

(1) gn,k ∈ C(X)+ for all n, k,

(2) supp(gn,k) ⊆ On,k for all n, k, and

(3)
∑kn

k=1 gn,k(x) = 1 for all x ∈ X , for all n.

Let ψ̃ : C(X) → M(B) be a c.p.c. map such that ψ = π ◦ ψ̃.

For all n, let ψ̃n : C(X) → M(B) be the c.p.c. map given by ψ̃n(f) =df∑kn
k=1 f(xn,k)ψ̃(gn,k) for all f ∈ C(X). Let ψn =df π◦ ψ̃n. Hence, for all f ∈ C(X),

ψn(f) =
∑kn

k=1 f(xn,k)ψ(gn,k) = ψ(
∑kn

k=1 f(xn,k)gn,k). As a consequence, for all
f ∈ Fn, ‖ψ(f) − ψn(f)‖ < ǫn/10.

Claim: There exists a sequence {dn}∞n=1 in M(B)/B such that the following state-
ments hold:

i. ‖dn‖ < 2 for all n.
ii. ψ(f) ≈ǫn dnfd

∗
n for all f ∈ Fn, for all n.

iii. ‖dnfd∗n+1‖ < ǫn for all f ∈ C(X), for all n.

Proof of Claim: Since M(B)/B is purely infinite and has finitely many ideals, let

{hn,k}∞n=1
kn
k=1 be a collection of elements in (M(B)/B)+ such that

(a) ‖hn,k‖ = 1 for all n, k,
(b) hn,k ∈ herM(B)/B(C0(On,k)) for all n, k,

(c) IdealM(B)/B((h2
n,k −

9
10 )+) = IdealM(B)/B(C0(On,k)) for all n, k,

(d) hn,kfhn,k ≈ ǫn
10(kn+1)

f(xn,k)h
2
n,k for all f ∈ Fn, for all n, k,

(e) hn,khn,l = 0, for all n, for all k 6= l, and
(f) ‖hn,kfhn,l‖ <

ǫn
10(k2

n+1) for all n, for all k 6= l.

(g) ‖hn+1,kfhn,l‖ <
ǫn+1

10(‖kn‖2+‖kn+1‖2+1) for all n, for all k, l.

By hypothesis, for all n, k,

ψ(gn,k) ∈ IdealM(B)/B(gn,k) ⊆ IdealM(B)/B(C0(On,k)) = IdealM(B)/B(hn,k).

Since M(B)/B is purely infinite, for all n, k,

ψ(gn,k) �

(
h2
n,k −

9

10

)

+

.

Hence, since ‖ψ(gn,k)‖ ≤ 1 and ‖hn,k‖ ≤ 1, let d′n,k ∈ M(B)/B with ‖d′n,k‖ ≤
3/2 be such that

d′n,kh
2
n,k(d

′
n,k)

∗ ≈ ǫn
10(kn+1)

ψ(gn,k)

for all n, k.
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Hence, for all n, for all f ∈ Fn,

ψ(f) ≈ǫn/10 ψn(f)

=

kn∑

k=1

f(xn,k)ψ(gn,k)

≈ǫn/10

kn∑

k=1

f(xn,k)d
′
n,kh

2
n,k(d

′
n,k)

∗

=

kn∑

k=1

d′n,kf(xn,k)h
2
n,k(d

′
n,k)

∗

≈ǫn/4

kn∑

k=1

d′n,k(hn,kfhn,k)(d
′
n,k)

∗

≈ǫn/10 dnfd
∗
n

where dn =df

∑kn
k=1 d

′
n,khn,k ∈ M(B)/B.

Hence, for all f ∈ Fn,

ψ(f) ≈ǫn dnfd
∗
n.

Also, 1C(X) ∈ F1 ⊆ Fn. Therefore, ψ(1) ≈ǫn dn1d
∗
n = dnd

∗
n. So ‖dn‖ < 2, for

all n.
Also, since ‖hn,kfhn+1,l‖ <

ǫn+1

10(‖kn‖2+‖kn+1‖2+1) for all n, k, l and for all f ∈ Fn,

we have that for all n and for all f ∈ Fn,

‖dnfd
∗
n+1‖ ≤

kn∑

k=1

kn+1∑

l=1

‖d′n,khn,kfhn+1,l(d
′
n+1,l)

∗‖

< ǫn/4.

We have thus constructed a sequence {dn}∞n=1 as in the Claim. This completes
the proof of the Claim.

For all n, let d̃n ∈ M(B) be such that ‖d̃n‖ < 2 and π(d̃n) = dn.

For all f ∈
⋃∞
n=1 Fn, let f̃ ∈ M(B) with ‖f̃‖ ≤ 2‖f‖ ≤ 2 be such that π(f̃) = f .

For all n, let F̃n =df {f̃ : f ∈ Fn}. Let {em}∞m=1 be an approximate unit for
B such that em+1em = em for all m, and such that {em}

∞
m=1 quasicentralizes⋃∞

n=1(F̃n ∪ ψ̃(Fn) ∪ {d̃n}).
Note that for all n, since ψ(f) ≈ǫn dnfd

∗
n and dnfd

∗
n+1 ≈ǫn 0 for all f ∈ Fn, we

must have that ψ̃(f)(1 − em) ≈ǫn d̃nf̃ d̃
∗
n(1 − em) and d̃nf̃ d̃

∗
n+1(1 − em) ≈ǫn 0 for

all sufficiently large m and for all f ∈ Fn.
Hence, let {m(n)}∞n=1 be a subsequence of the positive integers such that the

following statements hold:
Take m(0) =df 1.
For all n ≥ 1, let m(n) ≥ m(n− 1)+1 be such that the following statements are

true:
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i. For all f ∈ Fn+1, for all m ≥ m(n),

ψ̃(f)(em − em(n))

≈ǫn+1 d̃n+1f̃ d̃
∗
n+1(em − em(n))

≈ǫn+1/10 (em − em(n))
1/4d̃n+1(em − em(n))

1/4f̃(em − em(n))
1/4d̃∗n+1(em − em(n))

1/4.

ii. For all f ∈ Fn+1, for all m ≥ m(n), for all m′ ≥ m(n− 1),

(em′−em(n−1))
1/4d̃n(em′−em(n−1))

1/4f(em−em(n))
1/4d̃∗n+1(em−em(n))

1/4 ≈ǫn+1 0.

iii. For all f ∈ Fn+1, for all m ≥ m(n),

(em − em(n))
1/4f ≈ǫn+1/10 f(em − em(n))

1/4.

Let Ṽ =df

∑∞
n=1(em(n+1) − em(n))

1/4d̃n+1(em(n+1) − em(n))
1/4 ∈ M(B), where

the series converges strictly.

Let V =df π(Ṽ ) ∈ M(B)/B.
Then V fV ∗ = ψ(f), for all f ∈ C(X). �

In addition to the references cited at the beginning of this section, we also note
that an early (operator theoretic) analogue of the next result was already present
implicitly in [4].

Corollary 2.2. Let B be a simple nonunital separable C*-algebra such that M(B)/B
is purely infinite and has finitely many ideals.

Let X be a compact metric space and φ : C(X) → M(B)/B be a *-monomorphism.
Say that ψ : C(X) → M(B)/B is a *-homomorphism such that for all f ∈ C(X),

ψ(f) ∈ Ideal(φ(f)).
Then there exists a partial isometry W ∈ M(B)/B with W ∗W = ψ(1) and

*-homomorphism

σ : C(X) → (1 −WW ∗)(M(B)/B)(1 −WW ∗)

such that

φ(.) = Wψ(.)W ∗ + σ(.).

Proof. By Theorem 2.1, there exists W ∈ M(B)/B such that

ψ(f) = W ∗φ(f)W

for all f ∈ C(X).
Replacing W with φ(1)W if necessary, we have that W is a partial isometry such

that W ∗W = ψ(1).
Hence, WW ∗ ∈ M(B)/B is a projection. Since ψ is a *-homomorphism, for all

f ∈ C(X) with f ≥ 0,

W ∗φ(f2)W = W ∗φ(f)WW ∗φ(f)W

and hence,

W ∗φ(f)(1 −WW ∗)φ(f)W = 0,

which implies that

WW ∗φ(f)(1 −WW ∗) = 0.

Hence, for all f ∈ C(X), WW ∗ commutes with φ(f). Hence,

C(X) → (1 −WW ∗)(M(B)/B)(1 −WW ∗) : f 7→ (1 −WW ∗)φ(f)
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is a *-homomorphism. Also, note that for all f ∈ C(X),

WW ∗φ(f) = WW ∗φ(f)WW ∗ = Wψ(f)W ∗

From the above, for all f ∈ C(X),

φ(f) = (1 −WW ∗)φ(f) ⊕Wψ(f)W ∗.

We can therefore take

σ(f) =df (1 −WW ∗)φ(f)

for all f ∈ C(X). �

The above result immediately implies the following unital version:

Corollary 2.3. Let B be a simple nonunital separable C*-algebra such that M(B)/B
is purely infinite and has finitely many ideals.

Let X be a compact metric space and φ : C(X) → M(B)/B be a unital *-
monomorphism.

Say that ψ : C(X) → M(B)/B is a unital *-homomorphism such that for all
f ∈ C(X), ψ(f) ∈ Ideal(φ(f)).

Then there exists an isometry W ∈ M(B)/B and a unital *-homomorphism

σ : C(X) → (1 −WW ∗)(M(B)/B)(1 −WW ∗)

such that

φ(.) = Wψ(.)W ∗ + σ(.).

Recall that for a nonunital C*-algebra B, for a C*-algebra C and for extensions
φ, ψ : C → M(B)/B, φ and ψ are said to be weakly unitarily equivalent if there
exists a unitary U ∈ M(B)/B such that

φ(.) = Uψ(.)U∗.

Recall also that Lin proved that for every separable simple nonunital and nonele-
mentary C*-algebra B, B has continuous scale if and only if M(B)/B is simple
purely infinite (see Theorem 1.1). In particular, such a B satisfies the more techni-
cal assumption on ideals in the previous results of this section (Th. 2.1, Cor. 2.2
and Cor. 2.3).

Proposition 2.4. Let B be a nonunital separable simple continuous scale C*-
algebra, and let X be a compact metric space.

Then any two unital essential extensions of B by C(X) that are weakly unitarily
equivalent are unitarily equivalent (i.e., with unitary coming from M(B)).

Proof. Say that φ, ψ : C(X) → M(B)/B are unital *-monomorphisms that are
weakly unitarily equivalent. Hence, let U ∈ M(B)/B be a unitary such that

Uφ(.)U∗ = ψ(.).

Pick a point x0 ∈ X , and let ρ : C(X) → M(B)/B be the unital *-homomorphism
given by

ρ(f) =df f(x0)1

for all f ∈ C(X).
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By Collorary 2.3, let W ∈ M(B)/B be an isometry and let σ : C(X) → (1 −
WW ∗)(M(B)/B)(1 −WW ∗) be a unital *-homomorphism such that

φ(.) = Wρ(.)W ∗ + σ(.).

Since WW ∗ ∼ 1M(B)/B and since M(B)/B is simple purely infinite, let V0 ∈
WW ∗(M(B)/B)WW ∗ be a unitary such that

V =df U(V0 + (1 −WW ∗))

is a unitary in the path-connected component of the identity in the unitary group
of M(B)/B.

Note that since ρ is centre-valued,

V φ(.)V ∗ = Uφ(.)U∗ = ψ(.)

and V can be lifted to a unitary in M(B). �

A modification of the above argument, replacing Corollary 2.3 with Corollary
2.2, gives us the nonunital case. However, we will give a different proof (though
similar in spirit) where C(X) is replaced with a general separable unital C*-algebra
A.

Proposition 2.5. Let B be a nonunital separable simple continuous scale C*-
algebra, and let A be a separable unital C*-algebra.

Then any two nonunital essential extensions of B by A that are weakly unitarily
equivalent are unitarily equivalent (i.e., with unitary coming from M(B)).

Proof. Say that φ, ψ : A → M(B)/B are nonunital *-monomorphisms which are
weakly unitarily equivalent. Hence, let U ∈ M(B)/B be a unitary such that

Uφ(.)U∗ = ψ(.).

Since φ is nonunital, 1M(B)/B −φ(1) is nonzero. Since M(B)/B is simple purely
infinite, let V0 ∈ (1M(B)/B − φ(1))(M(B)/B)(1M(B)/B − φ(1)) be a unitary such
that

V =df U(V0 + (1M(B)/B − φ(1))

is a unitary in the path-connected component of the identity in the unitary group
of M(B)/B. Hence,

V φ(.)V ∗ = Uφ(.)U∗ = ψ(.)

and V can be lifted to a unitary in M(B). �

Remark 1. Recall that all our extensions are assumed to be essential. Let B be a
nonunital separable simple continuous scale C*-algebra such that [1M(B)/B] = 0 in
K0(M(B)/B), and let X be a compact metric space.

Then there is addition on the class of unital extensions of B by C(X). More
precisely, say that φ, ψ : C(X) → M(B)/B are two *-monomorphisms. Then the
BDF sum of φ and ψ is given by

Sφ(.)S∗ + Tψ(.)T ∗

where S, T ∈ M(B)/B are isometries such that SS∗ + TT ∗ = 1.
Note that, by Proposition 2.4 and 2.5, the above sum is well-defined up to uni-

tary equivalence. Thus, the above sum induces an addition and hence a semigroup
structure on Extu(C(X),B) (and also on Ext(C(X),B)).
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Henceforth, in the rest of this paper (except for Subsection 3.1), whenever B is a
simple continuous scale C*-algebra with [1M(B)/B] = 0 in K0(M(B)/B) and when-
ever φ, ψ : C(X) → M(B)/B are two homomorphisms with at least one injective,
if we write

φ⊕ ψ

then we mean that we are taking a BDF-sum of φ and ψ, which, by Remark 1, is
well defined up to unitary equivalence.

Theorem 2.6. Let B be a nonunital separable simple continuous scale C*-algebra
such that [1M(B)/B] = 0 in K0(M(B)/B). Let φ, ψ : C(X) → M(B)/B be unital
*-homomorphisms with φ injective.

Then there exists a unital *-homomorphism σ : C(X) → M(B)/B such that

φ ∼ ψ ⊕ σ.

Moreover, we can require σ to be injective.

Proof. Apply Corollary 2.3 to φ and ψ ⊕ ψ to get that either

φ ∼ ψ ⊕ ψ

or there exists a unital *-homomorphism σ′ such that

φ ∼ ψ ⊕ ψ ⊕ σ′.

In the former case, we can take σ =df ψ, and in the latter case, we take σ =df ψ⊕σ′.
Note that since φ is injective, σ is injective. �

Again, by a similar argument, we get the nonunital case.

Theorem 2.7. Let B be a nonunital separable simple continuous scale C*-algebra
such that [1M(B)/B] = 0 in K0(M(B)/B). Let φ, ψ : C(X) → M(B)/B be *-
homomorphisms with φ injective and nonunital.

Then there exists a *-homomorphism σ : C(X) → M(B)/B such that

φ = ψ ⊕ σ.

Moreover, we can require σ to be injective.

3. When Extu is a group

For a unital C*-algebra C, recall that U(C) denotes the unitary group of C, and
U(C)0 denotes the path-connected component of the identity of U(C).

Lemma 3.1. Let C be a unital simple purely infinite C*-algebra, and let p1, p2, ..., pn, q1, q2, ..., qn ∈
C be nonzero projections such that

(1) pj ∼ qj for all 1 ≤ j ≤ n, and
(2) either

n∑

j=1

pj =

n∑

j=1

qj = 1C

or
n∑

j=1

pj 6= 1C 6=
n∑

j=1

qj .
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Then there exists u ∈ U(C)0 such that

upju
∗ = qj

for all 1 ≤ j ≤ n.

Proof. Since C is simple purely infinite, if
∑n
j=1 pj 6= 1C 6=

∑n
j=1 qj then 1C −∑n

j=1 pj ∼ 1C −
∑n
j=1 qj . Hence, we may assume that

n∑

j=1

pj =
n∑

j=1

qj = 1C .

The case n = 1 is clear. So let us assume that n ≥ 2.
Now suppose that p1, p2, ..., pn, q1, q2, ..., qn ∈ C are nonzero projections for which

pj ∼ qj for all j and
∑n

j=1 pj =
∑n

j=1 qj = 1.

Hence, let v ∈ U(C) be such that vpjv
∗ = qj for all j.

Since C is simple purely infinite, let w ∈ U(p1Cp1) be such that v is homotopy
equivalent to w + (1 − p1) in U(C). Hence, u =df v(w

∗ + (1 − p1)) ∈ U(C)0 and for
all j, upju

∗ = vpjv
∗ = qj . �

We thank Professor Huaxin Lin for pointing out the next result and its proof to
us.

Theorem 3.2. Let B be a nonunital separable simple continuous scale C*-algebra,
and let X be a zero dimensional compact metric space.

Suppose that φ, ψ : C(X) → M(B)/B are unital *-monomorphisms such that

K0(φ) = K0(ψ).

Then there exists a unitary U ∈ M(B) such that

φ(f) = π(U)ψ(f)π(U)∗

for all f ∈ C(X).

Proof. Let b ∈ B+ be a strictly positive element with ‖b‖ = 1.
Let {nj}∞j=1 be a sequence of positive integers and {Ei1,i2,...,ik}1≤ij≤nj ,1≤j≤k,1≤k<∞

a collection of clopen subsets of X such that the following statements are true:

(1) For all k, Ei1,i2,...,ik ∩ Ei′1,i′2,...,i′k = ∅ if ij 6= i′j for some j.

(2) X =
⋃n1

i=1Ei.
(3) For all k, Ei1,i2,...,ik =

⋃nk+1

i=1 Ei1,i2,...,ik,i.
(4) For all k, diam(Ei1,...,ik) < 1/100k.

For all i1, i2, ..., ik, let ei1,i2,...,ik ∈ C(X) be the projection given by ei1,...,ik =df

χEi1,i2,...,ik , where

χEi1,i2,...,ik : X → [0, 1]

is the characteristic function of Ei1,i2,...,ik . Let pi1,...,ik , qi1,...,ik ∈ M(B)/B be
projections that are given by pi1,...,ik =df φ(ei1,...,ik) and qi1,...,ik =df ψ(ei1,...,ik).

We claim that there exists a sequence {uk}∞k=1 of unitaries in M(B) and collec-
tions {Ai1,i2,...,ik}1≤ij≤nj ,1≤j≤k,1≤k<∞, {A′

i1,i2,...,ik
}1≤ij≤nj ,1≤j≤k,1≤k<∞,

{Bi1,i2,...,ik}1≤ij≤nj ,1≤j≤k,1≤k<∞ and {B′
i1,i2,...,ik

}1≤ij≤nj ,1≤j≤k,1≤k<∞ in M(B)+
such that the following statements hold:

(1) ‖Ai1,i2,...,ik‖ = ‖A′
i1,i2,...,ik

‖ = ‖Bi1,i2,...,ik‖ = ‖B′
i1,i2,...,ik

‖ ≤ 1 for all
i1, i2, ..., ik.
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(2) Ai1,i2,...,ik ∈ her((A′
i1,i2,...,ik

− 1/2)+) and

Bi1,i2,...,ik ∈ her((B′
i1,i2,...,ik

− 1/2)+) for all i1, i2, ..., ik.
(3) A′

i1,i2,...,ik
⊥ A′

i′1,i
′

2,...,i
′

k
and B′

i1,i2,...,ik
⊥ B′

i′1,i
′

2,...,i
′

k
if ij 6= i′j for some j.

(4) A′
i1,i2,...,ik,i

∈ her(Ai1,i2,...,ik) and B′
i1,i2,...,ik,i

∈ her(Bi1,i2,...,ik) for all
i1, i2, ..., ik, i.

(5) π(Ai1,...,ik) = π(A′
i1,...,ik

) = pi1,...,ik and
π(Bi1,...,ik) = π(B′

i1,...,ik
) = qi1,...,ik for all i1, ..., ik.

(6) For all k, let vk =df ukuk−1...u1. Then vkAi1,...,ilv
∗
k ∈ her(Bi1,i2,...,il) and

v∗kBi1,...,ilvk ∈ her(Ai1,i2,...,il) for all i1, ..., il and for all l ≤ k.
(7) π(vk)pi1,...,ilπ(vk)

∗ = qi1,...,il for all i1, i2, ..., il and for all l ≤ k.
(8) ‖vkb− vk−1b‖, ‖bvk − bvk−1‖ < 1/100k for all k.

The construction will be by induction on k.

Basis step:

Since K0(φ) = K0(ψ), pi ∼ qi for 1 ≤ i ≤ n. Hence, let u′1 ∈ M(B)/B be a
unitary such that u′1pi(u

′
1)

∗ = qi for all i. Since M(B)/B is simple purely infinite
and by Lemma 3.1, we may choose u′1 to be in the connected component of the
identity of the unitary group of M(B)/B.

Let Ai, A
′
i ∈ M(B)+ with ‖Ai‖ = ‖A′

i‖ ≤ 1 be such that Ai ∈ her((A′
i− 1/2)+),

π(Ai) = π(A′
i) = pi for 1 ≤ i ≤ n, and A′

i ⊥ A′
j for i 6= j. Since u′1 ∈ U(M(B)/B)0,

lift u′1 to a unitary u1 ∈ M(B).
Let Bi, B

′
i ∈ M(B)+ be given by Bi =df u1Ai(u1)

∗ and B′
i =df u1A

′
i(u1)

∗, for
1 ≤ i ≤ n.

Then ‖Bi‖ = ‖B′
i‖ ≤ 1 for all i, Bi ∈ her((B′

i − 1/2)+), B′
i ⊥ B′

j for i 6= j, and

π(Bi) = π(B′
i) = qi for all i.

Induction step:

Suppose that {ul}kl=1, {Ai1,...,ik}1≤ij≤nj ,1≤j≤k, {A
′
i1,...,ik

}1≤ij≤nj ,1≤j≤k, {Bi1,...,ik}1≤ij≤nj ,1≤j≤k

and {B′
i1,...,ik

}1≤ij≤nj ,1≤j≤k have been constructed.
By the induction hypothesis, π(vk)pi1,...,ilπ(vk)

∗ = qi1,...,il , vkAi1,...,ilv
∗
k ∈ her(Bi1,...,il),

and v∗kBi1,...,ilvk ∈ her(Ai1,...,il) for all i1, i2, ..., il and for all l ≤ k.
So for all i1, ..., ik, for all i, π(vk)pi1,...,ik,iπ(vk)

∗ ≤ qi1,...,ik .
Let u′i1,...,ik ∈ her(qi1,...,ik) be a unitary such that for all i,

u′i1,i2,...,ikπ(vk)pi1,...,ik,iπ(vk)
∗(u′i1,i2,...,ik)

∗ = qi1,...,ik,i. Since qi1,...,ik(M(B)/B)qi1,...,ik
is simple purely infinite and by Lemma 3.1, we may assume that u′i1,i2,...,ik is in the
connected component of the identity in U(qi1,...,ik(M(B)/B)qi1,...,ik).

Fix ~i =df (i1, i2, ..., ik).
Since u′i1,i2,...,ik ∈ U(qi1,...,ik(M(B)/B)qi1,...,ik)0 and since qi1,...,ik(M(B)/B)qi1,...,ik

is simple purely infinite, by [42], let C~i, D~i ∈ her(qi1,...,ik)SA be such that u′i1,i2,...,ik =

eiC~ieiD~i .
Let C′

~i
, D′

~i
∈ her(Bi1,..,ik)SA be such that π(C′

~i
) = C~i and π(D′

~i
) = D~i.

Let {em} be an approximate unit for B. For all m, let C′
~i
(m) =df (C′

~i
)
1/2
+ (1 −

em)(C′
~i
)
1/2
+ − (C′

~i
)
1/2
− (1 − em)(C′

~i
)
1/2
− and D′

~i
(m) =df (D′

~i
)
1/2
+ (1 − em)(D′

~i
)
1/2
+ −

(D′
~i
)
1/2
− (1 − em)(D′

~i
)
1/2
−
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Hence, C′
~i
(m), D′

~i
(m) → 0 strictly as m→ ∞.

Hence, u~i(m) =df e
iC′

~i
(m)eiD

′

~i
(m) → 1M(B) strictly as m→ ∞.

Note that π(u~i(m)) = u′i1,i2,...,ik + (1 − qi1,i2,...,ik) and u~i(m) ∈ her(Bi1,...,ik)
∼

for all m.
Note also that since Bi1,...,ik ⊥ Bi′1,...,i′k if ij 6= i′j for some j, we must have that

u~i(m)u~i′(m) = u~i′(m)u~i(m) where ~i =df (i1, i2, ..., ik) and ~i′ =df (i′1, i
′
2, ..., i

′
k), for

all ~i,~i′ and for all m.
Choose m1 ≥ 1 large enough such that if uk+1 =df

∏
~i u~i(m1) and vk+1 =df

uk+1vk then ‖bvk+1 − bvk‖, ‖vk+1b − vkb‖ < 1/100k+1.
Now, uk+1 ∈

∏
i1,...,ik

U(her(Bi1,...,ik)
∼)

(And recall that since Bi1,...,ik ⊥ Bi′1,...,i′k if ij 6= i′j for some j, every element of

her(Bi1,...,ik)
∼ commutes with every element of her(Bi′1,...,i′k)

∼ if ij 6= i′j for some

j.)
Hence, for all i1, ..., il, for all l ≤ k, uk+1Bi1,...,ilu

∗
k+1 ⊆ her(Bi1,...,il) and

u∗k+1Bi1,...,iluk+1 ⊆ her(Bi1,...,il).
Hence, for all i1, ..., il, for all l ≤ k, vk+1Ai1,...,ilv

∗
k+1 ⊆ her(Bi1,...,il) and

v∗k+1Bi1,...,ilvk+1 ⊆ her(Ai1,...,il).
Note that π(vk+1)pi1,...,ilπ(vk+1)

∗ = qi1,...,il for all i1, ..., il for all l ≤ k.
For all i1, ..., ik, let {Bi1,..,ik,i}

nk+1

i=1 and {B′
i1,...,ik,i

}
nk+1

i=1 be two collections of
pairwise orthogonal contractive elements of her(Bi1,...,ik)+ such that Bi1,...,ik,i ∈
her((B′

i1,...,ik,i
− 1/2)+) and π(Bi1,...,ik,i) = π(B′

i1,...,ik,i
) = qi1,...,ik,i for all i.

Then defineAi1,...,ik,ik+1
=df v

∗
k+1Bi1,...,ik,ik+1

vk+1 andA′
i1,...,ik,ik+1

=df v
∗
k+1B

′
i1,...,ik,ik+1

vk+1

for all i1, ..., ik+1.

This completes the inductive construction.

Let v =df limk→∞ vk ∈ U(M(B)), where (by the Claim) the limit converges
strictly in M(B).

Therefore, by the Claim, vAi1,...,ikv
∗ ⊆ her(B′

i1,...,ik
) and v∗Bi1,...,ikv ⊆ her(A′

i1,...,ik
).

Therefore, π(v)pi1,...,ikπ(v)∗ = qi1,...,ik for all i1, ..., ik.
Therefore, π(v)φ(f)π(v)∗ = ψ(f) for all f ∈ C(X). �

A similar proof yields the nonunital case.

Theorem 3.3. Let B be a nonunital separable simple continuous scale C*-algebra,
and let X be a zero dimensional compact metric space.

Suppose that φ, ψ : C(X) → M(B)/B are both nonunital *-monomorphisms such
that

K0(φ) = K0(ψ).

Then there exists a unitary U ∈ M(B) such that

φ(f) = π(U)ψ(f)π(U)∗

for all f ∈ C(X).

Proof. Note that since M(B)/B is simple purely infinite and since both φ and ψ
are nonunital,

1 − φ(1) ∼ 1 − ψ(1).

Hence, conjugating with a unitary (and using Proposition 2.5) if necessary, we
may assume that φ(1) = ψ(1).
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Now proceed as in the proof of Theorem 3.2. �

The concepts of null and totally trivial extensions (see 2 and 7) are due to Lin
(e.g., see [26] and [30]), though we have modified the definitions. Early versions of
these concepts were already present in [4].

Recall that in the original BDF case, when X is a compact subset of the
plane, uniqueness of the trivial element of Ext(C(X),K) follows from the Weyl–
von Neumann–Berg Theorem. Recall also that for a simple separable real rank zero
C*-algebra B, M(B) has the classical Weyl–von Neumann Theorem if and only if
M(B) has real rank zero (e.g., [46], [47]; see also [27]). This is perhaps one clue for
the reasons for the assumption that M(B) has real rank zero in [26], [30] and other
early papers.

The next definition is for both the unital and nonunital cases:

Definition 2. Let B be a simple nonunital separable continuous scale C*-algebra.
Let X be a compact metric space and let φ : C(X) → M(B)/B be an essential

extension.

(1) φ is said to be null if there exists a commutative AF-subalgebra C ⊂ M(B)/B
such that Ran(φ) ⊆ C and [p] = 0 for every projection p ∈ C.

(2) Suppose, in addition, that [1M(B)/B] = 0. φ is said to be self-absorbing if
φ⊕ φ ∼ φ.

Theorem 3.4. Let B be a nonunital simple separable C*-algebra with continuous
scale and let X be a compact metric space. Then we have the following:

(1) There exists a null essential extension φ : C(X) → M(B)/B. Moreover,
we can require φ to be nonunital or unital (if, additionally, [1M(B)/B] = 0).

Suppose, in addition, that [1M(B)/B] = 0. Then we have the following:

(2) Every null essential extension C(X) → M(B)/B is self-absorbing.
(3) Any two unital self-absorbing essential extensions C(X) → M(B)/B are

unitarily equivalent. The same holds for any two nonunital self-absorbing
essential extensions.

(4) Every self-absorbing essential extension must be null.

Proof. (1): We firstly construct a nonunital null essential extension. (The construc-
tion for the unital case is similar.) Since M(B)/B is simple purely infinite, choose
a nonzero projection q ∈ M(B)/B such that [q]K0(M(B)/B) = 0 and q is a proper
subprojection of 1M(B)/B. There is a unital embedding O2 →֒ q(M(B)/B)q. By a
classical result of topology, there also exists a unital embedding C(X) →֒ C(K),
where K is the Cantor space. Since there is also a unital embedding C(K) →֒ O2,
the above maps compose to a unital embedding C(X) →֒ q(M(B)/B)q with range
contained in a commutative AF-algebra which is zero in K0(M(B)/B). We thus
get a nonunital null extension of B by C(X).

For the unital case, note that, by assumption, [1M(B)/B] = 0 in K0(M(B)/B).
Proceed as in the argument for the nonunital case, replacing q with 1M(B)/B.

(2) follows from Theorems 3.2 (in the unital case) and 3.3 (in the nonunital case).
(3): We prove the unital case. The proof of the nonunital case is similar.
Suppose that φ and ψ are both unital self-absorbing essential extensions of B by

C(X). By Theorem 2.6, let ρ : C(X) → M(B)/B be a unital (essential) extension
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such that φ ∼ ρ⊕ ψ. Then

φ⊕ ψ

∼ ρ⊕ ψ ⊕ ψ

∼ ρ⊕ ψ (since ψ is self-absorbing)

∼ φ.

By a similar argument, φ⊕ ψ ∼ ψ. Hence, φ ∼ ψ.
(4) follows from (1), (2) and (3). �

We remind the reader that, throughout this paper, when we write “extension”,
we mean essential extension (though often we will add “essential”).

Theorem 3.5. Let B be a nonunital separable simple continuous scale C*-algebra
such that [1M(B)/B] = 0 in K0(M(B)/B).

Let X be a compact metric space.
Then Extu(C(X),B) is a group where the zero element is the class of a null

essential extension. The same holds for Ext(C(X),B).

Proof. Again, we prove the unital case, and the proof of the nonunital case is
similar.

By Remark 1, we have that Extu(C(X),B), with the BDF sum, is a commutative
semigroup. Hence, it suffices to prove that Extu(C(X),B) has a neutral element
and that every element has an inverse.

Note that by Theorem 3.2, all null unital extensions are unitarily equivalent.
Let σ : C(X) → M(B)/B be a null unital extension.
Let φ : C(X) → M(B)/B be an arbitrary unital extension. By Theorem 2.6,

there exists a unital extension φ0 : C(X) → M(B)/B such that

φ = φ0 ⊕ σ.

By Theorem 3.4, σ ⊕ σ ∼ σ. Hence, φ ⊕ σ ∼ φ0 ⊕ σ ⊕ σ ∼ φ0 ⊕ σ ∼ φ. Hence,
[σ] gives a zero element for the semigroup Extu(C(X),B).

Again, let φ : C(X) → M(B)/B be an arbitrary unital extension. We will prove
that [φ] has an inverse in Extu(C(X),B).

By Theorem 2.6, there exists a unital extension φ0 : C(X) → M(B)/B such that
σ ∼ φ0 ⊕ φ. Then [φ0] is the inverse of [φ].

Since φ was arbitrary, Extu(C(X),B) is a group.
The argument for the case of Ext(C(X),B) is exactly the same, with the appro-

priate modifications. �

3.1. Ext is a group. In this short subsection, we briefly diverge from the main ex-
position and describe how Ext can be given group structure even when [1M(B)/B] 6=
0, by following an idea of [9] which generalizes the BDF sum in a natural way.

Definition 3. Let B be a nonunital separable simple continuous scale C*-algebra
and let X be a compact metric space.

Let φ, ψ : C(X) → M(B)/B be two nonunital essential extensions.
Then the (generalized) BDF sum of φ and ψ is given by

Sφ(.)S∗ + Tψ(.)T ∗

where S, T ∈ M(B)/B are two isometries such that SS∗ + TT ∗ ≤ 1.
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Remark 2. One can show, using Proposition 2.5, that, up to unitary equivalence,
the sum defined in Definition 3 is independent of the choices of S and T . Thus,
even without the assumption that [1M(B)/B] = 0, one can give a semigroup structure
to Ext(C(X),B).

We emphasize that the key to Proposition 2.5 (and thus to the well-definedness,
up to unitary equivalence, of this version of the BDF-sum) is that the relevant ex-
tensions are nonunital. In fact, this addition will be well-defined even when C(X)
is replaced by a general separable unital C*-algebra (as in Proposition 2.5). How-
ever, since this paper does not focus on such a general setting, we will not continue
to proceed down this path. We do additionally point out, though, that our proof
of well-definededness of the BDF-sum in the unital setting (i.e., Extu(C(X),B);
see Remark 1) utilizes that C(X) has a one-dimensional *-representation (see the
proof of Proposition 2.4) and thus does not immediately generalize to arbitrary uni-
tal separable C*-algebras.

The unital setting can be tricky and must be dealt with carefully. For example,
for all n ≥ 3, any two nonunital essential extensions of K by Mn are unitarily equiv-
alent (and hence, trivially, any two such which are weakly unitarily equivalent are
unitarily equivalent). On the other hand, there are pairs of unital essential exten-
sions of K by Mn which are weakly unitarily equivalent but not unitarily equivalent.
(See, for example, the discussion in [2] 15.4.1(b) and 15.6.6(a).) Since this paper
focusses on C(X), we will not elaborate further on this.

Many concepts and results (with the same proofs) work with the new sum in the
nonunital setting. Thus, one can remove the hypothesis that [1M(B)/B] = 0 from
Theorems 2.6 and 2.7, Definition 2, and Theorems 3.4, 3.5 and 4.10.

To keep the paper short, we here state only the new version of Theorem 3.5:

Theorem 3.6. Let B be a nonunital separable simple continuous scale C*-algebra
and let X be a compact metric space.

Then, with the addition operation defined as in Definition 3, Ext(C(X),B) is a
group where the zero element is the class of a null essential extension.

Remark 3. Suppose that [1M(B)/B] = 0. Then the group Ext(C(X),B) defined in
Theorem 3.6 (using the generalized BDF-sum in Definition 3) will be isomorphic to
the group Ext(C(X),B) defined in Theorem 3.5 (using the sum in Remark 1 and
which requires the assumption [1M(B)/B] = 0). This is not hard to see.

To save notation, let us denote the first group by Extsum1 and the second group
by Extsum2.

Firstly, note that for any nonunital essential extension φ : C(X) → M(B)/B,
the class of φ in Extsum1 is the same as the class of φ in Extsum2 (both are unitary
equivalence classes), which we denote by [φ].

Hence, we have a natural map (the identity map)

(3.1) Extsum2 → Extsum1 : [φ] 7→ [φ].

This map is definitely bijective.
The sum defined in Remark 1 (for Extsum2) is a special case of the sum defined

in Definition 3 (for Extsum1), and thus, the map in (3.1) preserves addition.
It is not hard to see that the neutral element (or the class of an essential self-

absorbing extension) gets mapped to the neutral element, and thus the map in (3.1)
is a group isomorphism.
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4. Null extensions

In the previous sections, we defined the class of null essential extensions which
are the self-absorbing essential extensions and which give the zero element in Extu
and Ext.

In this section, we show that totally trivial extensions (see Definition 7) with
zero K0 are null extensions.

Recall that for a compact convex set K, Aff(K) is the collection of all real-
valued affine continuous functions on K. With the uniform norm and the natural
order, Aff(K) is an ordered Banach space.

Recall also that Aff(K)++ denotes the functions in Aff(K) which are strictly
positive at every point in K.

Next, we remind the reader about our standing assumption that all quasitraces
are traces.

Let C be a unital stably finite simple C*-algebra. Recall that for all n and for
all c ∈ Mn(C)+, c induces an element

(4.1) ĉ ∈ Aff(T (C))

which is given by

ĉ(τ) =df τ ⊗ Trn(c)

for all τ ∈ T (C), where Trn is the nonnormalized trace on Mn. Note that if c 6= 0
then ĉ ∈ Aff(T (C))++.

Also, to simplify notation, we often write “τ” for τ ⊗ Trn or τ ⊗ TrK, where
TrK is the standard densely defined (norm-) lower semicontinuous trace on K+.
For a nonunital simple σ-unital C*-algebra B with densely defined (norm-) lower
semicontinuous trace τ , we will often write “τ” also for the strictly continuous
extension to M(B)+.

Recall that there is a well-defined ordered group homomorphism

(4.2) χ : K0(C) → Aff(T (C))

which is determined by

χ([p]) =df [̂p] =df p̂

for every projection p ∈ C ⊗ K.
(Finally, recall, from the remarks on notation at the beginning, that when C is

nonunital, we take T (C) be the class of densely defined lower semicontinuous traces
that are normalized at a fixed nonzero positive element of the Pedersen ideal of C.)

Lemma 4.1. Let A be a unital separable simple nonelementary C*-algebra with
real rank zero, stable rank one and weakly unperforated K0 group. Let {pn}

∞
n=1 be

a sequence of nonzero projections in A⊗K such that
∞∑

n=1

p̂n ∈ Aff(T (A)),

and let S be an arbitrary infinite subset of Z+.
Then for all n ∈ S, there exists a subprojection qn ≤ pn such that

∑

n/∈S

p̂n +
∑

n∈S

q̂n ∈ χ(K0(A)+).

(χ is as defined in (4.2).)
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Moreover, we can choose {qn} so that for all n, qn and pn − qn are nonzero
projections.

Note that as
∑∞

n=1 p̂n,
∑

n/∈S p̂n,
∑

n∈S q̂n ∈ Aff(T (A)), these sums all converge
uniformly on T (A).

Proof. Say that S corresponds to the (strictly increasing) subsequence {nk}∞k=1 of
the positive integers.

For all k ≥ 1, let

αk =df inf
τ∈T (A)

τ(pnk) > 0.

(αk > 0 since A is simple.)
Now χ(K0(A)) is uniformly dense in Aff(T (A)). (See, for example, [2] Theorem

6.9.3, [3] III.) Hence, we can find a function f ∈ χ(K0(A)+−{0}) ⊆ Aff(T (A))++

such that

f(τ) <

∞∑

n=1

τ(pn)

and

|f(τ) −
∞∑

n=1

τ(pn)| < α1/10

for all τ ∈ T (A).
Again, since χ(K0(A)) is uniformly dense in Aff(T (A)), we can find a sequence

{rk}∞k=1 of nonzero projections in A⊗K such that

τ(rk) < αk

and

f(τ) +

∞∑

n=1

τ(rk) =

∞∑

n=1

τ(pn)

for all τ ∈ T (A).
Since A⊗K has strict comparison of projections, rk � pnk for all τ ∈ T (A) and

for all k. Hence, for all k, let snk ≤ pnk be a projection such that rk ∼ snk . And
let qnk =df pnk − snk (which is necessarily a nonzero projection in pnk(A⊗K)pnk).

Then
∑

n/∈S

p̂n +
∑

n∈S

q̂n =

∞∑

n=1

p̂n −
∞∑

k=1

r̂k = f ∈ χ(K0(A)+)

as required.
�

For a C*-algebra D, we let Proj(D) denote the projections in D.

Definition 4. Let X be a metric space and let B be a nonunital C*-algebra. A
countable subset Λ ⊂ X × Proj(B) is called a clump over X × B if the following
statements are true:

(1) The set {x ∈ X : ∃p ∈ Proj(B) s.t. (x, p) ∈ Λ} is dense in X.
(2) For all x ∈ X, if (x, p) ∈ Λ for some projection p, then (x, q) ∈ Λ for

infinitely many distinct projections q.
(3) For all (x, p), (y, q) ∈ Λ, if either x 6= y or p 6= q then p ⊥ q.
(4) Let S ⊆ {p ∈ Proj(B) : ∃x ∈ X s.t. (x, p) ∈ Λ}. Then

∑
p∈S p converges

strictly in M(B).
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Let X be a metric space and B a nonunital C*-algebra. Suppose that Λ is a
clump over X × B. We denote

ΛX =df {x ∈ X : ∃p ∈ B s.t. (x, p) ∈ Λ}

and

ΛB =df {p ∈ B : ∃x ∈ X s.t. (x, p) ∈ Λ}.

Let X be a compact metric space, B a nonunital C*-algebra and φ : C(X) →
M(B) a *-homomorphism. Suppose {xn}∞n=1 is a dense sequence in X such that
each term repeats infinitely many times, and suppose that {pn}∞n=1 is a sequence
of nonzero pairwise orthogonal projections in B such that

φ(f) =
∞∑

n=1

f(xn)pn

for all f ∈ C(X), where the sum converges strictly in M(B). Then the set Λφ =df

{(xn, pn) : n ≥ 1} is a clump on X × B, and we say that Λφ is a clump affiliated
with φ. Note that more than one clump can be affiliated with a ∗-homomorphism.

Definition 5. Let X be a metric space and B a nonunital C*-algebra. Suppose
that Λ and Γ are clumps over X × B.

Then Γ is said to be obtained from Λ by a splitting operation if there exist
sequences of points {xk}, {yk} and {zk} in X, and sequences of pairwise orthogonal
projections {pk}, {qk}, {rk} in B such that

(a) Λ0 =df {(xk, pk) : k ≥ 1} ⊆ Λ,
(b) pk = qk + rk for all k,
(c) d(xk, yk), d(xk, zk) → 0, and
(d) Γ = (Λ − Λ0) ∪ {(yk, qk), (zk, rk) : k ≥ 1}.

Note that in the above definition, every projection in ΓB is a subprojection of
some projection in ΛB.

Note also that the above definition implies that
∑

(x,p)∈Λ

p =
∑

(y,q)∈Γ

q,

and for every bounded uniformly continuous function f on X ,
∑

(x,p)∈Λ

f(x)p−
∑

(y,q)∈Γ

f(y)q ∈ B,

where all sums converge strictly in M(B). Since this remark and its conclusion are
used multiple times, we will make a definition.

Definition 6. Let X be a metric space and B a nonunital C*-algebra. Suppose
that Λ,Γ are clumps over X × B.

We write Λ ∼ Γ if ∑

(x,p)∈Λ

p =
∑

(y,q)∈Γ

q,

and for every bounded uniformly continuous function f : X → C,
∑

(x,p)∈Λ

f(x)p−
∑

(y,q)∈Λ

f(y)q ∈ B.
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Lemma 4.2. Let X be a metric space and let B be a nonunital separable simple
C*-algebra with real rank zero, stable rank one and weakly unperforated K0 group.

Let Y, Z ⊂ X be disjoint subsets such that X = Y ∪ Z and dist(Y, Z) = 0.
Suppose that Λ is a clump over X ×B such that ΛX ∩ Y is dense in Y , ΛX ∩Z

is dense in Z, and ∑

(x,p)∈Λ

p̂ ∈ Aff(T (B)).

Then there exists a clump Γ over X × B such that the following statements are
true:

i. Γ is obtained from Λ by a splitting operation.
ii.

∑
(x,p)∈Γ, x∈Y p̂ ∈ χ(K0(B)+).

(See (4.2) for the definition of χ.)
iii. ΛX = ΓX .
iv. Every projection in ΓB is a subprojection of some projection in ΛB.

Proof. We can express Λ as

Λ = {(xn, pn) : n ≥ 1} ∪ {(x′n, p
′
n) : n ≥ 1}

where for all m,n, xm ∈ Y, x′m ∈ Z, pm ⊥ p′n, and if m 6= n then pm ⊥ pn and
p′m ⊥ p′n.

Recall that, by the definition of clump, each term in {xn} repeats infinitely many
times, and each term in {x′n} also repeats infinitely many times.

Since dist(Y, Z) = 0 and since ΛX ∩ Y and ΛX ∩ Z are dense in Y and Z
respectively, we can find subsequences {xnk}, {x′mk} of {xn}, {x′n} respectively
such that d(xnk , x

′
mk) → 0.

Also, since
∑

(x,p)∈Λ p̂ ∈ Aff(T (B)), it follows that

∑

n≥1

p̂n ∈ Aff(T (B)).

By Lemma 4.1, let {qnk} be a sequence of projections in B such that

(1) qnk ≤ pnk for all k,
(2) both qnk 6= 0 and rnk =df pnk − qnk 6= 0 for all k, and
(3)

∑
n6=nk∀k

p̂n +
∑

k≥1 q̂nk ∈ χ(K0(B)+).

Define

Γ =df (Λ − {(xnk , pnk) : k ≥ 1}) ∪ {(xnk , qnk), (x
′
mk
, rnk) : k ≥ 1}.

�

Lemma 4.3. Let B be a separable nonunital C*-algebra and let X be a metric
space. Let Y1, Y2, ..., YN ⊆ X be subsets such that Y1 ∪ Y2 ∪ ... ∪ YN = X. Say that
Λ is a clump over X × B.

Then there exists a clump Γ over X × B such that

(1) Λ ∼ Γ,
(2) ΓX ⊆ Y1 ∪ Y2 ∪ ... ∪ YN ,
(3) ΓX ∩ Yn is dense in Yn for all n, and
(4) ΓB = ΛB.
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Proof. For all 1 ≤ n ≤ N , let {yn,k}∞k=1 be a dense sequence in Yn.
We construct an increasing sequence

Γ1 ⊂ Γ2 ⊂ .... ⊂ Γm ⊂ ...

of finite subsets of (
⋃N
n=1 Yn) × B and a decreasing sequence

Λ1 ⊃ Λ2 ⊃ .... ⊃ Λm ⊃ ...

of clumps over X × B.
The construction is by induction on m.

Basis step m = 1:

Since Λ is a clump, we can find (x1, p1), (x2, p2), ..., (xN , pN ) ∈ Λ such that
(xk, pk) 6= (xl, pl) for all k 6= l and d(xj , yj,1) < 1/10 for all 1 ≤ j ≤ N .

Let

Γ1 =df {(yj,1, pj) : 1 ≤ j ≤ N}

and

Λ1 =df Λ − {(xj , pj) : 1 ≤ j ≤ N}.

Note that Λ1 is also a clump over X × B.

Induction step:

Say that Γm and Λm have already been constructed. We now construct Γm+1

and Λm+1.
By the induction hypothesis, Λm is a clump over X × B. Hence, we can find

{(xj,l, pj,l) : 1 ≤ j ≤ N, 1 ≤ l ≤ m + 1} ⊆ Λm such that (xj,l, pj,l) 6= (xi,k, pi,k) if
(j, l) 6= (i, k). and

d(yj,l, xj,l) <
1

10m+1

for all j, l.
Let

Γm+1 =df Γm ∪ {(yj,l, pj,l) : 1 ≤ j ≤ N, 1 ≤ l ≤ m+ 1}

and

Λm+1 =df Λm − {(xj,l, pj,l) : 1 ≤ j ≤ N, 1 ≤ l ≤ m+ 1}.

Note that Λm+1 is also a clump over X × B.

The inductive construction is complete.

Let

Γ∞ =df

∞⋃

m=1

Γm

and let

Λ∞ =df

∞⋂

m=1

Λm.

Note that Γ∞ is a clump over X × B and (Γ∞)X ∩ Yn is dense in Yn for all n.
If Λ∞ = ∅, then we can take Γ =df Γ∞ and we would be done.
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Suppose that Λ∞ 6= ∅. Let us also assume that Λ∞ is an infinite set. (For the
case where Λ∞ is finite, the argument is the same as that of the infinite case, but
easier.)

Since Λ∞ is an infinite set, let {(x′j , p
′
j) : 1 ≤ j <∞} be an enumeration of Λ∞.

For all j, let zj ∈ {yn,k : n, k ≥ 1} be such that d(x′j , zj) <
1

10j .
Let

Γ =df Γ∞ ∪ {(zj, p
′
j) : 1 ≤ j <∞}.

Then Γ is the required clump over X × B.
�

Recall that by a closed ball, we mean the closed unit ball of Rn for some n. If E
is a closed ball, by Int(E) we mean the interior of E (as a subset of the appropriate
Rn), i.e., the open unit ball of Rn.

We will consider singleton points to be 0-dimensional closed balls, and (as a
simplifying convention for this paper), we will define the interior Int({x0}) of a
singleton {x0} to be {x0}.

The next lemma follows immediately from the definition of finite CW complex,
since we may cut each n-cell into smaller pieces with the desired diameters.

Lemma 4.4. Let X be a finite CW complex with a metric, and let ǫ > 0 be given.
Then we can find a collection {Ln}Nn=1 of pairwise disjoint subsets of X such

that

(a) diameter(Ln) < ǫ, for all n,

(b) X =
⋃N
n=1 Ln, and

(c) for all n, there exists a closed ball En and a continuous surjection ρn :
En → Ln such that ρn(Int(En)) = Ln and ρn|Int(En) : Int(En) → Ln is a
homeomorphism.

A compact metric space X is called a compact cell if there exists a closed ball E,
an open dense subset X0 ⊆ X , and a continuous surjection ρ : E → X such that
ρ(Int(E)) = X0 and the restriction map ρ|Int(E) : Int(E) → X0 is a homeomor-

phism. Sometimes, we denote X0 by Int(X).

Lemma 4.5. Let X be a compact cell with a metric, and let ǫ > 0 be given.
Then we can find a collection {Ln}Nn=1 of pairwise disjoint subsets of Int(X)

such that

(a) diameter(Ln) < ǫ, for all n,

(b) X =
⋃N
n=1 Ln, and

(c) for all n, there exists a closed ball En and a continuous surjection ρn :
En → Ln such that ρn(Int(En)) = Ln and ρn|Int(En) : Int(En) → Ln is a
homeomorphism.

Lemma 4.6. Let X be a compact cell with a metric and let B be a nonunital sepa-
rable simple C*-algebra with real rank zero, stable rank one and weakly unperforated
K0 group.

Let ǫ > 0 be given.
Let Λ be a clump over X × B such that

∑

(x,p)∈Λ

p̂ ∈ χ(K0(B)).
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Then there exists a clump Γ over X ×B and there exists a sequence {Ln}Nn=1 of
pairwise disjoint subsets of Int(X) such that the following statements are true:

i. X =
⋃N
n=1 Ln.

ii. diam(Ln) < ǫ, for all n.
iii. For all n, there exists a closed ball E and there exists a continuous surjection

ρ : E → Ln such that ρ(Int(E)) = Ln and ρ|Int(E) : Int(E) → Ln is a
homeomorphism.

iv. Λ ∼ Γ.
v. For all n, ΓX ∩ Ln is a dense subset of Ln.

vi. ΓX ⊆
⋃N
n=1 Ln.

vii. Every projection in ΓB is a subprojection of a projection in ΛB.
viii. For all n,

∑
(x,p)∈Γ, x∈Ln

p̂ ∈ χ(K0(B)).

Proof. Apply Lemma 4.5 to X and ǫ to get a collection {Ln}Nn=1 of pairwise disjoint
subsets of Int(X), a collection {En}Nn=1 of closed balls, and a collection {ρn}Nn=1

of continuous maps that satisfy conditions (a)-(c) of Lemma 4.5.

By applying Lemma 4.3 to X and {Ln}Nn=1, we may assume that ΛX ⊆
⋃N
n=1 Ln

and for all n, ΛX ∩ Ln is dense in Ln.

Since X is connected and since X =
⋃N
n=1 Ln, there exists a finite sequence

{mk}
M
k=1 of positive integers such that

(a) {mk : 1 ≤ k ≤M} = {1, 2, 3, ..., N},
(b) mM = N , and
(c) for all 1 ≤ k ≤M − 1, dist(Lmk , Lmk+1

) = 0.

We now repeatedly apply Lemma 4.2. In particular, we will apply Lemma 4.2
M − 1 times to get a sequence Λ1,Λ2, ...,ΛM of clumps over X × B.

This is the procedure:
Let Λ1 =df Λ.
Let 1 ≤ k ≤ M − 1. Suppose that we have obtained Λk. We apply Lemma 4.2

with Y = Lmk and Z = Lmk+1
to obtain Λk+1.

Note that by Lemma 4.2, (Λk+1)X = (Λk)X , and every projection in (Λk+1)B is
a subprojection of a projection in (Λk)B.

Now let
Γ =df ΛM .

Then, by construction, Γ is a clump over X × B, Γ ∼ Λ, ΓX = ΛX , and every
projection in ΓB is a subprojection of some projection in ΛB.

Also, by our construction, for all 1 ≤ n ≤ N − 1,
∑

(x,p)∈Γ, x∈Ln

p̂ ∈ χ(K0(B)).

But by hypothesis and since splitting operations result in ∼ equivalent clumps,
we have that

N∑

n=1

∑

(x,p)∈Γ, x∈Ln

p̂ =
∑

(x,p)∈Γ

p̂ ∈ χ(K0(B)).

Hence, since χ(K0(B)) is a group,

∑

(x,p)∈Γ, x∈LN

p̂ =
∑

(x,p)∈Γ

p̂−
N−1∑

n=1

∑

(x,p)∈Γ, x∈Ln

p̂ ∈ χ(K0(B)).
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�

Lemma 4.7. Let X be a finite CW complex with a metric and let B be a nonunital
separable simple C*-algebra with real rank zero, stable rank one and weakly unper-
forated K0 group.

Let ǫ > 0 be given.
Let Λ be a clump over X × B such that for every connected component C ⊆ X,

∑

(x,p)∈Λ, x∈C

p̂ ∈ χ(K0(B)).

Then there exists a clump Γ over X ×B and there exists a sequence {Ln}Nn=1 of
pairwise disjoint subsets of X such that the following statements are true:

i. X =
⋃N
n=1 Ln.

ii. diam(Ln) < ǫ, for all n.
iii. For all n, there exists a closed ball E and there exists a continuous surjection

ρ : E → Ln such that ρ(Int(E)) = Ln and ρ|Int(E) : Int(E) → Ln is a
homeomorphism.

iv. Λ ∼ Γ.
v. For all n, ΓX ∩ Ln is a dense subset of Ln.

vi. ΓX ⊆
⋃N
n=1 Ln.

vii. Every projection in ΓB is a subprojection of a projection in ΛB.
viii. For all n,

∑
(x,p)∈Γ, x∈Ln

p̂ ∈ χ(K0(B)).

Proof. The proof is very similar to the proof of Lemma 4.6, where Lemma 4.5 is
replaced with Lemma 4.4 and where we work in each connected component of X .
(Note that X has finitely many connected components.) �

Definition 7. Let B be a nonunital separable C*-algebra, and let X be a compact
metric space.

An essential extension φ : C(X) → M(B)/B is totally trivial if there exist a
strictly converging properly increasing sequence {en}∞n=1 of projections in B, and a
dense sequence {xn}∞n=1 in X, with each term repeating infinitely many times, such
that

φ = π ◦ ψ

where ψ : C(X) → M(B) is the *-homomorphism given by ψ(f) =df

∑∞
n=1 f(xn)(en−

en−1), and where π : M(B) → M(B)/B is the quotient map. (Here, e0 =df 0.)

Sometimes, to save writing, we call a *-homomorphism ψ : C(X) → M(B) a
totally trivial extension if it has the form in Definition 7 above. Note that such a ψ
has an affiliated clump over X × B. (See the second paragraph after Definition 4.)

We require the following result, parts of which were first proven by Lin in 1991:

Theorem 4.8. Let B be a nonunital separable simple continuous scale C*-algebra
with real rank zero, stable rank one, and weakly unperforated K0 group. Then we
have the following:

(1) (K0(M(B)),K0(M(B))+) = (Aff(T (B)), Aff(T (B))++).
(2) For any two projections P,Q ∈ M(B)−B, P ∼ Q if and only if τ(P ) = τ(Q)

for all τ ∈ T (B).
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(3) For any f ∈ Aff(T (B))++, there exists k ≥ 1 and a projection P ∈ Mk ⊗

M(B) − Mk ⊗ B such that P̂ = f . Moreover, if f(τ) < τ(1M(B)) for all
τ ∈ T (B), then we can choose P ∈ M(B) − B.

(4) The six-term exact sequence (for the ideal B ⊂ M(B)) induces a short exact
sequence

0 → Aff(T (B))/χ(K0(B)) → K0(M(B)/B) → K1(B) → 0.

Proof. The first three statements were proven in [25]. A more widely available
version is [35] Theorem 1.4. (See also [9] and [37].)

The last statement is proven in [35] Corollary 1.5. �

Recall that for a nonunital C*-algebra B, π : M(B) → M(B)/B is the standard
quotient map.

The next lemma, once more, works for both the nonunital and unital cases.

Lemma 4.9. Let X be a finite CW complex and let B be a nonunital separable
simple continuous scale C*-algebra with real rank zero, stable rank one and weakly
unperforated K0 group.

Suppose that φ : C(X) → M(B) is a totally trivial essential extension with

K0(π ◦ φ) = 0.

Then there exists a commutative AF subalgebra D ⊆ M(B) with 1D = φ(1C(X))
and D ∩ B = {0} such that

i. every element of Ran(φ) commutes with every element of D,
ii. Ran(π ◦ φ) ⊆ π(D), and
iii. p̂ ∈ χ(K0(B)), for every projection p ∈ D.

In particular, π ◦ φ is a null essential extension.

Proof. Since X is metrizable, let us assume that there is a metric on X .
Replacing B with φ(1)Bφ(1) if necessary, we may assume that and φ(1) = 1M(B).
Let Λφ be a clump affiliated with φ. Note that by Theorem 4.8, the hypoth-

esis that K0(π ◦ φ) = 0 implies that for every connected component C ⊆ X ,∑
(x,p)∈Λφ,x∈C

p̂ ∈ χ(K0(B)).

We will construct an increasing sequence

D1 ⊆ D2 ⊆ D3 ⊆ ....

of finite dimensional commutative unital C*-subalgebras of M(B) for which the
following statements are true:

(1) For every n ≥ 1, there exist a collection {Xn,k}
Nn
k=1 of pairwise disjoint

subsets of X such that X =
⋃Nn
k=1Xn,k.

(2) For all n, k, diam(Xn,k) <
1
n .

(3) For all n, k, there exists an l such that Xn+1,k ⊆ Xn,l.
(4) For all n, k, there exists a closed ball En,k and a continuous surjection ρn,k :

En,k → Xn,k such that ρn,k(Int(En,k)) = Xn,k and the map ρn,k|Int(En,k) :
Int(En,k) → Xn,k is a homeomorphism.

(5) For all n, there exist projections Pn,1, Pn,2, ..., Pn,Nn ∈ M(B) − B which
are the minimal projections of Dn. For all n, k, Pn,k commutes with every

element of Ran(φ), and P̂n,k ∈ χ(K0(B)).
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(6) For every n, there exists a totally trivial unital extension

φn : C(X) → M(B)

with an affiliated clump Λφn such that φn(f)− φ(f) ∈ B for all f ∈ C(X),
and every projection in (Λφn)B is a subprojection of a projection in (Λφ)B.
Moreover, for all n, k, Pn,k commutes with every element of Ran(φn).

(7) For every n, k, the kernel of the *-homomorphism

C(X) → Pn,kM(B)Pn,k : f 7→ Pn,kφn(f)Pn,k = φn(f)Pn,k

is C0(X − Xn,k). In other words, the above *-homomorphism induces a
unital *-monomorphism

φn,k : C(Xn,k) → Pn,kM(B)Pn,k

where for all f ∈ C(X),

φn,k(f |Xn,k) = φn(f)Pn,k.

φn,k will be a unital totally trivial extension of Pn,kBPn,k by C(Xn,k)
such that K0(π ◦ φn,k) = 0.

(8) For every n, k, there exists a totally trivial unital extension

ψn,k : C(En,k) → Pn,kM(B)Pn,k

with K0(π ◦ ψn,k) = 0 such that for all f ∈ C(X),

π ◦ ψn,k(f ◦ ρn,k) = π ◦ φn,k(f |Xn,k).

(9) For all n, k, there is a clump Λψn,k on En,k×Pn,kBPn,k affiliated with ψn,k
such that (Λψn,k)B ⊆ (Λφn)B, and thus, every projection in (Λψn,k)B is a
subprojection of some projection in (Λφ)B.

We denote the above statements by “(*)”.
The construction (and proof of the statements in (*)) will be by induction on n.

Basis step n = 1.

Since X is a finite CW complex, X can be partitioned X =
⊔J
j=1Kj where for all

j, Kj is clopen and connected. By hypothesis, φ̂(χKj ) ∈ χ(K0(B)) for all j. (Here,
χKj is the characteristic function on Kj.) Hence, replacing B with φ(χKj )Bφ(χKj )
(1 ≤ j ≤ J) if necessary, we may assume that X is connected. (Note that for all j,
M(φ(χKj )Bφ(χKj )) = φ(χKj )M(B)φ(χKj ).)

The rest of the Basis step essentially follows immediately from Lemma 4.7. More
precisely, we proceed as follows:

We have that Λφ is a clump over X × B and, by hypothesis,
∑

(x,p)∈Λφ
p̂ ∈

χ(K0(B)). Hence, by Lemma 4.7, let Λ′ be a clump over X ×B and let {X1,k}
N1

k=1

be a collection of pairwise disjoint subsets of X such that the following statements
are true:

i. X =
⋃N1

k=1X1,k.

ii. diam(X1,k) <
1
2 for all 1 ≤ k ≤ N1.

iii. For all 1 ≤ k ≤ N1, there exist a closed ball E1,k and a continuous sur-

jection ρ1,k : E1,k → X1,k such that ρ1,k(Int(E1,k)) = X1,k and the map
ρ1,k|Int(E1,k) : Int(E1,k) → X1,k is a homeomorphism.
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iv. Λ′ ∼ Λφ.
v. For all k, Λ′

X ∩X1,k is dense in X1,k.

vi. Λ′
X ⊆

⋃N1

k=1X1,k.
vii. Every projection in Λ′

B is a subprojection of a projection in Λφ.
viii. For all k,

∑
(x,p)∈Λ′, x∈X1,k

p̂ ∈ χ(K0(B)).

Let φ1 : C(X) → M(B) be the totally trivial unital extension given by

φ1(f) =df

∑

(x,p)∈Λ′

f(x)p

for all f ∈ C(X).
Since Λ′ is a clump affiliated with φ1, we define

Λφ1 =df Λ′.

Since Λ ∼ Λ′,

π ◦ φ1 = π ◦ φ,

and since Λφ1 = Λ′, every projection in (Λφ1)B is a subprojection of a projection
in Λφ.

For all 1 ≤ k ≤ N1, let

P1,k =df

∑

(x,p)∈Λ′, x∈X1,k

p ∈ M(B),

where the sum converges strictly. Hence, P1,k is a projection in M(B) such that

P1,k commutes with every element of Ran(φ) ∪ Ran(φ1), P̂1,k ∈ χ(K0(B)), and∑N1

k=1 P1,k = 1M(B). Note that by Definition 4 (2), P1,k /∈ B.
Moreover, it is clear that for all 1 ≤ k ≤ N1, the kernel of the map

C(X) → P1,kM(B)P1,k : f 7→ φ1(f)P1,k

is C0(X −X1,k), and we get an induced totally trivial unital extension

φ1,k : C(X1,k) → P1,kM(B)P1,k

where for all f ∈ C(X),

φ1,k(f |X1,k
) = φ1(f)P1,k.

And by Theorem 4.8 (2), since X1,k is path-connected, the range of K0(φ1,k) is the
subgroup of K0(M(B)) generated by [P1,k]. Hence, K0(π ◦ φ1,k) = 0.

For all 1 ≤ k ≤ N1, let

ψ1,k : C(E1,k) → P1,kM(B)P1,k

be given by:

ψ1,k(f) =df

∑

y=(ρ1,k)−1(x), x∈X1,k, (x,p)∈Λ′

f(y)p

for all f ∈ C(E1,k).
Note that ψ1,k is a totally trivial unital extension of P1,kBP1,k by C(E1,k),

ψ1,k(f ◦ ρ1,k) = φ1,k(f)

for all f ∈ C(X1,k),

ψ1,k(f ◦ ρ1,k) = φ1(f)P1,k

for all f ∈ C(X), and K0(π ◦ ψ1,k) = 0.
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Let
Λψ1,k

=df {(y, p) ∈ Int(E1,k) × B : (ρ1,k(y), p) ∈ Λ′}.

Then Λψ1,k
is a clump affiliated with ψ1,k such that (Λψ1,k

)B ⊆ (Λφ1)B. In
particular, every projection in (Λψ1,k

)B is a subprojection of a projection in Λφ.
Let

D1 =df C
∗(P1,1, P1,2, ..., P1,N1) = CP1,1 + CP1,2 + ...+ CP1,N1

∼= C
N1 .

This completes the basis step.

Induction step.

Suppose that Dn, {Xn,k}
Nn
k=1, {En,k}

Nn
k=1, {ρn,k}

Nn
k=1, {Pn,k}

Nn
k=1, φn, Λφn , {φn,k}

Nn
k=1,

{ψn,k}
Nn
k=1, and {Λψn,k}

Nn
k=1 have been constructed to satisfy the statements in (*).

We now construct Dn+1, {Xn+1,k}
Nn+1

k=1 , {En+1,k}
Nn+1

k=1 , {ρn+1,k}
Nn+1

k=1 , {Pn+1,k}
Nn+1

k=1 ,

φn+1, Λφn+1, {φn+1,k}
Nn+1

k=1 , {ψn+1,k}
Nn+1

k=1 , and {Λψn+1,k
}
Nn+1

k=1 .
By the induction hypothesis, for all n, k (with 1 ≤ k ≤ Nn), ρn,k : En,k →

Xn,k is a continuous surjection such that ρn,k(Int(En,k)) = Xn,k and the map
ρn,k|Int(En,k) : Int(En,k) → Xn,k is a homeomorphism.

Also, by the induction hypothesis, for all n, k (1 ≤ k ≤ Nn),

ψn,k : C(En,k) → Pn,kM(B)Pn,k = M(Pn,kBPn,k)

is a totally trivial unital extension of Pn,kBPn,k by C(En,k), Λψn,k is a clump
over En,k × Pn,kBPn,k with (Λψn,k)B ⊆ (Λφn)B and such that every projection in
(Λψn,k)B is a subprojection of a projection in (Λφ)B, and

∑

(x,p)∈Λψn,k

p̂ ∈ χ(K0(B)).

Hence, by Lemma 4.6, for all 1 ≤ k ≤ Nn, let Γn+1,k be a clump over En,k ×

Pn,kBPn,k and let {Egn+1,k,l}
Mk

l=1 be a collection of pairwise disjoint subsets of

Int(En,k) such that the following statements are true:

i. En,k =
⋃Mk

l=1E
g
n+1,k,l.

ii. For all l, let Xn+1,k,l =df ρn,k(E
g
n+1,k,l) ⊆ Xn,k ⊆ X .

Then diam(Xn+1,k,l) <
1

n+10 .
iii. For all k, l, there exist a closed ball En+1,k,l and a continuous surjection

ρ′n+1,k,l : En+1,k,l → Egn+1,k,l ⊆ En,k such that ρ′n+1,k,l(Int(En+1,k,l)) =

Egn+1,k,l and the map ρ′n+1,k,l|Int(En+1,k,l) : Int(En+1,k,l) → Egn+1,k,l is a
homeomorphism.

iv. For all k, Λψn,k ∼ Γn+1,k.
v. For all k, l, (Γn+1,k)En,k ∩ E

g
n+1,k,l is a dense subset of Egn+1,k,l.

vi. For all k, (Γn+1,k)En,k ⊆
⋃Mk

l=1E
g
n+1,k,l.

vii. Every projection in (Γn+1,k)B is a subprojection of a projection in (Λψn,k)B.
Hence, every projection in (Γn+1,k)B is a subprojection of a projection in
(Λφn)B ∪ (Λφ)B.

viii. For all k, l,
∑

(x,p)∈Γn+1,k, x∈E
g
n+1,k,l

p̂ ∈ χ(K0(B)).
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For all n, k, l, let

ρn+1,k,l : En+1,k,l → Xn,k

be the continuous map given by

ρn+1,k,l =df ρn,k ◦ ρ
′
n+1,k,l.

Recall that ρ′n+1,k,l(Int(En+1,k,l)) = Egn+1,k,l ⊆ Int(En,k), ρ
′
n+1,k,l|Int(En+1,k,l) :

Int(En+1,k,l) → Egn+1,k,l is a homeomorphism, ρn,k(Int(En,k)) = Xn,k, ρn,k|Int(En,k) :

Int(En,k) → Xn,k is a homeomorphism, and that Xn+1,k,l =df ρn,k(E
g
n+1,k,l).

Hence, since En+1,k,l is compact, we have that ρn+1,k,l(En+1,k,l) = Xn+1,k,l,

and ρn+1,k,l : En+1,k,l → Xn+1,k,l is a continuous surjection. We also have that
ρn+1,k,l(Int(En+1,k,l)) = Xn+1,k,l and that the restricted map ρn+1,k,l|Int(En+1,k,l) :
Int(En+1,k,l) → Xn+1,k,l is a homeomorphism.

We henceforth view ρn+1,k,l as a map from En+1,k,l to Xn+1,k,l, i.e., we view
ρn+1,k,l as a map of the form

ρn+1,k,l : En+1,k,l → Xn+1,k,l,

which is continuous and surjective.
Moreover, {Xn+1,k,l}

Mk

l=1 is a collection of pairwise disjoint subsets of Xn,k such
that

Mk⋃

l=1

Xn+1,k,l = Xn,k.

Hence, {Xn,k,l}
Mk

l=1

Nn

k=1 is a collection of pairwise disjoint subsets of X such that

X =

Nn⋃

k=1

Mk⋃

l=1

Xn,k,l.

Now for all 1 ≤ k ≤ Nn, for all 1 ≤ l ≤ Mk, let Pn+1,k,l ∈ M(B) − B be the
projection given by

Pn+1,k,l =df

∑

(x,p)∈Γn+1,k, x∈E
g
n,k,l

p.

Then for all k, l,

Pn+1,k,l ≤ Pn,k,

Pn+1,k,l commutes with every element of Ran(φ) ∪Ran(ψn,k), and

P̂n+1,k,l ∈ χ(K0(B)).

Moreover, for every k,

Pn,k =

Mk∑

l=1

Pn+1,k,l,

and thus,

1M(B) =

Nn∑

k=1

Mk∑

l=1

Pn+1,k,l.

Let

φn+1 : C(X) → M(B)
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be the unital *-monomorphism given by

φn+1(f) =df

∑

x=ρn,k(y), (y,p)∈Γn+1,k, 1≤k≤Nn

f(x)p

for all f ∈ C(X).
Then

π ◦ φ = π ◦ φn+1,

and for all k, l, Pn+1,k,l commutes with every element of Ran(φn+1).
Define

Λφn+1 =df {(x, p) : ∃1 ≤ k ≤ Nn∃y ∈ En,k s.t. x = ρn,k(y) and (y, p) ∈
Nn⋃

k=1

Γn+1,k}.

Then Λφn+1 is a clump over X × B that is affiliated with φn+1, and every pro-
jection in (Λφn+1)B is a subprojection of a projection in (Λφ)B.

For every k, l, since the restriction map ρn,k|Eg
n+1,k,l

: Egn+1,k,l → Xn+1,k,l is a

homeomorphism, the kernel of the map

C(X) → Pn+1,k,lM(B)Pn+1,k,l : f 7→ Pn+1,k,lφn+1(f)Pn+1,k,l = φn+1(f)Pn+1,k,l

is C0(X −Xn+1,k,l). And thus, the above map induces a unital *-monomorphism

φn+1,k,l : C(Xn+1,k,l) → Pn+1,k,lM(B)Pn+1,k,l.

Also, for all k, l, let

ψn+1,k,l : C(En+1,k,l) → Pn+1,k,lM(B)Pn+1,k,l

be the totally trivial unital extension that is given by

ψn+1,k,l(f) =df

∑

(y,p)∈Γn+1,k, x∈Int(En+1,k,l), ρ′n+1,k,l(x)=y

f(x)p,

for all f ∈ C(En+1,k,l).
Clearly, for all f ∈ C(X),

π ◦ ψn+1,k,l(f ◦ ρn+1,k,l) = π ◦ φn+1,k,l(f |Xn+1,k,l
).

Also, by Theorem 4.8 (2), sinceXn+1,k,l is path-connected, the range ofK0(φn+1,k,l)
is the subgroup of K0(M(B)) generated by [Pn+1,k,l]. Hence, K0(π ◦ φn+1,k,l) = 0.
Similarly, K0(π ◦ ψn+1,k,l) = 0.

For every k, l, let

Λψn+1,k,l
=df {(x, p) : x ∈ Int(En+1,k,l) and ∃y s.t. ρ′n+1,k,l(x) = y and (y, p) ∈ Γn+1,k}.

Then Λψn+1,k,l
is a clump over En+1,k,l × Pn+1,k,lBPn+1,k,l which is affiliated

with ψn+1,k,l. Moreover, (Λψn+1,k,l
)B ⊆ (Λφn+1)B, and hence, every projection in

Λψn+1,k,l
is a subprojection of some projection in Λφ.

Let Dn+1 ⊆ M(B) be the commutative finite dimensional unital C*-subalgebra
given by

Dn+1 =df C
∗(Pn+1,k,l : 1 ≤ k ≤ Nn, 1 ≤ l ≤Mk).

Now, in a consistent manner, relabel

{Xn+1,k,l}
Nn
k=1

Mk

l=1, {En+1,k,l}
Nn
k=1

Mk

l=1, {ρn+1,k,l}
Nn
k=1

Mk

l=1, {Pn+1,k,l}
Nn
k=1

Mk

l=1, {φn+1,k,l}
Nn
k=1

Mk

l=1,

{ψn+1,k,l}
Nn
k=1

Mk

l=1
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with

{Xn+1,k}
Nn+1

k=1 , {En+1,k}
Nn+1

k=1 , {ρn+1,k}
Nn+1

k=1 , {Pn+1,k}
Nn+1

k=1 , {φn+1,k}
Nn+1

k=1 , {ψn+1,k}
Nn+1

k=1

respectively.

This completes the inductive construction.

Let D ⊆ M(B) be the commutative AF subalgebra given by

D =df

∞⋃

n=1

Dn.

Then D has the required properties. Firstly, property i. of Lemma 4.9 follows
from (*) statement (5).

Next, property ii. of Lemma 4.9 follows from (*) statements (2), (5), (6) and
(7). In more detail, let f ∈ C(X) and ǫ > 0 be given. By (*) statement (2), choose
n ≥ 1 sufficiently large so that for all k, for all x, y ∈ Xn,k, |f(x) − f(y)| < ǫ.
Therefore, by (*) statement (7), for all k, φn(f)Pn,k is norm within ǫ of a scalar
multiple of Pn,k. Hence, by (*) statements (5) and (6), for all k, π ◦ φ(f) is norm
within ǫ of an element of π(Dn) ⊆ π(D). Since ǫ was arbitrary, π ◦ φ(f) ∈ π(D).

Finally, property iii. of Lemma 4.9, follows from (*) statement (5).
�

The last result, once more, works in both the unital and nonunital cases.

Theorem 4.10. Let X be a finite CW complex and let B be a nonunital separable
simple continuous scale C*-algebra with real rank zero, stable rank one and weakly
unperforated K0 group.

Suppose that φ : C(X) → M(B)/B is an essential extension.
Then the following statements are equivalent:

(1) φ is a null extension.
(2) φ is a totally trivial extension with K0(φ) = 0.
(3) If, in addition, [1M(B)/B] = 0 then φ is self-absorbing, i.e., φ⊕ φ ∼ φ.

Proof. Since X is metrizable, let us assume that there is a metric on X .
The equivalence of (1) and (3) follows from Theorem 3.4.
That (2) implies (1) follows from Lemma 4.9.
All that remains is to prove that (1) implies (2). Say that φ : C(X) → M(B)/B

is a null extension. It suffices to prove that φ is totally trivial.
One can easily construct a totally trivial extension ψ : C(X) → M(B)/B with

K0(ψ) = 0 such that ψ is unital if and only if φ is unital. Here is a sketch of the
proof: Suppose that φ is unital. (The proof of the nonunital case is similar and
easier.) Since K0(φ) = 0, [1M(B)/B] = 0 in K0(M(B)/B). Hence, by Theorem

4.8, 1̂M(B) ∈ χ(K0(B)). Say that X is a disjoint union X =
⊔N
j=1Xj where

each Xj is path-connected. By Theorem 4.8, let P1, P2, ..., PN ∈ M(B) − B be

pairwise orthogonal projections such that for all j, P̂j ∈ χ(K0(B)), and 1M(B) =
P1 + P2 + ...+ PN . Since B has real rank zero, for all j, let {pj,l}∞l=1 be a sequence
of pairwise orthogonal nonzero projections in B such that Pj =

∑∞
l=1 pj,l, where

the sum converges strictly. Also, for all j, let {xj,l}
∞
l=1 be a dense sequence in Xj
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such that each term repeats infinitely many times. Then ψ1 : C(X) → M(B) : f 7→∑N
j=1

∑∞
l=1 f(xj,l)pj,l induces a totally trivial unital extension. Also, since each Xj

is path-connected, if we define ψ =df π ◦ ψ1 then, by Theorem 4.8, we have that
K0(ψ) = 0.

By Lemma 4.9, ψ is a null extension. Hence, by Theorem 3.4, ψ is self-absorbing,
i.e.,

ψ ⊕ ψ ∼ ψ.

But since φ is a null extension, by Theorem 3.4, φ is also self-absorbing, i.e.,

φ⊕ φ ∼ φ.

By Theorems 2.6 and 2.7, there exists a *-monomorphism σ : C(X) → M(B)/B
where σ is unital if and only if φ is unital such that

φ ∼ σ ⊕ ψ.

Hence,
φ⊕ ψ ∼ σ ⊕ ψ ⊕ ψ ∼ σ ⊕ ψ ∼ φ.

By a similar argument
φ⊕ ψ ∼ ψ.

Hence,
φ ∼ ψ.

Hence, since ψ is totally trivial, φ is totally trivial, as required. �

In [41], we will show that under the hypotheses of Theorem 4.10, the conditions in
the conclusion of Theorem 4.10 are each equivalent to the condition thatKL(φ) = 0.
We will then use this to classify all extensions of the form

0 → B → D → C(X) → 0.
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