NONSTABLE ABSORPTION

P. W. NG

ABSTRACT. Let X be a finite CW complex and B be a nonunital separable
simple C*-algebra with continuous scale. We show that Ext(C(X),B) is a
group, and we also characterize the neutral element of Ext(C(X), B), with
further information when B has additional regularity properties. We have
similar results for the unital version Ext, (C(X), B).

In the process, we prove some results involving nonstable absorption, some
of which work for general (not necessarily simple) purely infinite corona alge-
bras.

1. INTRODUCTION

Motivated by the problem of classifying essential normal operators on a separable
infinite dimensional Hilbert space, Brown, Douglas and Fillmore (BDF) classified
all C*-algebra extensions of the form

0-K—-D—-C(X)—0

where K is the C*-algebra of compact operators on a separable infinite dimensional
Hilbert space, and X is a compact metric space. This was a starting point for
much interesting phenomena in operator theory (including the important stable
uniqueness theorems of Classification Theory; [6], [33]), and has led to the rapid
development of extension theory with many effective techniques (especially from
KK theory) to compute the Ext-group Ezt(A, B).

However, in general, Ext(A, B) does not capture all unitary equivalence classes
of extensions. Among other things, there can be many nonunitarily equivalent
trivial extensions, and also, an extension ¢ with [¢] = 0 in Ext(C(X), B) need not
be trivial. (For these and other shortcomings, see, for example, [26], [29], and [30].)

One of the implicit reasons for the success of the original BDF Theory is that
B(l3) and the Calkin algebra B(l2)/K have particularly nice structure. Among
other things, B(l3) has strict comparison and real rank zero (it is a von Neumann
algebra), and B(l2)/K is simple purely infinite. (For example, the BDF—Voiculescu
result that all essential extensions are absorbing would not be true without the
simplicity of B(l2)/K.)

One would like to single out a class of corona algebras which generalize nice
features from B(l3)//C, with the goal of developing operator theory and extension
theory in an agreeable context, among other things generalizing further the theo-
ries developed by BDF, Voiculescu and other workers. Such thoughts were clearly
present! in the early literature.

We thank the referee for many detailed and helpful comments.
las a proper subset
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Simple purely infinite corona algebras have been completely characterized. Re-
call that a simple C*-algebra has continuous scale if, roughly speaking, it has a
sequential approximate identity which is a “Cauchy sequence”. More precisely:

Definition 1. Let B be a nonunital separable simple C*-algebra. Then B has
continuous scale if B has an approzimate identity {e,}°2; such that eni1e, = €,
for all n, and for every b € By — {0}, there exists an N > 1 such that for all
m>n> N,

€m — €n = b.

(See, for example, [24].)

In the above, < is a subequivalence relation for positive elements (generalizing
Murray—von Neumann subequivalence for projections) given as follows: for a C*-
algebra D, for a,d € D4, a = d if there exists a sequence {z,} in D such that
rpdx), — a.

Theorem 1.1. Let B be a nonunital separable simple nonelementary C*-algebra.
Then the following statements are equivalent:

(1) B has continuous scale.

(2) M(B)/B is simple.

(3) M(B)/B is simple and purely infinite.
(124], [34]; see also [7], [45])

We note that purely infinite simple C*-algebras have real rank zero ([47]). We
further note that for a general nonunital separable simple C*-algebra D, an exten-
sion of D by C(X) can often be decomposed in a way where one piece sits inside
the minimal ideal of M(D)/D, and this piece is essentially an extension of a sim-
ple continuous scale algebra (e.g., [30]; see also [18]). Thus, simple purely infinite
corona algebras are not just a very nice context, but are part of the general picture.

Nonetheless, difficulties still arise that are not present in the case of B(l2)/K.
For example, for simple continuous scale B, the K-theory of M(B) and M(B)/B
can be much more complicated than that of B(l2) and B(l2)/K. Moreover, in the
case where B is nonstable, we do not have infinite repeats and the powerful tools of
the classical theory of absorbing extensions (e.g., [1], [4], [10], [20], [21], [33], [43])
are no longer completely available.

In effect, one needs to develop a type of nonstable absorption theory, where one
takes into account the fine structure of the K-theory. Such a theory has previously
been considered with definite results (e.g., [26], [29], [30]). The author of the
aforementioned results studied the case where the ideal was a simple nonunital
continuous scale algebra with real rank zero, stable rank one, strict comparison
and unique tracial state. In the present paper, we develop analogous absorption
results in a more general context. Some results even work for the case where the
corona algebra is nonsimple (purely infinite).

The theory makes use of the techniques from the Elliott Classification Program,
which is interesting since one source of the important stable uniqueness theorems
of the Classification Program is BDF Theory itself 2. Also, in addition to their
importance in extension theory, we note the prominence of continuous scale algebras
in the striking recent classification work of Elliott—Gong—Lin—Niu ([8]).

2 Another source is Elliott’s work.
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As part of the program, we also have results characterizing (not necessarily
simple) purely infinite corona algebras. Under mild regularity conditions on a
simple C*-algebra B, we have the equivalences: B has quasicontinuous scale <
M(B) has strict comparison < M(B)/B is purely infinite < M (B) has finitely

many ideals < Z,,,;n = Zcont- Furthermore, all such corona algebras have real rank
zero, and many related fundamental results have been proven. (E.g., [17], [18], [19],
23], [37], [40].)

In [41], we will use the results in this paper to classify all extensions of the form
0-B—-D—-C(X)—0

where B is a simple real rank zero finite Jiang—Su-stable continuous scale C*-algebra
and where X is a finite CW complex.

1.1. Notation. We end this section with some brief remarks on notation.
For a C*-algebra B, M(B) denotes the multiplier algebra of B. Thus, M(B)/B
is the corresponding corona algebra.
For each extension
0—-B—-D—-C—0
*

(of B by C?) we will work with the corresponding Busby invariant which is a *-
homomorphism ¢ : C — M(B)/B. We will always work with essential extensions
which is equivalent to requiring that the corresponding Busby invariant to be injec-
tive; hence, throughout the paper, when we write “extension”, we mean essential
extension. An extension is unital if the corresponding Busby invariant is a unital
map.

Say that ¢,v : C — M(B)/B are two extensions. We say that ¢ and v are
unitarily equivalent (and write ¢ ~ 1)) if there exists a unitary u € M(B) such that

¢(c) = m(u)ip(e)m(u)*

for all ¢ € C. Here, m : M(B) — M(B)/B is the quotient map.

Ext(C, B) denotes the set of unitary equivalence classes of nonunital essential
extensions of B by C. If, in addition, C is unital, Ext,(C,B) is the set of unitary
equivalence classes of unital essential extensions.

For a unital simple C*-algebra C, T'(C) denotes the tracial state space of C. If C is
a nonunital simple C*-algebra, T'(C) will denote that class of lower semicontinous,
densely defined traces which are normalized at a fixed element e € C; — {0}, where
e is in the Pedersen ideal of C (of course, for statements involving T'(C), where C
is nonunital, the choice of e is not relevant). For 7 € T(C) (where C is unital or
nonunital), for a € Cy, dr(c) =g lim,_ 7(c'/™). (Good references are [17] and
[18].)

For a C*-algebra D, and for a € D4, we let herp(a) =4 aDa, the hereditary
C*-subalgebra of D generated by a. Sometimes, for simplicity, we write her(a) in
place of herp(a). Similarly, for a C*-subalgebra C C D, we let herp(C) or her(C)
denote CDC, the hereditary C*-subalgebra of D generated by C. Finally, for a
subset S C D, we let Idealp(S) denote the ideal of D which is generated by S.
Again, we often write Ideal(S) in place of Idealp(S).

3We note that, in the literature, such extensions are often called “extensions of C by B”.
However, like some other authors ([1], [4], [5]), we prefer “extensions of B by C”, and will use this
in the present paper.
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In this paper, any simple separable stably finite C*-algebra is assumed to have
the property that every quasitrace is a trace.

Let A,C be C*-algebras. Throughout this paper, we will write that a map
¢: A— Cis c.p.c. if it is linear and completely positive contractive. Let F C A be
a finite subset and let § > 0. A c.p.c. map ¢ : A — C is said to be F-0-multiplicative
if [[6(£9) — (£)(g)l < 0 for all f,g € F.

Good references for basic multiplier algebra theory, extension theory, K theory,
and KK theory are [2], [32], and [44]. See also [17], [18] and [19] for much of the
advanced multiplier algebra machinery.

For the notation and basic KK-theoretic tools from Classification Theory used
in this paper, we refer the reader to [11], [15], [26], [29], [32], [36], and the references
therein.

References for simple continuous scale algebras are [24] and [34]. Section 1 of
[35] contains computations of the K theory for the multiplier and corona algebras
of simple separable continuous scale C*-algebras with real rank zero, stable rank
one and strict comparison (see also [37] Propositions 4.2, 4.4 and Corollary 4.6; and
also [9]). Other good sources are [17] and [18].

2. SOME NONSTABLE DECOMPOSITION THEOREMS FOR PURELY INFINITE
CORONA ALGEBRAS

In this section, we provide some Voiculescu-type decomposition theorems for
purely infinite corona algebras. We do not have the strongest possible technical
results, but enough for the main goal of this paper. Precursors to the results in this
section are [1], [10], [20], [22], [43].

The first result partly generalizes [22] Theorem 3.4.

Theorem 2.1. Let B be a simple nonunital separable C*-algebra such that M(B)/B
is purely infinite and has finitely many ideals.*

Let X be a compact metric space and ¢ : C(X) — M(B)/B be a *monomorphism.

Say that ¢ : C(X) — M(B)/B is a *~homomorphism such that for oll f € C(X),
P(f) € Ideal(4(f))-

Then there exists a V. € M(B)/B such that

P(f) =Vo(HV™
for all f € C(X).

Proof. Since ¢ is injective, we may assume that C(X) is a C*-subalgebra of M(B)/B
and that ¢ is the inclusion map.

Let {F,}32, be a increasing sequence of finite subsets of C'(X); such that
U>2, F, is norm dense in the closed unit ball of C(X);. We may assume that
IC(X) e Fi.

Let {e,}52; be a strictly decreasing sequence of numbers in (0,1) such that
> L €n < 0o. Let {6,}22, be another decreasing sequence of numbers in (0, 1)
such that Y >° | 6, < oo, and such that for all n, for all f € F,, for all z,y € X, if
d(z,y) < 26, then |f(z) — f(y)] < €,/10.

For all n, let ©y 1, n2, ..., Tn i, € X and Oy 1,052, ..., On ., be open balls in X
such that the following statements are true:

4Actually7 under mild regularity conditions on the canonical ideal, purely infinite corona alge-
bras will have finitely many ideals ([19]).
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ZTnk € Op i, for all n, k.
diam/(O nk) < 0p /4 for all n, k.

(1)

(2)

(3) X = Uk" 1 O, for all n, k.

(4) Forall f € Co(On,k)+ such that f(xnx) # 0, Ideal pqg)/8(f) = Ideal p(sy/8(Co(On k))-

For all n, let {Qn,k}kl1 be a partition of unity for X subordinate to {Omk}ll?;lv
ie.,
(1) gnir € C(X)4+ for all n, k,
(2) supp(gn,k) C On i for all n, k, and
(3) Z£l1 gnk(x) =1 for all x € X, for all n.

Let ¢ : C(X) — > M(B) be a c.p.c. map such that ¢) = 7o 0. N
For all n, let ¥ : C(X) — M(B) be the c.p.c. map given by ¥n(f) =ar
Zk 1 f(@n, k)d}(gn,k) for all f € C(X). Let ¢, =4 mo1),. Hence, for all f € C(X),

Un(f) = Ek:l f(@nx)(gnk) = w(Ele f(@n k)gnk)- As a consequence, for all
€ Fu, [U(f) = (Nl < €, /10.

Claim: There exists a sequence {d, }5°; in M(B)/B such that the following state-
ments hold:

i. [|dn|| < 2 for all n.
ii. (f) m, dnfdy for all f € F,, for all n.
iii. ||dnfdy 1] <€, forall f e C(X), for all n.

Proof of Claim: Since M(B)/B is purely infinite and has finitely many ideals, let
{hn,k}ff:l:’;l be a collection of elements in (M (B)/B)4 such that

(a) ||hnk|| =1 for all n, k,

(b) hnk € herpiy/B(Co(On k)) for all n, k,

(c) IdealM(B)/B((hi}k — 15)+) = Ideal psy5(Co(On i) for all n, k,
(d) b fhnr = R i f(@nk)hy . for all f € F,, for all n, k,

(e) nkhnl—Oforaﬂn for all k # [, and

(£) ||hnkfhnil < 10(k2+1) for all n, for all k # 1.

(&) hnt1ufhngll < 10(|Ikn||2+||kn+1|\2+1) for all n, for all k, .

By hypothesis, for all n, k,

Y(gn,k) € Ideal vy /8(gn,k) € Ideal pq(sy/8(Co(On k) = Ideal pq(sy/8(Rnk)-

Since M(B)/B is purely infinite, for all n, k,

9 9
W) = (Whx=35)

Hence, since [|¢(gn,k)|| < 1 and [[hnk| < 1, let d], , € M(B)/B with ||d], .|| <
3/2 be such that

dy, kh (d;k)* ~ Y (gn k)

€n
T0(kn +1)

for all n, k.
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Hence, for all n, for all f € F,,

V(f) =e,s10 Ynlf)
kn
= Z f(xn,,k)¢(gn7k)
=1

kn

e, /10 Zf(xn,k)d;z7kh$z,k( ;k)*
k=1
k7l

= Zd/nkf(xnk)hik( k)"

k=1

kn
Re, /4 Z dip,k(hn,kfhn,k)(d;z,k)*

k=1
Re, /10 dnfd,

where dn =df 2211 dlmkhn,k € M(B)/B
Hence, for all f € F,,

U(f) e, dnfdy,.

Also, 1¢(x) € F1 € Fn. Therefore, ¢(1) =, dnld;, = d,dy. So ||d,|| < 2, for
all n.

Also, since ||y g fhnt1,]] < 10(”%”2?”*;”“”2“) for all n, k,l and for all f € F,,,

we have that for all n and for all f € F,,

kn kni1
ldnfdirll < DY b fhnsri(dr )l
k=1 I=1
< €n/4.

We have thus constructed a sequence {d,, }5°; as in the Claim. This completes
the proof of the Claim. N B

For all n, let d,, € M(B) be such that ||d,|| < 2 and 7(d,,) = d.

For all f € J°°, Fn, let f € M(B) with || f]| < 2| £l < 2 be such that =(f) = f.
For all n, let F, =4f {f:f e Fn}. Let {e,}°_, be an approximate unit for
B such that e, 11e,m = e, for all m, and such that {e,,}°_; quasicentralizes
Un—1(Fn Ut(Fn) U {dn}).

Note that for all n, since ¢(f) =, d, fd;, and d,, fd;,, | =, 0 for all f € F,, we
must have that (f)(1 — en) ~e, dnfdi(1—en) and givnfgivj‘l+1(l — €m) =, 0 for
all sufficiently large m and for all f € F,,.

Hence, let {m(n)}2; be a subsequence of the positive integers such that the
following statements hold:

Take m(0) =4 1.

For all n > 1, let m(n) > m(n — 1)+ 1 be such that the following statements are
true:
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i. For all f € Fy,41, for all m > m(n),

J(f)(em - em(n))

Rentt gn-‘rlfg:,—i-l(em - em(n))

Reni1/10 (em - em(n))1/4dn+1(em - em(n))1/4f(em - em(n))1/4 :7,+1(em - em(n))1/4'

ii. For all f € F,,41, for all m > m(n), for all m’ > m(n — 1),

(emr —emm—1))" *dn(em —emm—1)"* flem—emm) "/ d5 41 (em—emm)* e, 0.
iii. For all f € F, 41, for all m > m(n),

(em - 6m(n))1/4f Ne,t1/10 f(em - em(n))l/4'

Let V =df Zzozl(em(nJrl) — €m(n))1/4dn+1(€m(n+1) - €m(n))1/4 S M(B), where
the series converges strictly.

Let V =af 7T(V) S M(B)/B

Then V fV* =4(f), for all f € C(X). O

In addition to the references cited at the beginning of this section, we also note
that an early (operator theoretic) analogue of the next result was already present
implicitly in [4].

Corollary 2.2. Let B be a simple nonunital separable C*-algebra such that M(B)/B
is purely infinite and has finitely many ideals.

Let X be a compact metric space and ¢ : C(X) — M(B)/B be a *monomorphism.

Say that ¢ : C(X) — M(B)/B is a *~homomorphism such that for all f € C(X),

¥(f) € Ideal(4(f)).
Then there exists a partial isometry W € M(B)/B with W*W = ¢(1) and

*_homomorphism
0:C(X)—> (1-WW"(M(B)/B)(1-WW)
such that
o) = W )W* + a(.).
Proof. By Theorem 2.1, there exists W € M(B)/B such that

U(f) =W o(f)W

for all f € C(X).

Replacing W with ¢(1)W if necessary, we have that W is a partial isometry such
that W*W = ¢(1).

Hence, WW* € M(B)/B is a projection. Since 1 is a *-homomorphism, for all
f€eC(X) with f >0,

W*(fH)W = W*o(f)WW*o(f/)W
and hence,
W o(f)(1 = WW*)o(f)W =0,
which implies that
WW*o(f)(1 —WW*) =0.
Hence, for all f € C(X), WW* commutes with ¢(f). Hence,
CX) = (1 =WWHM(B)/B)(1 = WW?"): f — (1 - WW)o(f)
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is a *-homomorphism. Also, note that for all f € C(X),
WW?*o(f) = WW*o(/)WW* = Wy (f)IW*
From the above, for all f € C(X),
o(f) = (1 =WW)o(f) & W (f)IW™.

We can therefore take

o(f) =a (1 = WW)o(f)
for all f € C(X). O

The above result immediately implies the following unital version:

Corollary 2.3. Let B be a simple nonunital separable C*-algebra such that M(B)/B
is purely infinite and has finitely many ideals.

Let X be a compact metric space and ¢ : C(X) — M(B)/B be a unital *
monomorphism.

Say that ¢ : C(X) — M(B)/B is a unital *~homomorphism such that for all
feC(X), ¥(f) € Ideal(¢(f)).

Then there exists an isometry W € M(B)/B and a unital *~homomorphism

0:C(X)—> (1-WW"(M(B)/B)(1-WW)
such that
o) = Wy )W* + a(.).

Recall that for a nonunital C*-algebra B, for a C*-algebra C and for extensions
¢, : C — M(B)/B, ¢ and ¢ are said to be weakly unitarily equivalent if there
exists a unitary U € M(B)/B such that

o(.) =Up()U".

Recall also that Lin proved that for every separable simple nonunital and nonele-
mentary C*-algebra B, B has continuous scale if and only if M(B)/B is simple
purely infinite (see Theorem 1.1). In particular, such a B satisfies the more techni-
cal assumption on ideals in the previous results of this section (Th. 2.1, Cor. 2.2
and Cor. 2.3).

Proposition 2.4. Let B be a nonunital separable simple continuous scale C*-
algebra, and let X be a compact metric space.

Then any two unital essential extensions of B by C(X) that are weakly unitarily
equivalent are unitarily equivalent (i.e., with unitary coming from M(B)).

Proof. Say that ¢,¢ : C(X) — M(B)/B are unital *-monomorphisms that are
weakly unitarily equivalent. Hence, let U € M(B)/B be a unitary such that
Up()U* = ().
Pick a point g € X, and let p : C(X) — M(B)/B be the unital *~homomorphism
given by
p(f) =ar f(z0)1
for all f € C(X).
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By Collorary 2.3, let W € M(B)/B be an isometry and let o : C(X) — (1 —
WW*)(M(B)/B)(1 — WW*) be a unital *~homomorphism such that

o) =Wp( ) W* +0o(.).

Since WW* ~ 1)/ and since M(B)/B is simple purely infinite, let Vp €
WWH*(M(B)/B)WW* be a unitary such that

V=4 UVo+(1-WW))

is a unitary in the path-connected component of the identity in the unitary group
of M(B)/B.

Note that since p is centre-valued,

Vo)V =Ug()U" =()
and V can be lifted to a unitary in M(B). O

A modification of the above argument, replacing Corollary 2.3 with Corollary
2.2, gives us the nonunital case. However, we will give a different proof (though
similar in spirit) where C'(X) is replaced with a general separable unital C*-algebra

A.

Proposition 2.5. Let B be a nonunital separable simple continuous scale C*-
algebra, and let A be a separable unital C*-algebra.

Then any two nonunital essential extensions of B by A that are weakly unitarily
equivalent are unitarily equivalent (i.e., with unitary coming from M(B)).

Proof. Say that ¢,v : A — M(B)/B are nonunital *-monomorphisms which are
weakly unitarily equivalent. Hence, let U € M(B)/B be a unitary such that

Up()U* = ().

Since ¢ is nonunital, 1 ¢5y/58 — (1) is nonzero. Since M(B)/B is simple purely
infinite, let Vo € (Iannys — ¢(1))(M(B)/B)(1amsy/s — ¢(1)) be a unitary such
that

V=4 UVo + (Lymsy/s — #(1))

is a unitary in the path-connected component of the identity in the unitary group

of M(B)/B. Hence,
Vo)V =Ug( U™ = ()
and V can be lifted to a unitary in M(B). O

Remark 1. Recall that all our extensions are assumed to be essential. Let B be a
nonunital separable simple continuous scale C*-algebra such that [1aqzy/8] = 0 in
Ko(M(B)/B), and let X be a compact metric space.

Then there is addition on the class of unital extensions of B by C(X). More
precisely, say that ¢,v : C(X) — M(B)/B are two *-monomorphisms. Then the
BDF sum of ¢ and v is given by

So()S* +Ty(.)T"

where S, T € M(B)/B are isometries such that SS*+TT* = 1.

Note that, by Proposition 2.4 and 2.5, the above sum is well-defined up to uni-
tary equivalence. Thus, the above sum induces an addition and hence a semigroup
structure on Ext, (C(X),B) (and also on Ext(C(X),B)).
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Henceforth, in the rest of this paper (except for Subsection 3.1), whenever B is a
simple continuous scale C*-algebra with [1,(g)/5] = 0 in Ko(M(B)/B) and when-
ever ¢, : C(X) — M(B)/B are two homomorphisms with at least one injective,
if we write

pDY
then we mean that we are taking a BDF-sum of ¢ and 1, which, by Remark 1, is
well defined up to unitary equivalence.

Theorem 2.6. Let B be a nonunital separable simple continuous scale C*-algebra
such that [1py/8] = 0 in Ko(M(B)/B). Let ¢,v : C(X) — M(B)/B be unital
*_homomorphisms with ¢ injective.

Then there exists a unital *~homomorphism o : C(X) — M(B)/B such that

¢~ o

Moreover, we can require o to be injective.

Proof. Apply Corollary 2.3 to ¢ and ¢ @ 1 to get that either

p~Y DY
or there exists a unital *~homomorphism ¢’ such that
p~YBYBo.
In the former case, we can take o =4 9, and in the latter case, we take o =4 VP o’.
Note that since ¢ is injective, o is injective. U

Again, by a similar argument, we get the nonunital case.

Theorem 2.7. Let B be a nonunital separable simple continuous scale C*-algebra
such that [1ymy/B] = 0 in Ko(M(B)/B). Let ¢,¢ : C(X) — M(B)/B be *-
homomorphisms with ¢ injective and nonunital.

Then there exists a *-homomorphism o : C(X) — M(B)/B such that

=19 o

Moreover, we can require o to be injective.

3. WHEN Ext, IS A GROUP

For a unital C*-algebra C, recall that U(C) denotes the unitary group of C, and
U(C)o denotes the path-connected component of the identity of U(C).

Lemma 3.1. Let C be a unital simple purely infinite C*-algebra, and let p1,p2, ..., Pr, 1, q2, -vs Gn €
C be nonzero projections such that

(1) pj ~q; foralll <j<mn, and

(2) either
dpi=) =1l
j=1 j=1

or

Spi#Ele# >
j=1 j=1
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Then there exists uw € U(C)o such that
upju” = g;
forall1 <j<n.

Proof. Since C is simple purely infinite, if Z?lej #* 1¢ # Z;"Zl g; then 1¢ —
Z?Zl pj~1lc— Z;;l ¢;. Hence, we may assume that

n n
ij = qu‘ = lc.
j=1 j=1

The case n =1 is clear. So let us assume that n > 2.
Now suppose that p1,pa, ..., Pn, ¢1, @2, ---, ¢ € C are nonzero projections for which
. n n

pj ~ g¢; for all j and ijlpj = Zj:1 g; = 1.

Hence, let v € U(C) be such that vp;v* = g; for all j.

Since C is simple purely infinite, let w € U(p1Cp1) be such that v is homotopy
equivalent to w+ (1 — p1) in U(C). Hence, u =4 v(w* + (1 —p1)) € U(C)o and for
all 7, up;u*™ = vp;v* = g;. ([l

We thank Professor Huaxin Lin for pointing out the next result and its proof to
us.

Theorem 3.2. Let B be a nonunital separable simple continuous scale C*-algebra,
and let X be a zero dimensional compact metric space.
Suppose that ¢, : C(X) — M(B)/B are unital *~monomorphisms such that

Ko(¢) = Ko(¥).
Then there exists a unitary U € M(B) such that

o(f) = m(U)g(f)m(U)*
for all f € C(X).

Proof. Let b € By be a strictly positive element with ||b|| = 1.
Let {n; };‘;1 be a sequence of positive integers and {E;, 4,,....i, f1<i;<n;,1<j<k,1<k<oo
a collection of clopen subsets of X such that the following statements are true:
(1) For all icl, Eil,iQ,...,ik N Ei/171'/27m7
(2) X =U, B )
(3) For all £, Eiiis,...in = Uz:k-l*—1 Eiig,...pigi-
(4) For all k, diam(E;, .. ;) < 1/100*.
For all 41,19, ..., ik, let €;, 4,4, € C(X) be the projection given by e;, . ;, =ar
XEiy ig,... iy where

i =0 if i; # 4’ for some j.

XEiy ig,... iy, X — [Oa 1]
is the characteristic function of Ej, ;, . - Let Diy . isGiy,..in € M(B)/B be
projections that are given by p;, .. i, =dar ¢(€ir,....i) and qiy .5, =ar V(€iy,...ir,)-
We claim that there exists a sequence {uy}7° ; of unitaries in M(B) and collec-
tions {As, iy, i Y1<iy<ng 1<j<k1<h<oos 1AL iy iy J1<i;<ny 1<j<k1<k<oo0,
{Bissiz,..in F1<iy<ng 1<j<ki<k<oo and {Bj i, 5 }i<ij<ng,1<j<k1<k<oc i M(B)4
such that the following statements hold:

() [[Aiy i, il = 1147 = I1Biiz,.isll = [IB; | <1 for all

11,02,k 11,8200k
11,22y 00y Uk



12 P. W. NG

(2) Ai17i27~~~7ik € her((Agl,iz,...,ik - 1/2)+) and

Bil,iz,...,ik S her((le'l,iQ,...,ik — 1/2)+) for all 01,89,y coey Tk
(3) Al in,.omin L A;g,i;,...,i;c and Bj, ;, L Bég,i;,,,,,i;c if i; # i} for some j.
(4) Agl,iz,...,ik,i € her(Ailﬂé,m,ik) and le‘l,iz,...,ik,i € her(Bilinynwik) for all

il,Zg, ...,Zk,i.

(5) T(-(Ailwu;ik) = W(Agl,vk) = Dix,... ix and
T(Biy .. in) = 7T(B£17___’ik) = @i, ..., for all 41, ..., 0.

(6) For all k, let vg, =df UkUk—1.--U]. Then 'UkAil,...,il'UZ S heT‘(Bil71'27...7il) and
ViBi, .. iUk € her(Ai, ,,...5,) for all 41,...,4; and for all I < k.

(7) m(vk)pis,...;,m(VE)™ = @4y ,...4, for all 41,49, ...,49; and for all [ < k.

(8) |lvkb — ve_1b]], ||bvx — bug_1]| < 1/100F for all k.

The construction will be by induction on k.

Basis step:

Since Ko(¢) = Ko(v), pi ~ ¢; for 1 < ¢ < n. Hence, let uj € M(B)/B be a
unitary such that ujp;(u})* = ¢; for all ¢. Since M(B)/B is simple purely infinite
and by Lemma 3.1, we may choose u} to be in the connected component of the
identity of the unitary group of M(B)/B.

Let A;, A, € M(B)4 with ||4;|| = [|AL]| < 1 be such that A; € her((A], —1/2)4),
m(A;) = m(A}) = pi for 1 <i <n, and A] L A fori # j. Since uj € U(M(B)/B)o,
lift u} to a unitary u; € M(B).

Let B;, B, € M(B)4 be given by B; =45 u1A;(u1)* and B} =45 u1 A}(u1)*, for
1< <n.

Then || B;|| = || B{|| <1 for all 4, B; € her((B; —1/2)+), B; L Bj for i # j, and
m(B;) = w(Bl) = ¢; for all i.

Induction step:

Suppose that {ui}i_y, {Air,..i 1<is<ngi<i<r 1AL hi<iy<ng <<, {Bin i J1<i; <ny 1<<k
and {B] . }1<i;<n;1<j<k have been constructed.

By the induction hypothesis, 7(vg)pi, ..., T(VE)* = iy ,....i1» Ve Ay, V5 € her(Bi, .. 4;),
and v} B;, .. Uk € her(A;, .. ;) for all i1,4s,...,4; and for all [ < k.

So for all 41, ..., 9k, for all ¢, T(vk)Pi;,....iniT(VE)" < Qiy,... ik
Let uj, ;. € her(qi,.. i) be a unitary such that for all i,
Wi ignin T (OR)Pi i (OR) (U iy i)™ = Qi i SinCE @iy i (MB)/B) ..
is simple purely infinite and by Lemma 3.1, we may assume that u;, ;,  ; isin the
connected component of the identity in U(gi,,....i, (M(B)/B)gi,....ir)-

Fix i =g5 (i1, 79, ... k)
Since ug, 5, i € UlGi,....i (M(B)/B)giy.....i,. Jo and since g;, ..., (M(B)/B)gi,....i,

is simple purely infinite, by [42], let C%, D; € her(qi, ,....i,)sa be such that u;

i } 11,0250k
elC{elD{.

Let C%, D> € her(Bi,,...i,)sa be such that m(C%) = C; and m(D%) = D;.

Let {ém} be an approximate unit for B. For all m, let Cli(m)l:df (Cli)i/z(l -
em)(CY? = (CDYP(1 = e)(C)Y? and DYm) =g (D1 — en) (DY -
(DYY2(1 = em)(DYY?
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Hence, C2(m), D%(m) — 0 strictly as m — oo.
Hence, uz(m) =af ¢iCi(m) giDz(m)
Note that m(uz(m)) = uj ;, 4,
for all m.
Note also that since B;, .. ;. L Bi’l,...,i;c if i; # z; for some j, we must have that

— 1) strictly as m — oo.
+ (1 - qi17i2;~~~;7;7c) and u{(m) € her(Bilnnyik)N

uz(m)uz (m) = uz (m)uz(m) where fzdf (i1,12,...,1x) and i =qr (ih,15,...,1), for
all 7,7’ and for all m.

Choose m; > 1 large enough such that if upi1 =g [[;uz(m1) and vigr =ar
U1k then ||bvgs1 — bugll, |vks1b — vib|| < 1/100F+1.

Now, up41 € Hz’l,...,ik U(her(Bi1,~~~,ik)~)
her(B;,,...i,)~ commutes with every element of her(BifU___ﬂ;;c)N if 4; # z; for some
i)

Hence, for all iy,...,i;, for all I < k, ug1Bi, . quj, € her(Bi, . ;) and
uI:JrlBilwu,izukJrl - her(Bilnnyil,)'

Hence, for all iy,...,3;, for all I < k, vip1Ai . 5vi, C her(Bi, ;) and
Vi1 Biy, ik C© her(Aiy ).

Note that 7T(Vk+1)Piy,....i; T(Vk41)* = Giy,...4, for all 41,...,4; for all I < k.

For all i1, ...,ix, let {By, _.i}iei’ and {B] ;. ;}iti" be two collections of
pairwise orthogonal contractive elements of her(Bj, .. i)+ such that B, . ;. €
her((Bj, i —1/2)4) and @(Bi,.._iy.i) = 7(Bj, i, i) = Gir.....iri for all é.

Then define Ailnnﬂ‘kﬂ‘k#—l =df UZ+1Bi17~~~7ik7ik+1vk+1 and A;ll,...,ik,ik+1 =df UZ—}-le{l,
for all 41, ..., %%+1-

This completes the inductive construction.

Let v =g limg_oo vy € U(M(B)), where (by the Claim) the limit converges
strictly in M(B).

Therefore, by the Claim, vA;, . ; v* C heT(le‘l,...,ik) and v* By, .. 4,v C her(Aj

Therefore, w(v)psy,...ip,™(V)* = qiy,... i, for all i1, ... 0.

Therefore, w(v)p(f)m(v)* = (f) for all f € C(X). O
A similar proof yields the nonunital case.

Theorem 3.3. Let B be a nonunital separable simple continuous scale C*-algebra,
and let X be a zero dimensional compact metric space.
Suppose that ¢, : C(X) — M(B)/B are both nonunital *-monomorphisms such
that
Ko(¢) = Ko(v).
Then there exists a unitary U € M(B) such that

o(f) = m(U)y(f)m(U)*
for all f € C(X).

Proof. Note that since M(B)/B is simple purely infinite and since both ¢ and
are nonunital,
1—¢(1) ~ 1 —1(1).
Hence, conjugating with a unitary (and using Proposition 2.5) if necessary, we
may assume that ¢(1) = ¥(1).

ceyinyiny1 Ukt

i)
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Now proceed as in the proof of Theorem 3.2. ]

The concepts of null and totally trivial extensions (see 2 and 7) are due to Lin
(e.g., see [26] and [30]), though we have modified the definitions. Early versions of
these concepts were already present in [4].

Recall that in the original BDF case, when X is a compact subset of the
plane, uniqueness of the trivial element of Fxzt(C(X),K) follows from the Weyl-
von Neumann—Berg Theorem. Recall also that for a simple separable real rank zero
C*-algebra B, M(B) has the classical Weyl-von Neumann Theorem if and only if
M(B) has real rank zero (e.g., [46], [47]; see also [27]). This is perhaps one clue for
the reasons for the assumption that M(B) has real rank zero in [26], [30] and other
early papers.

The next definition is for both the unital and nonunital cases:

Definition 2. Let B be a simple nonunital separable continuous scale C*-algebra.
Let X be a compact metric space and let ¢ : C(X) — M(B)/B be an essential
eztension.

(1) ¢ is said to be null if there exists a commutative AF-subalgebraC C M(B)/B
such that Ran(¢) C C and [p] = 0 for every projection p € C.

(2) Suppose, in addition, that [1yy/8] = 0. ¢ is said to be self-absorbing if
D P~ 9.

Theorem 3.4. Let B be a nonunital simple separable C*-algebra with continuous
scale and let X be a compact metric space. Then we have the following:

(1) There exists a null essential extension ¢ : C(X) — M(B)/B. Moreover,
we can require ¢ to be nonunital or unital (if, additionally, [1xm) 8] =0).

Suppose, in addition, that [1xqg)/] = 0. Then we have the following:

(2) Every null essential extension C(X) — M(B)/B is self-absorbing.

(3) Any two unital self-absorbing essential extensions C(X) — M(B)/B are
unitarily equivalent. The same holds for any two nonunital self-absorbing
essential extensions.

(4) Every self-absorbing essential extension must be null.

Proof. (1): We firstly construct a nonunital null essential extension. (The construc-
tion for the unital case is similar.) Since M(B)/B is simple purely infinite, choose
a nonzero projection ¢ € M(B)/B such that [q]x,aB)/8) = 0 and ¢ is a proper
subprojection of 1,¢(3)/5. There is a unital embedding Oy — ¢(M(B)/B)q. By a
classical result of topology, there also exists a unital embedding C'(X) — C(K),
where K is the Cantor space. Since there is also a unital embedding C'(K) < Oa,
the above maps compose to a unital embedding C(X) — ¢q(M(B)/B)q with range
contained in a commutative AF-algebra which is zero in Ko(M(B)/B). We thus
get a nonunital null extension of B by C(X).

For the unital case, note that, by assumption, [1r¢)/8] = 0 in Ko(M(B)/B).
Proceed as in the argument for the nonunital case, replacing q with 1(z)/5-

(2) follows from Theorems 3.2 (in the unital case) and 3.3 (in the nonunital case).

(3): We prove the unital case. The proof of the nonunital case is similar.

Suppose that ¢ and ¢ are both unital self-absorbing essential extensions of B by
C(X). By Theorem 2.6, let p: C(X) — M(B)/B be a unital (essential) extension
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such that ¢ ~ p @ ¥. Then

PO
~ pOYDY
~ p®1 (since v is self-absorbing)
~ .
By a similar argument, ¢ @ ¢ ~ 1. Hence, ¢ ~ 1.
(4) follows from (1), (2) and (3). O

We remind the reader that, throughout this paper, when we write “extension”,
we mean essential extension (though often we will add “essential”).

Theorem 3.5. Let B be a nonunital separable simple continuous scale C*-algebra
such that [1pqpy/8] = 0 in Ko(M(B)/B).

Let X be a compact metric space.

Then Ext,(C(X),B) is a group where the zero element is the class of a null
essential extension. The same holds for Ext(C(X), B).

Proof. Again, we prove the unital case, and the proof of the nonunital case is
similar.

By Remark 1, we have that Ext, (C(X), B), with the BDF sum, is a commutative
semigroup. Hence, it suffices to prove that Ext,(C(X),B) has a neutral element
and that every element has an inverse.

Note that by Theorem 3.2, all null unital extensions are unitarily equivalent.

Let 0 : C(X) — M(B)/B be a null unital extension.

Let ¢ : C(X) — M(B)/B be an arbitrary unital extension. By Theorem 2.6,
there exists a unital extension ¢g : C'(X) — M(B)/B such that

¢ = ¢o D o.

By Theorem 3.4, 0 ® 0 ~ o. Hence, ¢ o ~ ¢pg B o d o ~ ¢y Do ~ ¢. Hence,
[o] gives a zero element for the semigroup Ext, (C(X), B).

Again, let ¢ : C(X) — M(B)/B be an arbitrary unital extension. We will prove
that [¢] has an inverse in Ext, (C(X), B).

By Theorem 2.6, there exists a unital extension ¢g : C(X) — M (B)/B such that
o~ ¢o @ ¢. Then [¢g] is the inverse of [¢)].

Since ¢ was arbitrary, Ext,(C(X), B) is a group.

The argument for the case of Ext(C(X), B) is exactly the same, with the appro-
priate modifications. O

3.1. Ext is a group. In this short subsection, we briefly diverge from the main ex-
position and describe how Ext can be given group structure even when [1 y((5)/8] #
0, by following an idea of [9] which generalizes the BDF sum in a natural way.

Definition 3. Let B be a nonunital separable simple continuous scale C*-algebra
and let X be a compact metric space.
Let ¢, : C(X) — M(B)/B be two nonunital essential extensions.
Then the (generalized) BDF sum of ¢ and ¢ is given by
So()S* +Ty( )T

where S, T € M(B)/B are two isometries such that SS* +TT* < 1.
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Remark 2. One can show, using Proposition 2.5, that, up to unitary equivalence,
the sum defined in Definition 3 is independent of the choices of S and T. Thus,
even without the assumption that [1M(B)/3] = 0, one can give a semigroup structure
to Ext(C(X), B).

We emphasize that the key to Proposition 2.5 (and thus to the well-definedness,
up to unitary equivalence, of this version of the BDF-sum) is that the relevant ex-
tensions are nonunital. In fact, this addition will be well-defined even when C(X)
is replaced by a general separable unital C*-algebra (as in Proposition 2.5). How-
ever, since this paper does not focus on such a general setting, we will not continue
to proceed down this path. We do additionally point out, though, that our proof
of well-definededness of the BDF-sum in the unital setting (i.e., Ext,(C(X),B);
see Remark 1) utilizes that C(X) has a one-dimensional *-representation (see the
proof of Proposition 2.4) and thus does not immediately generalize to arbitrary uni-
tal separable C*-algebras.

The unital setting can be tricky and must be dealt with carefully. For example,
for alln > 3, any two nonunital essential extensions of KL by M, are unitarily equiv-
alent (and hence, trivially, any two such which are weakly unitarily equivalent are
unitarily equivalent). On the other hand, there are pairs of unital essential exten-
sions of IC by M, which are weakly unitarily equivalent but not unitarily equivalent.
(See, for example, the discussion in [2] 15.4.1(b) and 15.6.6(a).) Since this paper
focusses on C(X), we will not elaborate further on this.

Many concepts and results (with the same proofs) work with the new sum in the
nonunital setting. Thus, one can remove the hypothesis that [1xq8)/8] = 0 from
Theorems 2.6 and 2.7, Definition 2, and Theorems 3.4, 3.5 and 4.10.

To keep the paper short, we here state only the new version of Theorem 3.5:

Theorem 3.6. Let B be a nonunital separable simple continuous scale C*-algebra
and let X be a compact metric space.

Then, with the addition operation defined as in Definition 3, Ext(C(X),B) is a
group where the zero element is the class of a null essential extension.

Remark 3. Suppose that [1rqsy/8] = 0. Then the group Ext(C(X),B) defined in
Theorem 3.6 (using the generalized BDF-sum in Definition 8) will be isomorphic to
the group Ext(C(X),B) defined in Theorem 3.5 (using the sum in Remark 1 and
which requires the assumption [1rqpy/8] = 0). This is not hard to see.

To save notation, let us denote the first group by Ext®™ and the second group
by Ext®™?

Firstly, note that for any nonunital essential extension ¢ : C(X) — M(B)/B,
the class of ¢ in Ext™™ is the same as the class of ¢ in Ext**“™% (both are unitary
equivalence classes), which we denote by [¢@].

Hence, we have a natural map (the identity map)

(3.1) Ext®™? — Ext®™! : [¢] — [¢].

This map is definitely bijective.

The sum defined in Remark 1 (for Ext*“™?) is a special case of the sum defined
in Definition 3 (for Ext*™ ), and thus, the map in (3.1) preserves addition.

It is not hard to see that the neutral element (or the class of an essential self-
absorbing extension) gets mapped to the neutral element, and thus the map in (3.1)
is a group isomorphism.
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4. NULL EXTENSIONS

In the previous sections, we defined the class of null essential extensions which
are the self-absorbing essential extensions and which give the zero element in Ext,,
and Ext.

In this section, we show that totally trivial extensions (see Definition 7) with
zero Ko are null extensions.

Recall that for a compact convex set K, Aff(K) is the collection of all real-
valued affine continuous functions on K. With the uniform norm and the natural
order, Af f(K) is an ordered Banach space.

Recall also that Af f(K)++ denotes the functions in Af f(K) which are strictly
positive at every point in K.

Next, we remind the reader about our standing assumption that all quasitraces
are traces.

Let C be a unital stably finite simple C*-algebra. Recall that for all n and for
all ¢ € M,,(C)4, ¢ induces an element
(1) 0e AFS(T(C))
which is given by

/C\(T) =af T X TT‘n(C)
for all 7 € T(C), where T'ry, is the nonnormalized trace on M,,. Note that if ¢ # 0
then /C\E Aff(T(C))++

Also, to simplify notation, we often write “7” for 7 ® Tr,, or 7 ® T'rx, where
Tri is the standard densely defined (norm-) lower semicontinuous trace on Kj.
For a nonunital simple og-unital C*-algebra B with densely defined (norm-) lower
semicontinuous trace 7, we will often write “7” also for the strictly continuous
extension to M(B) 4.

Recall that there is a well-defined ordered group homomorphism

(4.2) X : Ko(C) = AfF(T(C))
which is determined by

o~
~

x([p)) =ar [p] =ar P

for every projection p € C ® K.
(Finally, recall, from the remarks on notation at the beginning, that when C is
nonunital, we take T'(C) be the class of densely defined lower semicontinuous traces
that are normalized at a fixed nonzero positive element of the Pedersen ideal of C.)

Lemma 4.1. Let A be a unital separable simple nonelementary C*-algebra with
real rank zero, stable rank one and weakly unperforated Ko group. Let {p,}>2, be
a sequence of nonzero projections in A® I such that

S B € AFF(T(A)),

and let S be an arbitrary infinite subset of Z. .
Then for all n € S, there exists a subprojection q, < p, such that

D o Bnt D> € x(Ko(A)y).
n¢sS nes
(x is as defined in (4.2).)
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Moreover, we can choose {qn} so that for all n, ¢, and p, — ¢, are nonzero
projections.

Note that as Y _,> | Pn, 2 ongs Pns 2ones dn € Aff(T(A)), these sums all converge
uniformly on T(A).

Proof. Say that S corresponds to the (strictly increasing) subsequence {nj}22 ; of
the positive integers.
For all £ > 1, let

ax =qf 1713&)7'(1977;@) > 0.

(a; > 0 since A is simple.)

Now x(Ko(A)) is uniformly dense in Af f(T(A)). (See, for example, [2] Theorem
6.9.3, [3] I11.) Hence, we can find a function f € x(Ko(A)+ —{0}) C Aff(T(A))++
such that

and

for all 7 € T(A).
Again, since x(Ko(.A)) is uniformly dense in Af f(T'(A)), we can find a sequence
{ri}s2, of nonzero projections in A ® K such that

T(rg) < ag
and
)+ 270 =3 Tl
for all 7 € T(A).
Since A ® K has strict comparison of projections, ri < py,, for all 7 € T'(A) and
for all k. Hence, for all k, let s,, < pp, be a projection such that ry ~ s,,. And

let gn, =df Pnj, — Sn,, (which is necessarily a nonzero projection in p,, (A ® K)pn,,)-
Then

E:ﬁﬁ*‘}:éﬁ::E:pn E: €kab@4))
n¢sS nes n=1 k=1
as required.

For a C*-algebra D, we let Proj(D) denote the projections in D.

Definition 4. Let X be a metric space and let B be a nonunital C*-algebra. A
countable subset A C X x Proj(B) is called a clump over X x B if the following
statements are true:
(1) The set {x € X : Ip € Proj(B) s.t. (x,p) € A} is dense in X.
(2) For all x € X, if (x,p) € A for some projection p, then (x,q) € A for
infinitely many distinct projections q.
(3) For all (x,p), (y,q) € A, if either x £y orp# q thenp L q.
(4) Let S C {p € Proj(B) : 3z € X s.t. (x,p) € A}. Then 3 gp converges
strictly in M(B).



NONSTABLE ABSORPTION 19

Let X be a metric space and B a nonunital C*-algebra. Suppose that A is a
clump over X x B. We denote

Ax =g {ze X :IpeBst. (z,p) € A}

and
A =g {peB:3xe X st. (z,p) € A}.

Let X be a compact metric space, B a nonunital C*-algebra and ¢ : C'(X) —
M(B) a *-homomorphism. Suppose {z,}2; is a dense sequence in X such that
each term repeats infinitely many times, and suppose that {p,}22; is a sequence
of nonzero pairwise orthogonal projections in B such that

o) = 3 F@a)pn

for all f € C(X), where the sum converges strictly in M(B). Then the set Ay =qf
{(xn,pn) : n > 1} is a clump on X x B, and we say that Ay is a clump affiliated
with ¢. Note that more than one clump can be affiliated with a *-homomorphism.

Definition 5. Let X be a metric space and B a nonunital C*-algebra. Suppose
that A and T' are clumps over X x B.

Then T is said to be obtained from A by a splitting operation if there exist
sequences of points {zy}, {yr} and {z} in X, and sequences of pairwise orthogonal
projections {pr}, {ar}, {rx} in B such that

(a) Ao =ar {(wk,pr) 1k >1} CA,

(b) px = qi + 7K for all k,

(c) d(zk,y), d(xk, 21) — 0, and

(@) T'=(A—Ao) U{(Yk,qr), (zi,7%) : k> 1}.

Note that in the above definition, every projection in I'g is a subprojection of
some projection in Ag.
Note also that the above definition implies that

2 r= 2> ¢
(z,p)EA (y,9)el
and for every bounded uniformly continuous function f on X,
> f@p- > fwaeeB
(z,p)er (y,q)€r
where all sums converge strictly in M(B). Since this remark and its conclusion are

used multiple times, we will make a definition.

Definition 6. Let X be a metric space and B a nonunital C*-algebra. Suppose
that A,T" are clumps over X x B.

We write A ~ T if
>op= > ¢
(w,p)eA (y,q)el
and for every bounded uniformly continuous function f: X — C,

> f@p- > fyaeB.

(z,p)EA (y,9)EA
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Lemma 4.2. Let X be a metric space and let B be a nonunital separable simple
C*-algebra with real rank zero, stable rank one and weakly unperforated Ko group.

Let Y, Z C X be disjoint subsets such that X =Y U Z and dist(Y,Z) = 0.

Suppose that A is a clump over X x B such that Ax NY is dense inY, AxNZ
is dense in Z, and

Y PeAST(B)).
(z,p)EA

Then there exists a clump T' over X x B such that the following statements are

true:

i. T is obtained from A by a splitting operation.
ii. Z(a:,p)EF, sey P € X(Ko(B)4).
(See (4.2) for the definition of x.)
iii. Ax =Tx.
iv. Every projection in I'g is a subprojection of some projection in Ag.

Proof. We can express A as

A:{(Z‘n,pn) n>1}U{( nvpn) nZl}

where for all m,n, x,, € Y,z!, € Z, pp, L pl,, and if m # n then p,, L p, and
P L Pl

Recall that, by the definition of clump, each term in {z,, } repeats infinitely many
times, and each term in {z/ } also repeats infinitely many times.

Since dist(Y,Z) = 0 and since Ax NY and Ax N Z are dense in YV and Z
respectively, we can find subsequences {xy,}, {z},, } of {x,}, {z],} respectively
such that d(zp,,z;,, ) — 0.

Also, since } -, cr D € Aff(T(B)), it follows that

S b € AFF(T(B)).

n>1

By Lemma 4.1, let {¢,, } be a sequence of projections in B such that
(1) gn, < pn, for all k,
(2) both ¢, # 0 and 7, =af Pn, — qn, 7 0 for all k, and
(3) Zn;ﬁnka Pn + Z}Ql ny, € X(Ko(B)+).

Define

' =g (A— {(xnk’pnk) ik > 1}) U {(xnk’an)’ (x;nk’rnk) ik > 1}'
O

Lemma 4.3. Let B be a separable nonunital C*-algebra and let X be a metric
space. Let Y1,Yo,.... YN C X be subsets such that Yy UY> U ...UYy = X. Say that
A is a clump over X x B.

Then there exists a clump I' over X x B such that

(1) A~T,

()FXCY1UY2U .UYn,
()FXﬂY is dense in Yy, for alln, and
4) T
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Proof. For all 1 <n < N, let {yn}3>, be a dense sequence in Y.
We construct an increasing sequence

crec...clp C..
of finite subsets of (|

n—1 Yn) x B and a decreasing sequence

AMDAD....DA, D ...

of clumps over X x B.
The construction is by induction on m.

Basis step m = 1:

Since A is a clump, we can find (x1,p1), (z2,p2), ..., (*n,pNn) € A such that
(ks pr) # (21, p1) for all k # [ and d(xj,y;,1) <1/10for all 1 <j < N.
Let
Iy =4 {(yj1,p5) : 1 <j < N}
and
Ay =g A —={(zj,pj) : 1 <j <N}
Note that A; is also a clump over X x B.

Induction step:

Say that I'),, and A,, have already been constructed. We now construct I';, 41
and Apy1-

By the induction hypothesis, A,, is a clump over X x B. Hence, we can find
{(zj1,p50) : 1 <j <N, 1 <l<m+1} C Ay, such that (;1,p51) # (Tik,pik) if
(4,1) # (i,k). and

1
d(yj, 1) < Tomit
for all 7,1.
Let
Crnt1 =af D U{(y5,0,050) s 1 <G <N, 1 <T<m+1}
and

Ayt =df A —{(250,p51) : 1 <j<N,1<1<m+1}.
Note that A,,+1 is also a clump over X x B.

The inductive construction is complete.

Let
o0
1—‘oo =df U Fm
m=1
and let

Ao =ar ) Am.
m=1

Note that I's, is a clump over X x B and (I'oo)x NY,, is dense in Y, for all n.
If Ao = 0, then we can take I' =4 I'sc and we would be done.
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Suppose that Ao, # (0. Let us also assume that Ay, is an infinite set. (For the
case where A, is finite, the argument is the same as that of the infinite case, but
easier.)

Since Ao is an infinite set, let {(z,p}) : 1 < j < 0o} be an enumeration of Ax.

For all j, let z; € {yn,x : n, k > 1} be such that d(z7, 2;) < TR

Let

D =4 Too U{(2},p}) : 1 < j < 00}

Then T is the required clump over X x B.

O

Recall that by a closed ball, we mean the closed unit ball of R™ for some n. If E
is a closed ball, by Int(E) we mean the interior of E (as a subset of the appropriate
R™), i.e., the open unit ball of R™.

We will consider singleton points to be 0-dimensional closed balls, and (as a
simplifying convention for this paper), we will define the interior Int({zo}) of a
singleton {zo} to be {zo}.

The next lemma follows immediately from the definition of finite CW complex,
since we may cut each n-cell into smaller pieces with the desired diameters.

Lemma 4.4. Let X be a finite CW complex with a metric, and let € > 0 be given.
Then we can find a collection {L,}N_, of pairwise disjoint subsets of X such
that

(a) diameter(L,) < €, for all n,

b) X =UY_, T, and

(c) for all m, there exists a closed ball E, and a continuous surjection p,, :
E, — Ly, such that p,(Int(Ey,)) = Ly and pu|imi(s,) : Int(Ey) — Ly is a
homeomorphism.

A compact metric space X is called a compact cell if there exists a closed ball F,
an open dense subset X C X, and a continuous surjection p : E — X such that
p(Int(E)) = X° and the restriction map p|r,(g) : Int(E) — X° is a homeomor-
phism. Sometimes, we denote X° by Int(X).

Lemma 4.5. Let X be a compact cell with a metric, and let € > 0 be given.
Then we can find a collection {L,}N_, of pairwise disjoint subsets of Int(X)
such that

(a) diameter(L,) < €, for all n,

b) X =U_, T, and

(¢) for all m, there exists a closed ball E, and a continuous surjection py :
E, — Ly such that p,(Int(Ey,)) = Ly and pn|imi(,) : Int(Ey) — Ly is a
homeomorphism.

Lemma 4.6. Let X be a compact cell with a metric and let B be a nonunital sepa-
rable simple C*-algebra with real rank zero, stable rank one and weakly unperforated
Ky group.

Let € > 0 be given.

Let A be a clump over X x B such that

> e x(Ko(B).

(z,p)EA
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Then there exists a clump T' over X x B and there exists a sequence {L,}Y_, of
pairwise disjoint subsets of Int(X) such that the following statements are true:

i X =", L.

ii. diam(L,) < €, for all n.

iii. For alln, there exists a closed ball E and there exists a continuous surjection
p: E — L, such that p(Int(E)) = Ly, and p|inyp) : Int(E) — Ly, is a
homeomorphism.

iv. A~T.

v. For alln, U'x N L, is a dense subset of Ly,.

vi. Tx CUN, L.

vii. Fvery projection in I'g is a subprojection of a projection in Ag.

vili. Foralln, 32, er, ver, P € X(Ko(B)).

Proof. Apply Lemma 4.5 to X and € to get a collection { L, }_, of pairwise disjoint
subsets of Int(X), a collection {E,}_, of closed balls, and a collection {p, }2_;
of continuous maps that satisfy conditions (a)-(c) of Lemma 4.5.
By applying Lemma 4.3 to X and {L, })_,, we may assume that Ax C Ui:f:l L,
and for all n, Ax N L, is dense in L,,.
Since X is connected and since X = Uf:f:l L, there exists a finite sequence
{mg}* | of positive integers such that
(@) {mp:1<k<M}=1{1,23,..,N},
(b) ma = N, and
(c) forall 1 <k <M —1, dist(Ly,,, Lm,,) = 0.
We now repeatedly apply Lemma 4.2. In particular, we will apply Lemma 4.2
M — 1 times to get a sequence Ay, Ao, ..., Aps of clumps over X x B.
This is the procedure:
Let A =af A.
Let 1 <k < M — 1. Suppose that we have obtained Ai. We apply Lemma 4.2
with Y = L,,, and Z = L,,,,, to obtain Ag;.
Note that by Lemma 4.2, (Ax4+1)x = (Ag)x, and every projection in (Ag41)p is
a subprojection of a projection in (Ag)g.
Now let
I =df A]u.
Then, by construction, I' is a clump over X x B, I' ~ A, I'x = Ax, and every
projection in I'g is a subprojection of some projection in Ag.
Also, by our construction, forall 1 <n < N — 1,

> Pex(KoB)).
(z,p)€T’, z€L,

But by hypothesis and since splitting operations result in ~ equivalent clumps,

we have that N
S Y 5= Y pexEo®).

n=1 (z,p)el’, z€L, (z,p)el’
Hence, since x(Ko(B)) is a group,

N-1
Y, b= Y b-Yy, Y PexK(b))

(z,p)€T, z€LN (z,p)€T n=1 (z,p)€l’, z€L,
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O

Lemma 4.7. Let X be a finite CW complex with a metric and let B be a nonunital
separable simple C*-algebra with real rank zero, stable rank one and weakly unper-
forated Ko group.

Let € > 0 be given.

Let A be a clump over X x B such that for every connected component C C X,

> e x(Ko(B).

(z,p)EA, z€C

Then there exists a clump T over X x B and there erists a sequence {L,}\_, of
pairwise disjoint subsets of X such that the following statements are true:

i x=U", L.

ii. diam(Ly,) < e, for all n.

iii. For alln, there exists a closed ball E and there exists a continuous surjection
p: E — L, such that p(Int(E)) = Ly, and p|rnyp) : Int(E) — Ly, is a
homeomorphism.

iv. A~T.

v. For alln, U'x N L, is a dense subset of Ly,.

vi. Tx CUN, L.

vii. Every projection in I'g is a subprojection of a projection in Ag.

vili. For alln, 3, yer, ver, P € X(Ko(B)).

Proof. The proof is very similar to the proof of Lemma 4.6, where Lemma 4.5 is
replaced with Lemma 4.4 and where we work in each connected component of X.
(Note that X has finitely many connected components.) O

Definition 7. Let B be a nonunital separable C*-algebra, and let X be a compact
metric space.

An essential extension ¢ : C(X) — M(B)/B is totally trivial if there exist a
strictly converging properly increasing sequence {e,}2 1 of projections in B, and a
dense sequence {x,}°° 1 in X, with each term repeating infinitely many times, such
that

g=moy

where 1 : C(X) — M(B) is the *-homomorphism given by ¥(f) =ar > ooy f(@n)(en—
en—1), and where m : M(B) — M(B)/B is the quotient map. (Here, ey =45 0.)

Sometimes, to save writing, we call a *-homomorphism ¢ : C(X) — M(B) a
totally trivial extension if it has the form in Definition 7 above. Note that such a ¢
has an affiliated clump over X x B. (See the second paragraph after Definition 4.)

We require the following result, parts of which were first proven by Lin in 1991:

Theorem 4.8. Let B be a nonunital separable simple continuous scale C*-algebra
with real rank zero, stable rank one, and weakly unperforated Ko group. Then we
have the following:

(1) (Ko(M(B)), Ko(M(B))+) = (Af f(T'(B)), Af f(T(B))++)-
(2) For any two projections P,Q € M(B)—B, P ~ Q if and only if 7(P) = 7(Q)
for all T € T'(B).
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(3) For any f € Aff(T(B))++, there exists k > 1 and a projection P € M, ®
M(B) — My @ B such that P = f. Moreover, if f() < (1)) for all
T € T(B), then we can choose P € M(B) — B.

(4) The siz-term exact sequence (for the ideal B C M(B)) induces a short exzact
sequence

0— Aff(T(B))/x(Ko(B)) — Ko(M(B)/B) — K1(B) — 0.

Proof. The first three statements were proven in [25]. A more widely available
version is [35] Theorem 1.4. (See also [9] and [37].)
The last statement is proven in [35] Corollary 1.5. O

Recall that for a nonunital C*-algebra B, 7 : M(B) — M(B)/B is the standard
quotient map.
The next lemma, once more, works for both the nonunital and unital cases.

Lemma 4.9. Let X be a finite CW complexr and let B be a nonunital separable
simple continuous scale C*-algebra with real rank zero, stable rank one and weakly
unperforated Ky group.

Suppose that ¢ : C(X) — M(B) is a totally trivial essential extension with

K()(ﬂ' o ¢) =0.

Then there exists a commutative AF subalgebra D C M(B) with 1p = ¢(1¢(x))
and DN B = {0} such that
i. every element of Ran(¢) commutes with every element of D,
ii. Ran(mo¢) C w(D), and
iii. pe€ x(Ko(B)), for every projection p € D.

In particular, mo ¢ is a null essential extension.

Proof. Since X is metrizable, let us assume that there is a metric on X.
Replacing B with ¢(1)B¢(1) if necessary, we may assume that and ¢(1) = 1 a5
Let Ay be a clump affiliated with ¢. Note that by Theorem 4.8, the hypoth-

esis that Ko(m o ¢) = 0 implies that for every connected component C C X,

Z(w,p)eAd,,:zeCﬁe X(KO(B))

We will construct an increasing sequence

D1 CDy CD3 C ...

of finite dimensional commutative unital C*-subalgebras of M(B) for which the
following statements are true:

(1) For every n > 1, there exist a collection {Xn,k}iv:"l of pairwise disjoint

subsets of X such that X = Uﬁ;‘l X k-

(2) For all n, k, diam(X, ) < L.

(3) For all n, k, there exists an ! such that X415 C Xp -

(4) For all n, k, there exists a closed ball E,, ;, and a continuous surjection p,, j :
Enk— m such that p,, x(Int(Ey k) = Xpk and the map Pn,k|1nt(En,k) :
Int(E, ;) — X,k is a homeomorphism.

(5) For all n, there exist projections P, 1, P2, ..., Pon, € M(B) — B which
are the minimal projections of D,,. For all n, k, P, ; commutes with every
element of Ran(¢), and ﬁnk € x(Ko(B)).
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(6) For every n, there exists a totally trivial unital extension
¢n : C(X) — M(B)
with an affiliated clump Ay, such that ¢, (f) — ¢(f) € B for all f € C(X),
and every projection in (Ag, )5 is a subprojection of a projection in (Ag)5.

Moreover, for all n, k, P, ; commutes with every element of Ran(¢,).
(7) For every n, k, the kernel of the *-homomorphism

C(X) - n,kM(B)Pn,k : f = Pn,k¢n(f)Pn,k = ¢n(f)Pn,k

is Co(X — Xpn k). In other words, the above *-homomorphism induces a
unital *-monomorphism

(bn,k : C(m) - n,kM(B)Pn,k
where for all f € C(X),
Onk(fle ) = o) Pk

¢n.k Will be a unital totally trivial extension of P, xBP, by C(Xnx)
such that Ko(mo ¢p ) =0.
(8) For every n, k, there exists a totally trivial unital extension

¢n,k : C(En,k) - n,kM(B)Pn’k
with Ko(m oy, 5) = 0 such that for all f € C(X),
™o d}n,k(f © Pn,k) =mo ¢n,k(f|m)

(9) For all n, k, there is a clump Ay, , on E, p X P, xBP, j affiliated with 1y, i
such that (Ay, )8 € (Ag,)s, and thus, every projection in (Ay, , )5 is a
subprojection of some projection in (Ag)g.

We denote the above statements by “(*)”.
The construction (and proof of the statements in (*)) will be by induction on n.

Basis step n = 1.

Since X is a finite CW complex, X can be partitioned X = |_|;]:1 K; where for all

—

J, Kj is clopen and connected. By hypothesis, ¢(xx;) € x(Ko(B)) for all j. (Here,
Xk, is the characteristic function on Kj;.) Hence, replacing B with ¢(x,)Bo(xx;)
(1 < j < J) if necessary, we may assume that X is connected. (Note that for all j,
M(o(xk,;)Bo(xk,)) = d(xx,; ) M(B)o(xx,)-)

The rest of the Basis step essentially follows immediately from Lemma 4.7. More
precisely, we proceed as follows:

We have that Ay is a clump over X x B and, by hypothesis, E(w,p)eMﬁ €

x(Ko(B)). Hence, by Lemma 4.7, let A’ be a clump over X x B and let {X; ,}2",
be a collection of pairwise disjoint subsets of X such that the following statements
are true:

X =UM Xig
ii. diam(X1x) < 3 forall 1 <k < Ny.
iii. For all 1 < k£ < Ny, there exist a closed ball F;; and a continuous sur-
jection py g : Erp — m such that py x(Int(E1 %)) = X1k and the map
PLE Int(Ey ) Int(E1 k) — X1k is a homeomorphism.
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iv. AI ~ A¢.
v. For all k, Ay N X1 1, is dense in X7 k.

vi. Ay €U, X g

vii. Every projection in Aj is a subprojection of a projection in Ay.
vili. Forall &, 3°, enr vex, , P € X(Ko(B)).
Let ¢1 : C(X) — M(B) be the totally trivial unital extension given by

n(f)=a Y, fl@p
(z,p)en

for all f € C(X).

Since A’ is a clump affiliated with ¢;, we define

A¢1 =df A
Since A ~ A/,
To ¢ =Tmog,
and since Ay, = A/, every projection in (Ag, )5 is a subprojection of a projection
in Ag.

For all 1 <k < Ny, let
Py =ar Z p € M(B),
(z,p)EN, TEX 1 i,

where the sum converges strictly. Hence, P; j is a projection in M (B) such that
P, commutes with every element of Ran(¢) U Ran(¢1), 1317;C € x(Ko(B)), and
ZQL Py = 10(s)- Note that by Definition 4 (2), Py ¢ B.

Moreover, it is clear that for all 1 < k& < Ny, the kernel of the map

C(X) = PLgMB)Pry : f = ¢1(f) P
is Co(X — X1,), and we get an induced totally trivial unital extension
b1k C(X15) = PLipM(B)Pyy
where for all f € C(X),
o1k (flx) = 01(f) Prke-

And by Theorem 4.8 (2), since X; i, is path-connected, the range of Ky(¢1 1) is the
subgroup of Ko(M(B)) generated by [P x]. Hence, Ko(m o ¢1 ) = 0.
For all 1 < k < Ny, let

Y1k : C(Er k) — PrLgM(B)P

be given by:
V1k(f) =ar > fy)p
y=(p1,x) "1 (z), €EX1 %, (z,p)EN
for all f € C(E ).
Note that 11,1 is a totally trivial unital extension of P yBP; i by C(E1 1),
Y1x(f o prr) = d1,6(f)
for all f € C(X1),
Y1k(foprr) = d1(f) Pk
for all f € C(X), and Ko(m oty ) =0.
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Let
Ay, =ar {(y,p) € Int(Evr) x B: (prr(y),p) € A'}.
Then Ay, , is a clump affiliated with 1y such that (Ay, )5 € (Ag,)s. In
particular, every projection in (Ay, , )5 is a subprojection of a projection in Ag.
Let

Dy =g C*(P11,Pro,.., Pin,) =CPiy +CPio+ ... + CPy y, = CN.
This completes the basis step.

Induction step.

Suppose that Dy, {Xn,k}fcv:nlv {En,k}fcvznlv {Pn,k}gﬁp {Pn,k}iv:nlv ¢n7 A¢n7 {¢n,k}§cv:nl’
{1}, and {Awn,k}g:ﬁ have been constructed to satisfy the statements in (*).

Ny, Nn N, N,

We now construct Dp41, {Xn+1,6 1 s {Ent1k s s Ptk oet s {Prt 1k ey s

N7L N7L N7L
¢n+1a A¢>n+1a {¢n+1,k}k:r1’ {wnJrl,k}k:Irl’ and {Awn+1,k}k:f1'

By the induction hypothesis, for all n,k (with 1 < k < N,), ppr : Engr —
Xnk is a continuous surjection such that p, x(Int(Ey,x)) = X, and the map
Pkl int(E, )+ INE(En k) — Xy 1 is @ homeomorphism.

Also, by the induction hypothesis, for all n,k (1 < k < N,,),

wn,k : C(En,k) — n,kM(B)Pn,k - M(Pn,kBPn,k)
is a totally trivial unital extension of P, xBP,x by C(Enk), Ay, , is a clump
over By i X Pp xBP, , with (Ay, )8 C (Ag,)s and such that every projection in
(Ay, ,)B is a subprojection of a projection in (Ag)s, and

> pex(Ko(B).

(z,p) EAwn,k

Hence, by Lemma 4.6, for all 1 < k < N, let I',11,5x be a clump over F,  x
Py, ;BP,  and let {EZ+1 kl}f\i"i be a collection of pairwise disjoint subsets of

Int(E, ) such that the following statements are true:

L Eng= UlAikl Ergwrl,k,l-
ii. For all I, let X,11 11 =af Pn,k(Erng,k,l) CX,rCX.
Then diam(X,+1x,1) < ﬁ.

iii. For all k,[, there exist a closed ball E, 1 1,; and a continuous surjection
Pt Bkt = By gy © Eng such that pf, g (Int(Eny1 ) =
Efwrl’k’l and the map p;z+17k,l|1nt(En+1,k,l) c Int(Epy1k1) — ErgLJrl,k,l is a
homeomorphism.

iv. For all k, Ay, ~ Tng1k.

v. For all k,1, (Tn+1,6)E, , N Ey ., is a dense subset of E |, ;.

vi. For all k, (Cny1k)E, . € Uih Bt

vii. Every projection in (I',,41,%)5 is a subprojection of a projection in (Ay, , ).
Hence, every projection in (I';,11 x)p is a subprojection of a projection in
(Mg, )5 U (Ag)s.

viii. For all k,1,

> p € x(Ko(B)).

(z,p)El 41k, mGEZ+1,A:,l
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For all n, k, [, let
Prtikl t Byt kg — Xk

be the continuous map given by
/
Pn+1,k,01 =df Pn,k © Prny1k,l-

Recall that p;erl,k,l(Int(En-i'Lk,l)) = Erngrl,k,l g I’I’Lt(Emk), p’:z+1,k),l|lnt(En+l,k,L) .
Int(Epi11) — EZ+1,1<,1 is a homeomorphism, p, x(Int(En k) = Xk, Pkl ine(e, o)
Int(E, k) — Xnk is a homeomorphism, and that X, 1 k1 =af pn,k(EfH_l?k’l).

Hence, since Ej,11k, is compact, we have that pni1k1(Ent1.k1) = Xnt1,k0,
and pni1k1 ¢ Enti,kg — Xnt1,k, i a continuous surjection. We also have that
Pt 1,k (Int(Ent1,k,1)) = Xng1,k, and that the restricted map pry1,k,1|rne(E
Int(En+1,k,1) — Xnt1,k,1 s a homeomorphism.

et lk,l) -

We henceforth view pn41,5,; as a map from Ep,4q1 5, to m, i.e., we view
Pn+1,k, as a map of the form

Pr+ikl Btk — Xnt1k0s

which is continuous and surjective.
Moreover, {Xn,+17k7l}l]\i’“1 is a collection of pairwise disjoint subsets of X, ; such
that
M,

U Xnt1,60 = Xk
=1

Nn o, . S c
Hence, {Xn,k,l}{zkik:l is a collection of pairwise disjoint subsets of X such that

Nn Mk,

X=Xk

k=11=1

Now for all 1 < k < N, for all 1 <1 < My, let Pyy1k; € M(B) — B be the
projection given by

Pkl =df Z D.

(2,p) €l 41k, TEEY
Then for all &, 1,
Poiikg < P,
P,k commutes with every element of Ran(¢) U Ran(¢n,k), and

Pri1rs € x(Ko(B)).

Moreover, for every k,

M,
Pn,k = § Pn—i—l,k,l;
=1

and thus,
Nn Mk
Tymp) = Z Z Ptk
k=1 1=1
Let

Pnt1 : C(X) — M(B)
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be the unital *-monomorphism given by
Gnt1(f) =ar Z f(@)p
-T:Pn.k(?/)v (y,P)EF7L+1,k7 1<k<N,

for all f € C(X).
Then
7TO¢ = 7T0¢n+1,

and for all k,, P41k, commutes with every element of Ran(¢,41).
Define

N,
Mgy =ar {(,p) : I <k < Ny € Byposite @ = ppi(y) and (y,p) € | Tyrn}-
k=1

Then Ag, ., is a clump over X x B that is affiliated with ¢, 1, and every pro-
jection in (Ag, ., )s is a subprojection of a projection in (Ag)s.
For every k,l, since the restriction map p”vk|E;‘i+1.k,z : Efwrl’k’l — Xnt1,k,1 18 2
homeomorphism, the kernel of the map
C(X) = Pog1, ks gMB)Prgr kg f = Pt o1 Ont1(f) Prgi kg = Gnt1 (f) Ptk

is Co(X — Xyt1.%1). And thus, the above map induces a unital *-monomorphism
1kt 2 O(Xnt1,k0) = Pros1,kaM(B)Poi1 k-
Also, for all k,1, let
Ynt1k0  C(Enti,k1) = Pog1kiM(B)Prti ki
be the totally trivial unital extension that is given by
Unt1,k0(f) =ar Z f(@)p,
(¥:P)ETnt1,k; TEIMU(Ent1k1)s Prpy g, (€)=Y
for all f € C(Ept1,k,1)-
Clearly, for all f € C(X),
T 0 Uitk 1 (f © Prtikt) =T 0 Gnyr it (fl577)-

Also, by Theorem 4.8 (2), since X, 11 x, is path-connected, the range of Ko (¢n+1,k.1)
is the subgroup of Ko(M(B)) generated by [P,11.x,]. Hence, Ko(7 0 ¢py1x,1) = 0.
Similarly, Ko(m o ¢pt1,k1) = 0.

For every k, 1, let

Ay, iiwr =dar {(z,p) : 2 € Int(Epy1 k) and Jy s.t. p;H_Lk,l(x) =y and (y,p) € Tpt1k}-

Then Ay, ,, ., is a clump over E, i1 k1 X Pry1,k,1BPny1,k, which is affiliated
with ¥y, 41,11 Moreover, (Ay, ., ,)8 C (Ag, )5, and hence, every projection in
Ay, 1., is @ subprojection of some projection in Ay.

Let D41 € M(B) be the commutative finite dimensional unital C*-subalgebra
given by

D1 =df C" (Ppyig 01 <k < Np, 1 <1< My).

Now, in a consistent manner, relabel

{Xn-i-l,k,l};g\];u:];v {En-i-l,k,l};g\ZUZiv {pn+17k,l}kNg1l:]1a {Pn-l-Lk,l};cV;u:];v {¢n,+17k7l}kN;1l:]1a

N, Mz
{wnJrl,k,l}k:ll:kl
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with
{X st s A Bk ot s donrri oot {Pasri et s Abnatn oty {¥nsnk bory
respectively.
This completes the inductive construction.

Let D C M(B) be the commutative AF subalgebra given by

D=4 |J Da
n=1

Then D has the required properties. Firstly, property i. of Lemma 4.9 follows
from (*) statement (5).

Next, property ii. of Lemma 4.9 follows from (*) statements (2), (5), (6) and
(7). In more detail, let f € C(X) and € > 0 be given. By (*) statement (2), choose
n > 1 sufficiently large so that for all k, for all x,y € X, x, |f(2) — f(y)] < e
Therefore, by (*) statement (7), for all k, ¢, (f)P, x is norm within € of a scalar
multiple of P, ;. Hence, by (*) statements (5) and (6), for all k, m o ¢(f) is norm
within € of an element of 7(D,,) C (D). Since € was arbitrary, m o ¢(f) € w(D).

Finally, property iii. of Lemma 4.9, follows from (*) statement (5).

U

The last result, once more, works in both the unital and nonunital cases.

Theorem 4.10. Let X be a finite CW complex and let B be a nonunital separable
simple continuous scale C*-algebra with real rank zero, stable rank one and weakly
unperforated Ky group.

Suppose that ¢ : C(X) — M(B)/B is an essential extension.

Then the following statements are equivalent:

(1) ¢ is a null extension.
(2) ¢ is a totally trivial extension with Ko(¢) = 0.
(3) If, in addition, [1rqpy/8] = 0 then ¢ is self-absorbing, i.e., ¢ ® ¢ ~ ¢.

Proof. Since X is metrizable, let us assume that there is a metric on X.

The equivalence of (1) and (3) follows from Theorem 3.4.

That (2) implies (1) follows from Lemma 4.9.

All that remains is to prove that (1) implies (2). Say that ¢ : C(X) — M(B)/B
is a null extension. It suffices to prove that ¢ is totally trivial.

One can easily construct a totally trivial extension ¢ : C(X) — M(B)/B with
Koy(¢) = 0 such that ¢ is unital if and only if ¢ is unital. Here is a sketch of the
proof: Suppose that ¢ is unital. (The proof of the nonunital case is similar and
easier.) Since Ko(¢) = 0, [1ym)/8] = 0 in Ko(M(B)/B). Hence, by Theorem
4.8, 174\(& € x(Ko(B)). Say that X is a disjoint union X = |_|j\7:1 X; where
each X, is path-connected. By Theorem 4.8, let Pi, Ps,...,Pn € M(B) — B be
pairwise orthogonal projections such that for all j, /PZ € X(Ko(B)), and 1pq5) =
Py + P, + ...+ Py. Since B has real rank zero, for all j, let {p;;}7°; be a sequence
of pairwise orthogonal nonzero projections in B such that P; = Y ;°, p;;, where
the sum converges strictly. Also, for all j, let {z;;}7°, be a dense sequence in X;
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such that each term repeats infinitely many times. Then ¢ : C(X) — M(B) : f —
Z;.V:l >oioy f(zj1)pj induces a totally trivial unital extension. Also, since each X;
is path-connected, if we define 1) =4 7 o %, then, by Theorem 4.8, we have that
Ko(y) = 0.
By Lemma 4.9, 9 is a null extension. Hence, by Theorem 3.4, ¢ is self-absorbing,
ie.,
YVOY~ 1.

But since ¢ is a null extension, by Theorem 3.4, ¢ is also self-absorbing, i.e.,
PD P~

By Theorems 2.6 and 2.7, there exists a *-monomorphism ¢ : C(X) — M(B)/B
where o is unital if and only if ¢ is unital such that

¢~ odY.

Hence,
QDY ~o DYDY ~oDY ~ @

By a similar argument

PDY ~ .

Hence,
¢~

Hence, since 1) is totally trivial, ¢ is totally trivial, as required. O

In [41], we will show that under the hypotheses of Theorem 4.10, the conditions in
the conclusion of Theorem 4.10 are each equivalent to the condition that K L(¢) = 0.
We will then use this to classify all extensions of the form

0—-B—-D—C(X)—0.
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