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Abstract

The problem of hypothesis testing about two Poisson means is addressed. The usual conditional
test (C-test) and a test based on estimated p-values (£-test) are considered. The exact properties
of the tests are evaluated numerically. Numerical studies indicate that the E-test is almost exact
because its size seldom exceeds the nominal level, and it is more powerful than the C-test. Power
calculations for both tests are outlined. The test procedures are illustrated using two examples.
© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

The Poisson distribution is well suited to model many processes in a broad variety
of fields such as agriculture, ecology, biology, medicine, commerce, industrial quality
control and particle counting to name just a few. Specific examples are given, among
others, in Przyborowski and Wilenski (1940), Gail (1974), Shiue and Bain (1982),
Nelson (1991), Sahai and Misra (1992), and Sahai and Khurshid (1993). A Poisson
model is appropriate in a situation where we count the number of events X in a unit
interval of time or on an object. If the mean rate of occurrence of events is 4, then
the probability distribution of X can be modeled by a Poisson distribution with mean
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/, say, Poisson(4). In this case, the probability mass function of X is given by
J¥e=*
x!

PX =x|1)= x=0,1,2,..., 2>0. (1.1)
Let Xi1,...,Xin, and Xai,...,X5,, be independent samples, respectively, from Poisson(4;)
and Poisson(4,) distributions. It is well known that

ny
X = ZX“ ~ Poisson(n;4;)

i=1

independently of

n
Xy = Xo; ~ Poisson(nz/y). (1.2)
i=1
Let k; and k&, be the observed values of X; and X;, respectively. The problem of
interest here is to test

Hy: 11— <d vs. Hy:21—7,>d, (1.3)

where d > 0 is a given number, based on (n,k;,ny,k;). Another way of testing the
equality of two Poisson means is to test the hypotheses

O:Z—ISC VS. Ha:;h—l>c, (1.4)

A2 A2
where ¢ > 0 is a specified number.

By far the most common method of testing the difference between two Poisson
means is the conditional method that was first proposed by Przyborowski and Wilenski
(1940). The conditional distribution of X; given X; +.X, follows a binomial distribution
whose success probability is a function of the ratio 4;/4, (see Section 2). Therefore,
hypothesis testing and interval estimation procedures can be readily developed from
the exact methods for making inferences about the binomial success probability. In
particular, Chapman (1952) proposed a confidence interval for the ratio 4;/4, which
is deduced from the exact confidence interval for the binomial success probability
due to Clopper and Pearsons (1934). Since then many papers have addressed these
inferential procedures based on the conditional distribution; see Gail (1974), Shiue
and Bain (1982), Nelson (1991), Sahai and Misra (1992), and Sahai and Khurshid
(1993). These articles consider power computations when sample sizes n; =n; =1 and
ny =ny =n. Specifically, Gail (1974) gives plots for determining the power for a given
ratio /4, and A,. Schwertman and Martinez (1994) give several binomial-normal
based approximate methods for constructing confidence interval for 1; — 4. Shiue and
Bain (1982) pointed out situations where unequal sample sizes arise (see Example 2
in Section 5 of this paper), and suggested a normal based approximate method for
computing sample sizes at a given level and power.

Although the conditional test is exact and simple to use, in the two-sample binomial
case such a conditional test (Fisher’s exact test) is known to be less powerful than some
unconditional tests. For example, see Liddell (1978), Suissa and Schuster (1985), and
Storer and Kim (1990). Furthermore, in the context of the present problem, Cousins

H



K. Krishnamoorthy, J. Thomson/Journal of Statistical Planning and Inference 119 (2004) 2335 25

(1998) proposed a numerical method for computing a confidence interval for the ratio
J1/2, based on the joint distribution of X; and X;. Even though Cousins’ approach
is numerically intensive, it provides shorter intervals than the conditional confidence
interval due to Chapman (1952). In view of these results, in this article, we propose
an unconditional test for testing the hypotheses in (1.3).

This article is organized as follows. In the following section, we describe the condi-
tional test (C-test) due to Przyborowski and Wilenski (1940). In Section 3, we propose
our new test which is obtained by suitably modifying the binomial test due to Storer
and Kim (1990). Since the new test is essentially based on the estimated p-values of
the standardized difference, we refer to this test as the E-test. In Section 4, we outline
a numerical method for computing the exact sizes and powers of the proposed tests.
Using this numerical method, we evaluated the sizes and powers of these two tests
for various parameter configurations and nominal levels in Section 5. Our extensive
numerical studies show that the performance of the E-test is very satisfactory in terms
of size, and is more powerful than the C-test. In particular, there are situations (see
Table 1(b)) where the E-test requires much smaller samples than those required for
the C-test to attain a specified power. In Section 6, both tests are illustrated using two
examples. Some concluding remarks are given in Section 7.

2. The conditional test

The conditional test (C-test) due to Przyborowski and Wilenski (1940) is based on
the conditional distribution of X given X; 4+ X, = k. Note that the distribution of X
conditionally given X; + X, =k is binomial with the number of trials £ and success
probability

p(2a/22) = (n1/n2)(21/72)/(1 + (n1/n2)(71/72)). (2.1)

This C-test rejects Hp in (1.4), whenever the p-value
k k A i
Py = kilk p(eN=>_ [ | (pc)(1 = pe)) 7 <, (2.2)
=k \ !

where p(c) is the expression in (2.1) with A;/4, replaced by c. For a given ¢, the
p-value in (2.2) can be easily computed using widely available softwares that compute
the binomial distribution. Furthermore, the p-value for testing

H() . ;vl = ),2 VS. Ha . il 7é iz
is given by 2 x min{P(X; = ki |k, p(¢)),P(X1 < ki|k, p(c))}.

3. The proposed test

The test we consider here is based on the standardized difference between X;/n; and
X, /n,. The variance of the difference X;/n; — Xp/ny is given by

Y
Var(X; /ny — Xa/ny) = ;: + 2. (3.1)

ny
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Note that X;/n; is an unbiased estimate of A;, i =1,2.... This leads to the unbiased
variance estimate given by

o X X;
Vy= Xi/m + ﬂ (3.2)
ny n;

Using this unbiased variance estimate, we consider the standardized difference

X — X; —d
Tyix, = 1/m Az/nz (3.3)
Vx

as a pivot statistic for our testing problem. For a given (n,k,ns,k), the observed
value of the pivot statistic Ty, x, is given by
ky/ny — kafny —

T o = g5
k

where 7V is defined similarly as Vy in (3.2) with X replaced by .

The p-value for testing (1.3) is P(Tx,x, = Tk 4 |Ho) which involves the unknown
parameter 4,. However, following the approaches of Liddell (1978) and Storer and
Kim (1990), we can estimate the p-value by replacing A, by its estimate Ay;. Note
that when A; = A, + d, we have

X1+ X A A d
E 1+ X2 :11114-?122212_F ni .
ny + ny ny +np ny + ny

Therefore, for a given k; and k,, an estimate of A, is given by

N kl + kz d}’ll
Jok = — ) 34
* ni+ny n+m (3-4)

Using this /izk, we estimate the p-value P(Ty,x, = T4 |Ho) by

*"1(Azk+d) n /L +d)™ e*nz)Zk 5 Ao Y2
ZZ ( 1(Z2k +d)) ( '2 k) s > Tos) (3.5)

1! X!
—0x,-0 2

where [[.] denotes the indicator function. For a given nominal level o, the test rule
is to reject Hp in (1.3) whenever the estimated p-value in (3.5) is less than «. The
p-value for testing

Hy: 1= +d vs. H,: 4 75 o +d (3.6)

can be computed using (3.5) with Ty, x, and Tj 4, replaced by their absolute values.
The izk in (3.4) may be less than or equal to zero. However, we note that /":21{ <0
implies that ki/ny — ka/n; < d, and in this case the null hypothesis in (1.3) cannot be
rejected. In other words, it is not necessary to compute the p-value when Ay < 0.

Remark 1. We see in Figs. 2a—f and in 4a—f, the size of the test attains the maximum
at the boundary 4; = J; + d. Therefore, it suffices to compute the p-value for testing
(1.3) at the boundary 4, = 4, +d.

Remark 2. It should be noted that the p-value in (3.5) is essentially equal to the one
based on the parametric bootstrap approach (see Efron, 1982, p. 29). Recall that in
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parametric bootstrap approach the p-value is obtained by using the distribution of the
Monte Carlo samples generated from Poisson(nl(f,Zk +d)) and Poisson(nziy{). In par-
ticular, in parametric bootstrap approach, the p-value is estimated by the proportion of
simulated samples for which 7%, , > T}, +, where as in (3.5) we use the exact sampling
distribution of T, x, based on Poisson(nl(/iz/c +d)) and Poisson(ngﬂtz/c). Therefore, the
present approach is equivalent to the parametric bootstrap approach applied in an exact
manner. Furthermore, it is known that the results of a pivot based parametric bootstrap
approach (percentile #) are in general preferred to those based on non-pivot based
approach (see Hall, 1992, p. 141). For this reason, we use Ty, x, given in (3.3)
instead of just the difference X;/n; — Xy/n,.

Remark 3. We consider the pivot statistic Ty, x, instead of the one based on the pooled
variance estimate (1/n) + 1/ny)((X1 + X2)/(n; + ny)) under Hy : 41 — 4, = 0. In other
contexts, such as two-sample binomial problem, pivot statistics based on a pooled
variance estimate are commonly used. However, our preliminary numerical studies
showed that the sizes of test based on the Ty, x, and those of the one based on pooled
variance estimate are almost the same but the former test has slightly better power
properties than the latter.

Since our test is based on an estimated p-value, its properties should be evaluated.
In the following section, we outline a method of computing the powers of the tests.

4. Power calculation

The power of a test is the probability that the null hypothesis is rejected when it is
actually false. For hypotheses in (1.3), the power is the actual probability that the null
hypothesis is rejected when 1, is indeed greater than A, + d. For a given «, 4; and
n, = l 2, the exact power of the C-test is given by

lll/q )» k] nZ/LZ )L X
ZZ L D PG 2 bk + ko pUnfin)) <), (1)
=0 k= '

where X1 follows a binomial distribution with number of trials k; + k> and success
probability p(4i/42) is given in (2.1). Note that in (4.1), we are merely adding the
probabilities over the set of values of (kj,k;) for which the null hypothesis is rejected.
If 4y < Ay +d, then (4.1) gives the size of the test; otherwise it gives the power. The
exact power of the E-test is given by

ZZ "'A'(mil)k‘ e "R (nyln )R
k!

=0 k=

' X2!

<1 li i e Mt Dy (Lo + dm e7"2/2‘(”2}216) ’

0x,=0

X I[Txl,xz = Tkl,kz] < OC‘| . (4.2)
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As we already mentioned in Section 3, )tz;c could be negative if the observed difference
ki/n1—ky/ny < d. In this case, we can not reject Hy in (1.3), and so we set the p-value
to one. In other words, we assign zero to the indicator function (by the multiplication
sign) in (4.2) whenever k;/n—ky/n; < d. Since the above power function involves four
infinite series, we shall explain a computational method for evaluating the power. We
note that the probabilities in (4.2) can be evaluated by first computing the probability at
the mode of the Poisson distribution, and then computing the other terms using forward
and backward recurrence relations for Poisson probability mass function. Toward this,
we note that for X ~ Poisson(0), the mode of X is the largest integer less than or
equal to 0, and

P(X:k—&—l):%P(X:k), k=0,1,...,

and
k
PX =k - l):aP(X:k), k=1,2,... .

Evaluation of each sum in (4.2) may be terminated once the probability is less than
a small number, say, 10~7. Furthermore, the sum over x| inside the square bracket in
(4.2) should be terminated once it reaches a value greater than «. Using these steps,
we developed Fortran programs for computing p-values and powers of the E-test. The
programs will be posted at the website http://lib.stat.cmu.edu.

Remark 4. Note that in the above method of computing powers, the tail probabili-
ties (in each sum) which are less than 10~7 are omitted. In order to understand the
magnitude of the sum of the neglected tail probabilities, we computed (4.2) using the
above method and the direct method (each sum is evaluated from 0 to 100) when
(A1, A1,m1,m2) = (2,2,3,4),(1,1,2,2),(4,4,1,1),(5,5,4,4) and (2,4,5,7). The highest
neglected probability in the direct method is P(X = 101) for each case. This proba-
bility is less than 10~2° for all sample size and parameter configurations considered.
Based on the computed values, we found that the sums of the neglected probabilities
for the method discussed in the previous paragraph are less than 10~ for all the five
cases.

5. Power studies and sample size calculation

In view of (1.2), without loss of generality, we can take n; =n, =1 when comparing
the powers of the C-test and E-test. The powers of both tests are computed using the
numerical method given in Section 4 when Hy : 4y — A, <d vs. H, : 41 — A, >d.
For the case of d =0, the sizes and powers of both tests are plotted, respectively, in
Figs. la—f and 2a—f. It is clear from Figs. la—f that the size of the E-test exceeds the
nominal o« by a negligible amount. The sizes of the C-test are always smaller than
the nominal levels (for all the cases considered), which indicates that the C-test is
too conservative. We observe from Figs. 2a—f that the power of the E-test is always
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Fig. 1. Exact size of the E-test and the C-test as a function of 4 at various nominal levels under the null
hypothesis Hy : 2] — 4, =0: (a) «=0.20; (b) «=0.10; (¢) «=0.05; (d) «=0.01; (¢) 2=0.005; (f) =0.001.

larger than that of the C-test. The power curves of both tests are getting closer when
A1 and A, are large. In view of (1.2), we see that for fixed A, — 4, > 0, the powers
of both tests are increasing with respect to the sample size, and the difference between
the powers are small for large sample sizes (see Figs. 2e and f). The sizes and powers
of both tests are plotted, respectively, in Figs. 3a—f and Figs. 4a—f for a few values of
d > 0. In Figs. 3a—f, we observe that the sizes of the E-test never exceed the nominal
level, and the sizes of the C-test are always lower than those of the E-test. We observe
again from Figs. 4a—f that the E-test is much more powerful than the C-test, and in
some cases the differences between the powers are quite large (see Figs. 4a and d).
In order to understand the gain in power in terms of sampling cost, we computed
the sample sizes for a given level and power. Although, expressions (4.1) and (4.2)



30 K. Krishnamoorthy, J. Thomson|Journal of Statistical Planning and Inference 119 (2004) 2335

(a) Ao = (.10 (d) Ay = 10

0 2 4 G 8 10 5 10 15 20 25 30 35
/\ 1 /\ 1
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I
E-Test
0.8 HC-Test

(c) /\2 =2 (f) /\2 = 50

0.6
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20 40 50 G0 70 30 90 100

A[ ’\l

Fig. 2. Actual power of the E-test and the C-test as a function of A; at the nominal level & = 0.05 when
Hy @ A1 — 722 > 0: (a) 42 =0.10; (b) 42 =0.50; (c) 12 =2; (d) 42 =10; (e) 1 =20; (f) A =50.

can be used to find unequal sample sizes to attain a given power, for simplicity we
computed equal sample sizes required to have powers of at least 0.80, 0.90 and 0.95
at the level of significance 0.05. We provide sample sizes in Table 1(a) when d =0
and in Table 1(b) for some values of d > 0. The sizes of the tests are computed by
choosing 4; such that 4; — 1, =d. We observe from these table values that the sizes of
the E-test are less than or equal to the nominal level 0.05 for all the cases considered.
To attain the same power, the sample size required by the E-test is always less than
or equal to those required by the C-test. In particular, we see from Table 1(b) that the
E-test requires much smaller sample sizes and thereby reduces the cost of sampling
considerably.
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Fig. 3. Exact size of the E-test and C-test as a function of A at various nominal levels under the null
hypothesis Hy : 41 — A, =d: (a) « =0.01, d =0.10; (b) « =0.01, d =0.50; (¢) « =0.01, d =1; (d)
o=0.05, d =3; (e) «=0.05, d =10; (f) « =0.05, d =20.

6. Illustrative examples

Example 1. Przyborowski and Wilenski (1940) considered this example for illustrating
the C-test. Suppose that a purchaser wishes to test the number of dodder seeds (a weed)
in a sack of clover seeds that he bought from a seed manufacturing company. A 100 g
sample is drawn from a sack of clover seeds prior to being shipped to the purchaser.
The sample is analyzed and found to contain no dodder seeds; that is, k& = 0. Upon
arrival, the purchaser also draws a 100 g sample from the sack. This time, three dodder
seeds are found in the sample; that is, k&, =3. The purchaser wishes to determine if the
difference between the samples could not be due to chance. In this case Hy : 4y = 4,
vs. H, : A1 # 7. Using the C-test, we computed the p-value as 0.2500. The E-test
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Fig. 4. Actual power of the E-test and the C-test as a function of A; at the nominal level o = 0.05 when
Hy: Ay — Ay >d: (a) 12 =40, d=2.0; (b) /=140, d=2.0; (c) 12 =240, d=2.0; (¢) 1, =4.0, d="1.0;
(d) 4, =120, d =7.0; (f) 1, =36.0, d ="7.0.

produced a p-value of 0.0884. Thus the E-test provides evidence to indicate that the
difference between sample counts is not due to chance at the level of significance 0.10.
Suppose that on another occasion it was found that &y =2 and k, = 6. The C-test
yielded a p-value of 0.2891, where as the E-test yielded a p-value of 0.1749. We
again see that the p-value of the E-test is smaller than that of the C-test, although the
conclusions of both tests are the same at any practical level of significance.

Example 2. This example is taken from Shiue and Bain (1982). Suppose in a fleet of
planes a new type of component is being used. We wish to test whether this component
is better than the current component being used in another fleet of planes. That is, we
wish to test whether the failure rate of the new component is less than that of the
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Table 1

(a) Comparison of sample sizes required for a given level and power
(Hy : 41 — 22 >0; ny=ny=n; «a=0.05)
Sample size n Sample size n

e 2o Power C-test E-test A 2o Power C-test E-test

08 05 080 95 (0.040) 89 (0.050) 3.0 2.0 0.80 33 (0.042) 31 (0.050)

0.90 129 (0.041) 123 (0.050) 0.90 45 (0.043) 43 (0.050)
0.95 161 (0.042) 155 (0.050) 0.95 56 (0.044) 54 (0.050)
15 05 080 14 (0.029)  12(0.045) 40 2.0  0.80 10 (0.037) 10 (0.050)
0.90 18 (0.032) 17 (0.048) 0.90 14 (0.038) 13 (0.049)
0.95 23 (0.033) 21 (0.049) 0.95 17 (0.039) 16 (0.050)
35 05 080 4 (0.008) 3 (0.044) 100 80 0.80 29 (0.046) 28 (0.050)
0.90 4 (0.008) 4 (0.049) 0.90 40 (0.046) 39 (0.050)
0.95 5 (0.012) 5 (0.047) 0.95 50 (0.047) 49 (0.050)

(b) Comparison of sample sizes required for a given level and power
(Hy : 4y — o >d; np=ny=n; a=0.05)
Sample size n Sample size n

M A d Power C-test E-test A Ay d Power C-test E-test

0.5 03 0.1 080 672 (0.045) 489 (0.050) 4.0 1.0 2.0 0.80 91 (0.044) 30 (0.049)
0.90 921 (0.046) 678 (0.050) 090 124 (0.045) 41 (0.049)
0.95 1156 (0.046) 856 (0.050) 095 155 (0.045) 52 (0.049)

0.7 03 0.1 0.80 95 (0.038) 67 (0.050) 7.0 1.0 2.0 0.80 9 (0.032) 3 (0.049)

090 128 (0.041) 92 (0.049) 090 12 (0.033) 4 (0.045)
095 159 (0.041) 116 (0.049) 095 14 (0.034) 5 (0.044)
12 03 0.1 080 21 (0.026) 14 (0.050) 11.0 1.0 2.0 080 4 (0.021) 1 (0.035)
090 27 (0.029) 19 (0.050) 090 4 (0.021) 2 (0.035)
095  33(0.031) 24 (0.047) 095  5(0.025) 2 (0.035)

current component. Let A; be the failure rate of the current component with a fleet
size of n; =20 planes, and 1, be the failure rate of the new component with a fleet size
of n; =10 planes. We plan to observe both fleets for the same number of flying hours
per plane. From laboratory testing, we know that the failure rate of the new component
is approximately 2 failures per 100 flying hours. It is believed that the failure rate of
the current component is twice that of the new component. Hence, 1; = 0.04 failures
per flying hour and 4, =0.02 failures per flying hour. We wish to determine how long
the experiment should be conducted to test Hy : 4 =4, vs. H, : 41 > /4, with o =0.05
and a power of 0.90.

Shiue and Bain (1982) applied the C-test, and reported that 97.5 flying hours per
plane is adequate to attain a power of 0.90. This translates to 1950 flying hours for the
first fleet and 975 flying hours for the second fleet. It should be noted that the power
computed in their paper is based on an approximate method. The actual power of the



34 K. Krishnamoorthy, J. Thomson | Journal of Statistical Planning and Inference 119 (2004) 2335

C-test (using the method in Section 5) is 0.8890. According to the exact method in
Section 5, to attain a power of 0.90, 2026 flying hours are required for the first fleet
and 1013 hours are required for the second fleet. This is considerably more hours than
those given using an approximate power. If we use the E-test, then a total of 1886
flying hours for the first fleet and 943 flying hours for the second fleet are required to
have a power of 0.90. Thus we can see that the E-test requires quite a bit less flying
hours as a whole to achieve the same size and power of the test.

7. Concluding remarks

We studied the exact properties of the conditional C-test and the unconditional E-test
based on the joint sampling distribution. Our extensive numerical studies in Section 5
clearly show that the E-test is much more powerful than the C-test, not withstanding
its size occasionally exceeds the nominal level by a small amount. Considering the gain
in power compared to the C-test and the reasonably good control of the size for the
E-test, most practitioners would prefer the E-test. Furthermore, sample size calculation
in Tables 1(a) and (b) demonstrates that the E-test is certainly preferable to the C-test
in situations where the inspection of items is time consuming and/or expensive. Even
though the application of E-test is numerically involved, modern computing technology
and sophisticated softwares allow us to compute the p-values and powers of the E-test
in a relatively easy manner. As already mentioned in Section 4, Fortran programs for
implementing the E-test are posted at the website http://lib.stat.cmu.edu, and hence there
will not be any technical difficulties in application of the E-test for practical purpose.
We also evaluated the properties of both tests for two-sided alternative hypothesis.
Since the performances of the tests are similar to those in Figs. 1-4, they are not
reported here.
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