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Summary

In this article, some simple methods for testing and estimating the parameters of some
discrete distributions are proposed. For hypothesis testing, a new test is obtained by com-
bining the usual exact test and an alternative exact test. The exact properties of the usual
exact test, the alternative exact test and the combined test are evaluated numerically for
the binomial and Poisson distributions. Numerical studies show that the combined test is
more powerful than the usual one while controlling the sizes satisfactorily. Furthermore,
the combined procedure produced confidence intervals that are practically equivalent to the
intervals based on some other complex methods. The methods are also illustrated for the
hypergeometric and negative binomial distributions.
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1. Introduction

There has been continuous interest in developing small sample inferential procedures for
some commonly used distributions such as binomial and Poisson. A reason for such interest
is that the existing exact methods are too conservative, and as a result they have poor power
properties and produce too wide confidence intervals. In general, the exact confidence inter-
vals due to Clopper-Pearson (1934) for the binomial proportion, and the Garwood’s (1936)
exact interval for the Poisson mean are too wide, yielding coverage probabilities much greater
than the specified confidence level. Several authors proposed alternative approaches to get
shorter confidence intervals for the cases of binomial and Poisson. For example, Blyth and
Still (1983) proposed a method of obtaining shorter intervals for binomial proportions, and
Casella (1986) provided an algorithm for computing those intervals. Casella and Robert
(1989) also considered the problem of obtaining shorter intervals for a Poisson mean. Even
though these intervals are shorter than the classical exact intervals mentioned above, the
methods are not so simple as the classical exact methods. There are other articles that rec-
ommend the approximate score confidence interval for the binomial proportion (e.g., Agresti
and Coull (1998)). The review article by Brown, Cai and Das Gupta (2001) evaluates the
exact properties of several approximate as well as some exact confidence intervals for the bi-
nomial case. These authors also recommend approximate intervals considered in Agresti and
Coull (1998) because of their simplicity. Even though such approximate methods typically
yield shorter confidence intervals, their coverage probability may go well below the nominal
level for some parameter and sample size combinations, and therefore they are not exact in
this strict sense.

The main criticism about the intervals due to Blyth and Still (1983) and Casella (1986)
for the binomial proportion and about the intervals due to Casella and Robert (1989) for
the Poisson case is that they are based on computationally intensive methods. Blyth and
Still technique is to find all shortest acceptance regions (in the sample space) for success
probabilities that are multiple of 0.005. After discarding the disconnected confidence set,
five rules are used to choose the confidence region among the non-unique shortest acceptance
regions. The resulting method is approximately unbiased with equal tail probabilities. In
Casella’s (1986) paper, the confidence intervals are constructed by a direct method rather
than inverting acceptance regions. Casella also provides an algorithm which, as pointed out
by Kabalia and Byrne (2001), is not easy to program. Even though these procedures are
useful to carry out a fixed level two-tail test about the mean they are not useful to compute
the p-values for a two-sided hypothesis testing about the mean. It should be noted that
an important aspect of hypothesis testing is the actual level of significance attained by the
observed data (p-value), and its magnitude explains the degree of significance.

In this article, we propose a simple approach to improve the results based on the classical
exact method. For two-sided hypothesis testing, we propose a simple alternative exact test.
Applications of the alternative exact test for the binomial and Poisson distributions showed
that it has better size and power properties than the classical exact test over a wide a range
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of parameter and sample size configurations but not uniformly. Furthermore, we found
that the alternative exact test is also conservative. Therefore, we propose a combined test
whose p-value is defined to be the minimum of the p-values of the usual exact test and the
alternative exact test. This combined test offers uniform improvement over both exact tests
while controlling the sizes satisfactorily. The p-values of both exact tests can be computed by
using a calculator that computes the distribution function of the desired discrete distribution.
We also outline a method of finding the acceptance region (in the parameter space) of the
combined test that forms a confidence set for the unknown parameter.

This article is organized as follows. In the following section, we describe the usual exact
procedure, an alternative exact procedure, and a combined method based on these two
exact procedures for making inference about the parameter of a discrete distribution. In
Section 3, all the methods are illustrated for the binomial and Poisson cases. Specifically,
exact size and power properties of the tests are studied for these two distributions. For the
binomial case, the combined method produced a more powerful test than the usual exact
test while controlling the sizes satisfactorily; the confidence intervals based on the combined
test are shorter than the usual exact intervals and practically coincide with those of Blyth
and Still (1983). The properties of the methods for the Poisson case are similar to those
of the binomial. The combined confidence interval is, in general, a member of the so called
“complete class” of confidence intervals given in Casella and Robert (1989) for each case
considered. In Section 4, we illustrate the methods for the hypergeometric and negative
binomial distributions. Some concluding remarks are given in Section 5.

2. The Methods

Let X be a discrete random variable with the probability mass function (pmf) f(x; θ),
where θ is an unknown parameter. Assume that X is stochastically monotone in θ. Consider
testing hypotheses

H0 : θ = θ0 vs. Ha : θ ̸= θ0.

Let k be an observed value of X. Since the distribution of X is known under H0, the exact
p-values of a test can be readily computed. In the following, we shall describe the usual test,
an alternative test, and the new test.

2.1 The Exact Test

For a given level α, and an observed value k of X, the usual test rejects H0 whenever the
p-value

Pe(θ0) = 2min{P (X ≤ k|θ0), P (X ≥ k|θ0)} ≤ α, (1)

where
P (X ≤ k|θ0) =

∑
x≤k

f(x; θ0) and P (X ≥ k|θ0) =
∑
x≥k

f(x; θ0).
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2.2 The Alternative Exact Test

Let µ0 denote the expected value of X under H0. This alternative test rejects H0 whenever
the p-value

P ((X − µ0)
2 > (k − µ0)

2|θ0) ≤ α,

or equivalently,
Pa(θ0) = P (X ≤ L1|θ0) + P (X ≥ L2|]|θ0) ≤ α, (2)

where L1 = [µ0 − |k − µ0|], L2 = [µ0 + |k − µ0|] and [u] denotes the largest integer less than
or equal to u.

The above new test is motivated by the test statistic
∑m

i=1(Xi − nip0)
2/(nip0(1 − p0)),

where Xi ∼ binomial(ni, pi), considered in Kulkarni and Shah (1994) and Krishnamoorthy,
Thomson and Cai (2002) for testing equality of m binomial proportions to a specified stan-
dard p0. In the latter paper, we noticed that, for testing a single binomial proportion, the
alternative exact test is different from the usual exact test and there is no clear cut winner
between them. In the following we propose a combination of the two exact tests.

2.3 A Combined Test

Our preliminary numerical studies for the cases of binomial and Poisson showed that the
alternative exact test is also conservative though, in general, less conservative than the exact
test. This suggests that the test that rejects the H0 whenever either of the test rejects H0

will be less conservative than both exact tests. Thus, we define a new combined test that
rejects the null hypothesis whenever the

min{Pe(θ0), Pa(θ0)} ≤ α. (3)

The rejection region (in the sample space) of the combined test is the union of the rejection
regions of the exact test and the alternative exact test. Because the combined test rejects
H0 whenever either of the tests rejects H0, it is more powerful than both exact tests given
above.

To shed more light on the above combined test, we computed its rejection region along
with the rejection regions of the exact test and the alternative exact test for two-sided
hypothesis testing about a binomial proportion. These rejection regions are reported in
Table 1 for testing H0 : p = p0 vs. Ha : p ̸= p0. Note that the size of a test with rejection
region R is given by

∑
k∈R P (X = k|n, p0). We observe from the table values that the size of

the combined test exceeds the nominal level when (n, p0) = (17, .20). In other situations the
rejection region of the combined test coincides with that of one or both of the exact tests,
and so the sizes are within the nominal level 0.05. Furthermore, as shown in Section 3, the
sizes of the combined test never exceed 0.06 when the nominal level is 0.05.
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Table 1. The rejection regions and sizes of the tests for the binomial case; α = 0.05

Tests n p0 Rej. Region size n p0 Rej. Region size
Exact 17 .20 k = 0, k ≥ 8 .033 22 0.4 k ≤ 3, k ≥ 14 .029

Alt. Exact k ≥ 7 .038 k ≤ 4, k ≥ 14 .048
Combined k = 0, k ≥ 7 .060 k ≤ 4, k ≥ 14 .048
Exact 20 .25 k ≤ 1, k ≥ 10 .038 25 .33 k ≤ 3, k ≥ 14 .031

Alt.Exact k = 0, k ≥ 10 .017 k ≤ 3, k ≥ 14 .031
Combined k ≤ 1, k ≥ 10 .038 k ≤ 3, k ≥ 14 .031

2.4 Exact Power and Size of a Test

The exact powers and sizes of a test can be computed using the expression∑
k∈χ

f(k; θ)I((p-value|k, θ0) ≤ α), (4)

where χ denotes the support of X and I(.) denotes the indicator function. Note that the
above expression gives the power when θ ̸= θ0 and size when θ = θ0.

2.5 Confidence Interval for θ based on the Combined Test

A 1− α confidence set for θ is the set of values of θ for which the p-values are greater than
α. For instance, an exact 1−α confidence interval for θ based on the combined test is given
by the set

{θ : min{Pe(θ), Pa(θ)} > α}. (5)

Because the combined test is more powerful than the exact test, the confidence set based on
the former is a subset of the one based on the latter. Furthermore, the combined interval
is the intersection of the intervals based on the exact tests. Therefore, a searching method,
with the endpoints of the usual exact interval as initial values, can be used to obtain the
confidence set in (5). We will later discuss this searching method in details for the binomial
case.

3. Binomial and Poisson Distributions

We now study the properties of the exact test, the alternative test, the combined test
and the confidence intervals based on them for the binomial and Poisson distributions.

3.1 Binomial Distribution

Let X ∼ binomial(n, p). The pmf of binomial distribution with number of trials n and
success probability p is given by

f(x; p) =

(
n

x

)
px(1− p)n−x, 0 < p < 1, x = 0, 1, ..., n.
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3.1.1 Hypothesis Tests for a Binomial Proportion

We want to test
H0 : p = p0 vs. Ha : p ̸= p0.

For a given n and an observed value k of X, the usual test rejects H0 when

Pe(n, p) = 2min{P (X ≤ k|p0), P (X ≥ k|p0)} ≤ α. (6)

The p-value of the alternative exact test is given by

Pa(n, p0) = P (X ≤ [np0 − |k − np0|]|p0) + P (X ≥ [np0 + |k − np0|]|p0) . (7)

The combined test rejects H0 whenever the min{Pe(n, p0), Pa(n, p)} ≤ α.

All the above tests are invariant under the transformation X → n−X and the induced
transformation p → 1− p. One of the implications is that the sizes of an invariant test are
the same when H0 : p = p0 vs. Ha : p ̸= p0 and when H0 : q = q0 vs. Ha : q ̸= q0, where
q = 1− p and q0 = 1− p0.

3.1.2 Exact Sizes and Powers of the Binomial Tests

The sizes and powers of the exact test (6), the alternative test (7) and the combined test
are computed using (4) for different parameter and sample size configurations, and plotted
them in Figures 1-3. In Figure 1(a − d), we plotted the sizes of the tests as a function of
p, and in Figure 2(a − d), we plotted them as a function of n. It is clear from these plots
that the sizes of the alternative exact test are closer to the nominal level than are the sizes
of the exact test. The sizes of the combined test exceed the nominal level in a few cases
but not more than 0.06. Furthermore, the plots of powers in Figure 3(a− d) show that the
alternative exact test is not uniformly more powerful than the exact test. But the combined
test is either as powerful as the exact test (see Figure 3b and c) or more powerful than the
exact test (see Figure 3a and d).

3.1.3 Confidence Intervals for a Binomial Proportion

The usual exact confidence limits due to Clopper and Pearson (1934) is given by

(beta(α/2; k, n− k + 1), beta(1− α/2; k + 1, n− k)), (8)

where beta(c; a, b) denotes the cth quantile of a beta distribution with shape parameters a
and b. This interval should be used with the convention that beta(α/2; 0, n + 1) = 0 and
beta(1− α/2;n, 0) = 1. This interval is equivalent to the set

{p : P (X ≤ k|p) > α/2} ∪ {p : P (X ≥ k|p) > α/2},

which is the acceptance region of the usual exact test. Because the combined test is better
than the usual test, the confidence interval based on the former is shorter than the one based
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on the latter. Let (pl, pu) denote the 1 − α confidence interval based on the combined test.
Then,

min{Pe(n, p), Pa(n, p)} > α for all p ∈ [pl, pu]

and
min{Pe(n, p), Pa(n, p)} ≤ α for all p /∈ [pl, pu].

Using a searching method with endpoints of (8) as initial values, one can find (pl, pu).
The following algorithm is useful to compute the confidence interval (pl, pu) for a binomial
proportion p.

Algorithm 1

For a given k, n and α:
Set p = beta(α/2; k, n− k + 1)

Set ϵ = 0.001
1 Compute f(n, p) = min{Pa(n, p), Pu(n, p)}

If f(n, p) > α then pl = p; goto 2
Else set p = p+ ϵ; goto 1

2 Set p = beta(1− α/2; k + 1, n− k));
3 Compute f(n, p) = min{Pa(n, p), Pu(n, p)}

If f(n, p) > α then pu = p; goto 4
Else set p = p− ϵ; goto 3

4 end

We computed the 95% confidence intervals (pl, pu) using the above algorithm for some
values of n and k. These intervals along with the intervals (BS) due to Blyth and Still
(1983) are given in Table 2. We observe from the tabulated values that the combined
intervals and BS intervals are practically the same except for a few cases. For example,
when (n, k) = (8, 0), (9, 0), (11, 0), and (14, 2), BS intervals are slightly shorter than the
combined intervals; for (n, k) = (6, 1), (8, 2), (9, 3) and (14, 4), the combined intervals are
slightly shorter than the BS intervals. We indeed computed the 95% and 99% combined
intervals (not reported here) for all the combinations of (n, k) given in Table 2 of Blyth
and Still (1983), and found that the new intervals and the BS intervals are essentially the
same for all the cases. Therefore, our combined interval has all the four natural properties
listed by Blyth and Still (1983). Furthermore, we observed that our intervals in Table 2 are
members of the “complete class” of intervals given in Table 1 of Casella (1986).

Remark 1. In a very few situations, the alternate exact method produced disconnected
confidence intervals. For example, when n = 13 and k = 0, the alternative method produced
(0,.23) and (.260,.269). In this case, the usual exact confidence interval is (0,.23) and hence
the combined interval, which is the intersection of the usual exact interval and the alternative
exact intervals, is (0,.23).
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3.2 Poisson Distribution

The pmf of a Poisson random variable with mean λ is given by

f(x;λ) =
e−λλx

x!
, λ > 0, x = 0, 1, 2, ....

Let X1, ..., Xn be a sample from Poisson(λ). Since Y =
∑n

i=1Xi ∼ Poisson(nλ), testing
about λ is equivalent to testing about nλ. Therefore, without loss of generality, we can
assume that n = 1.

3.2.1 Hypothesis Tests for a Poisson Mean

For an observed value k of Y , the p-value of the usual test for testing

H0 : λ = λ0 vs. Ha : λ ̸= λ0

is given by
Pe(λ0) = 2min{P (Y ≤ k|λ0), P (Y ≥ k|λ0)}. (9)

The p-value of the alternative exact test is given by

Pa(λ0) = P (Y ≤ [λ0 − |k − λ0|]|p0) + P (Y ≥ [λ0 + |k − λ0|]|p0) . (10)

The combined test rejects H0 whenever the min{Pe(λ0), Pa(λ0)} ≤ α.

3.2.2 Exact Sizes and Powers of the Poisson Tests

The sizes and powers of the above Poisson tests are computed using (4), and they are
plotted in Figures 4 and 5. The plot in Figure 4a shows that the sizes of the the combined
test never exceed the nominal level for λ = 0.5(0.5)60. However, the plot of the sizes for
λ = 0.2(0.2)60 in Figure 4b shows that the sizes of the combined test exceed the nominal
level at several places but, in general, not more than 0.06. The power plots in Figures 5a and
5b show that the combined test is more powerful than the exact test whereas the alternative
exact test is not uniformly better than the exact test.

3.2.3 Confidence Intervals for a Poisson Mean

For an observed value k of Y , the classical exact confidence interval for the Poisson mean
due to Garwood (1936) is given by(

1

2
χ2
2k,α/2,

1

2
χ2
2k+2,1−α/2

)
, (11)

where χ2
m,c denotes the cth quantile of the chi-squared distribution with df =m. This interval

should be used with the convention that χ2
0,α/2 = 0.

The combined interval is given by

{λ : min{Pe(λ), Pa(λ)} > α}.
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We used a searching algorithm similar to Algorithm 1 with endpoints of (11) as initial
values to compute 95% confidence intervals. These combined intervals along with the inter-
vals (CR) due to Casella and Robert (1989) are given for k = 0, 1, ..., 49 in Table 3. It should
be noted that the Casella and Robert’s procedure gives a class of intervals for a given k. For
example, when k = 12, the right endpoint is any number in the interval 20.77±1.26. The left
endpoint of the combined interval and the left endpoint of the CR interval are the same or
close whenever the latter is unique (e.g., see k = 0 to 7, 20 and 28 in Table 3). Furthermore,
in most cases the combined intervals are members of the class of the CR intervals; in other
cases they are very close to the CR intervals (e.g., see k = 21, 26 and 44 in Table 3).

4. Hypergeometric and Negative Binomial Distributions

We shall now illustrate the new method for the hypergeometric and negative binomial
distributions.

4.1 Hypergeometric Distribution

Let X ∼ hypergeometric(N,M, n), where N is the lot size, M is the number of defective
items in the lot, and n is the sample size. The pmf of X is given by

fX(k) =

(
n
k

)(
N−M
n−k

)
(
N
n

) , max{0,M −N + n} ≤ k ≤ min{n,M}.

Let π = M/N denote the proportion of defective items in the lot.

4.1.1 Hypothesis Tests

Consider
H0 : π = π0 vs. Ha : π ̸= π0,

where π = M/N . Let M0 = [Nπ0], where [x] denotes the largest integer less than or equal
x. For an observed value k of X, we have

Pe(M0) = 2min{P (X ≤ k|N,M0, n), P (X ≥ k|N,M0, n)} (12)

and

Pa(M0) = P (X ≤ [nπ0 − |k − nπ0|]|N,M0, n) + P (X ≥ [nπ0 + |k − nπ0|]|N,M0, n) . (13)

The combined test rejects H0 whenever min{Pe(M0), Pa(M0)} ≤ α.

4.1.2 Confidence Interval for π

The left endpoint of the usual exact interval is the value of M for which P (X ≥
k|N,M, n) = α/2 and the right endpoint is the value of M for which P (X ≤ k|N,M, n) =
α/2. The confidence set for M based on the combined test is given by

{M : min{Pe(M), Pa(M)} > α}.
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This set can be obtained using an algorithm similar to Algorithm 1 with ϵ = 1. To get the
left endpoint Ml of the confidence interval for M , we used backward search from the integer
part of the mean = kN/n. The right endpoint Mu can be obtained using forward search
from the mean. We computed 95% confidence intervals for π = M/N based on the usual
exact method and the new method, and presented them in Table 4. The values of (n, k) in
Table 4 are chosen as in Table 3 for the binomial case so that we can understand the effect of
the finite population size in estimating the proportions. We observed from Table 4 that the
combined interval is shorter than the usual exact intervals for all the cases. Furthermore,
these intervals are shorter than corresponding binomial based intervals which is expected
because in the latter case the population is infinite.

4.2 Negative Binomial Distribution

In the binomial case the random variable represents the number of successes in n Bernoulli
trials whereas in the negative binomial case the random variable represents the number of
trials (or the number of failures) required to have a specified number successes. Thus, these
two distributions are related, and the results for the negative binomial case can be easily
deduced from those of the binomial. The pmf of the negative binomial distribution is given
by

fX(k) = P (X = k) =

(
k + r − 1

k

)
pr(1− p)k, k = 0, 1, 2, ..., 0 < p < 1,

where X represents the number of failures until the rth success in a sequence of independent
Bernoulli trials.

4.2.1 Hypothesis Tests for Negative Binomial p

For a given number of failures k until the rth success, the p-value of the usual exact test
for testing H0 : p = p0 vs. Ha : p ̸= p0 is given by

Pu(r, p0) = 2min{P (X ≤ k|r, p0), P (X ≥ k|r, p0)}. (14)

Noting that, under H0, the mean of X is µ0 = r(1 − p0)/p0, the p-value of the new test is
given by

Pa(r, p0) = P (X ≤ [µ0 − |µ0 − k|]|r, p0) + P (X ≥ [µ0 + |µ0 − k|]|r, p0). (15)

The p-value of the new test is given by min{Pu(r, p0), Pa(r, p0)}.

4.2.2 Confidence Limits for the Negative Binomial p

The usual exact limit based on the Clopper-Pearson approach is given by

(beta(α/2; r, k + 1), beta(1− α/2; r, k)).

The above limits can be obtained by using the relations among the binomial, negative bino-
mial and beta distributions (e.g., Casella and Berger 2002, p. 454). The confidence interval
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based on the new test is given by {p : min{Pu(r, p0), Pa(r, p0) > α}. This interval can be
obtained along the lines given for binomial confidence interval. We computed 95% confidence
intervals for some selected values of r and k, and presented them in Table 5. It is seen from
the table that the left endpoints of the usual interval and the new interval are the same, and
the right endpoint of the new interval is less than or equal to that of the usual interval for
all the cases considered.

5. Concluding Remarks

It should be clear from the preceding sections that the alternative exact test and the
usual exact test are the same for testing one-sided hypotheses. For example, in the binomial
case, a right-tail test can be used only when k > np0, and in this case the p-value of the
usual test is P (X ≥ k) = P (X ≥ [np0 − |k − np0|]) which is the p-value of the alternative
exact test. Therefore, the alternative test and the usual exact test are the same. This implies
that the one-sided limits based on the usual exact method and the combined method are the
same. Regarding coverage probabilities of the confidence intervals, we note that the sizes of
the new tests for the binomial and Poisson cases never exceeded 0.06, and hence the coverage
probabilities for these cases will be at least 0.94 when the confidence level is 0.95. In a recent
article, Baker (2000) has noted that the confidence intervals due to Blyth and Still (1983)
do not posses nested property; that is, for α′ > α′′, a 1− α′ confidence interval may not be
a proper subset of a −α′′ confidence interval.

As we already pointed out, the proposed tests are simple to use. The p-values of the
tests can be computed using available electronic calculators (e.g., TI-83), online calcula-
tors (e.g., http://calculators.stat.ucla.edu), and freely available PC calculator StatCalc from
http://www.ucs.louisiana.edu/∼kxk4695. For constructing confidence intervals a computer
program is necessary, which can be easily written based on our Algorithm 1 for the binomial
case. Similar programs can be written for other distributions as well.
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Figure 3: Powers of the Binomial Tests as a Function of p
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Figure 4a: Sizes of the Poisson Tests at α = 0.05; λ = 0.5(0.5)60
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Figure 4b: Sizes of the Poisson Tests at α = 0.05; λ = 0.2(0.2)60
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Figure 5: Powers of the Poisson Tests at α = 0.05;
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Table 2: 95% confidence intervals for a binomial proportion
(1) Blyth and Still’s (1983) intervals; (2) the combined intervals

n 1 2 3 4
k (1) (2) (1) (2) (1) (2) (1) (2)
0 .00 .95 .00 .95 .00 .78 .00 .78 .00 .63 .00 .63 .00 .53 .00 .53
1 .05 1 .05 1 .03 .97 .03 .97 .02 .86 .02 .86 .01 .75 .01 .75
2 .22 1 .22 1 .14 .98 .14 .98 .10 .90 .10 .90
3 .37 1 .37 1 .25 .99 .25 .99
n 5 6 7 8
k (1) (2) (1) (2) (1) (2) (1) (2)
0 .00 .50 .00 .50 .00 .41 .00 .42 .00 .38 .00 .38 .00 .36 .00 .37
1 .01 .66 .01 .66 .01 .59 .01 .58 .01 .55 .01 .55 .01 .50 .01 .50
2 .08 .81 .08 .81 .06 .73 .06 .73 .05 .66 .05 .66 .05 .64 .05 .63
3 .19 .92 .19 .92 .15 .85 .15 .85 .13 .77 .13 .77 .11 .71 .11 .71
4 .34 .99 .34 .99 .27 .94 .27 .94 .23 .87 .23 .87 .19 .81 .19 .81
5 .50 1 .50 1 .42 .99 .42 .99 .34 .95 .34 .95 .29 .89 .29 .89
n 9 10 11 12
k (1) (2) (1) (2) (1) (2) (1) (2)
0 .00 .32 .00 .33 .00 .29 .00 .30 .00 .26 .00 .27 .00 .24 .00 .25
1 .01 .44 .01 .44 .01 .44 .01 .44 .01 .40 .01 .41 .01 .37 .01 .37
2 .04 .56 .04 .56 .04 .56 .04 .55 .03 .50 .03 .50 .03 .46 .03 .46
3 .10 .68 .10 .67 .09 .62 .09 .62 .08 .60 .08 .59 .07 .54 .07 .54
4 .17 .75 .17 .75 .15 .70 .15 .70 .14 .67 .14 .67 .12 .63 .12 .63
5 .25 .83 .25 .83 .22 .78 .22 .78 .20 .74 .20 .73 .18 .71 .18 .71
6 .32 .90 .33 .90 .29 .85 .30 .85 .26 .80 .27 .80 .24 .76 .25 .75
n 13 14 15 16
k (1) (2) (1) (2) (1) (2) (1) (2)
0 .00 .23 .00 .23 .00 .23 .00 .23 .00 .22 .00 .22 .00 .20 .00 .21
1 .00 .34 .00 .35 .00 .32 .00 .32 .00 .30 .00 .30 .00 .30 .00 .30
2 .03 .43 .03 .43 .03 .42 .03 .43 .02 .39 .03 .40 .02 .37 .02 .37
3 .07 .52 .07 .52 .06 .50 .06 .50 .06 .47 .06 .47 .05 .44 .05 .44
4 .11 .59 .11 .59 .10 .58 .10 .57 .10 .53 .10 .53 .09 .50 .09 .50
5 .17 .66 .17 .65 .15 .63 .15 .63 .14 .61 .14 .60 .13 .56 .13 .56
6 .22 .74 .22 .73 .21 .68 .21 .68 .19 .67 .19 .67 .18 .63 .18 .63
7 .26 .78 .27 .78 .24 .76 .25 .75 .22 .71 .23 .71 .20 .70 .22 .69
8 .34 .83 .35 .83 .32 .79 .32 .79 .29 .78 .29 .77 .27 .73 .27 .73
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Table 3. 95% confidence intervals for a Poisson mean
(1) Casella and Robert (1989) intervals; (2) the combined intervals

k (1) (2) k (1) (2)
0 0.00 3.54± 0.25 0 3.69 25 16.77 36.59± 0.55 16.77 36.90
1 0.05 5.49± 0.16 0.05 5.57 26 16.98± 0.21 37.97± 0.29 17.50 38.10
2 0.36 7.04± 0.35 0.36 7.22 27 18.10± 0.47 39.03± 0.86 18.50 39.28
3 0.82 8.56± 0.45 0.82 8.77 28 19.05 40.25± 1.23 19.05 40.47
4 1.37 10.04± 0.45 1.37 10.24 29 19.51± 0.46 41.48± 1.15 20.00 41.65
5 1.97 11.51± 0.34 1.97 11.67 30 20.77± 1.26 42.54± 0.79 20.97 42.83
6 2.61 12.98± 0.16 2.61 13.06 31 21.35± 1.17 43.95± 0.02 21.50 44.00
7 3.28 14.26± 1.28 3.29 14.42 32 22.02± 0.80 44.99± 1.13 22.50 45.17
8 3.54± 0.25 15.54± 0.66 3.98 15.76 33 23.43 46.05± 0.77 23.43 46.34
9 4.46 16.98± 0.21 4.50 17.08 34 23.45± 0.02 47.46± 0.05 24.00 47.50
10 5.32 18.10± 0.47 5.32 18.39 35 24.52± 0.81 48.49± 1.15 25.00 48.68
11 5.49± 0.16 19.51± 0.46 6.00 19.68 36 25.94 49.54± 0.80 25.95 49.84
12 6.69 20.77± 1.26 6.69 20.96 37 25.95± 0.01 50.95± 0.01 26.50 51.00
13 7.04± 0.35 22.02± 0.80 7.50 22.23 38 27.01± 0.88 51.97± 1.22 27.50 52.16
14 8.11 23.45± 0.02 8.10 23.49 39 28.14± 0.39 53.03± 0.88 28.50 53.31
15 8.56± 0.45 24.52± 0.81 9.00 24.74 40 28.97 54.12± 0.42 29.00 54.47
16 9.59 25.95± 0.01 9.60 25.98 41 29.49± 0.52 55.46± 0.46 30.00 55.62
17 10.04± 0.45 27.01± 0.88 10.50 27.22 42 30.57± 0.56 56.49± 1.00 31.00 56.77
18 11.18 28.14± 0.39 11.18 28.45 43 31.68 57.59± 0.58 31.68 57.92
19 11.51± 0.34 29.49± 0.52 12.00 29.67 44 31.97± 0.30 58.96± 0.23 32.50 59.07
20 12.82 30.57± 0.56 12.82 30.89 45 33.04± 0.76 59.99± 1.16 33.50 60.21
21 12.98± 0.16 31.97± 0.30 13.50 32.10 46 34.41 61.04± 0.79 34.41 61.36
22 14.26± 1.28 33.04± 0.76 14.50 33.31 47 34.45± 0.05 62.25± 1.21 35.00 62.50
23 14.92± 1.07 34.45± 0.05 15.00 34.50 48 35.51± 0.98 63.47± 1.32 36.00 63.64
24 15.54± 0.66 35.51± 0.98 16.00 35.71 49 36.59± 0.55 64.51± 1.02 37.00 64.78
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Table 4. 95% confidence intervals for a hypergeometric π = M/N ; N=150
(1) the usual exact intervals; (2) the combined intervals

n 1 2 3 4
k (1) (2) (1) (2) (1) (2) (1) (2)

0 0 .973 0 .947 0 .833 0 .773 0 .700 0 .627 0 .593 0 .520
1 .027 1 .053 1 .013 .987 .027 .973 .013 .900 .020 .860 .007 .800 .013 .747
2 .167 1 .227 1 .100 .987 .140 .980 .073 .927 .107 .893
3 .300 1 .373 1 .200 .993 .253 .987
4 .407 1 .480 1

n 5 6 7 8
k (1) (2) (1) (2) (1) (2) (1) (2)

0 0 .513 0 .500 0 .447 0 .413 0 .400 0 .353 0 .360 0 .360
1 .007 .707 .013 .647 .007 .633 .013 .580 .007 .567 .013 .533 .007 .513 .007 .500
2 .060 .847 .080 .800 .047 .767 .067 .720 .040 .700 .060 .647 .040 .640 .053 .620
3 .153 .940 .200 .920 .127 .873 .160 .840 .107 .807 .133 .767 .093 .747 .120 .700
4 .293 .993 .353 .987 .233 .953 .280 .933 .193 .893 .233 .867 .167 .833 .200 .800

n 9 10 11 12
k (1) (2) (1) (2) (1) (2) (1) (2)

0 0 .327 0 .327 0 .293 0 .293 0 .273 0 .267 0 .253 0 .247
1 .007 .467 .007 .440 .007 .433 .007 .400 .007 .400 .007 .400 .007 .373 .007 .373
2 .033 .587 .047 .553 .033 .540 .040 .513 .027 .507 .040 .500 .027 .467 .033 .453
3 .080 .687 .107 .667 .073 .640 .093 .600 .067 .593 .087 .587 .060 .560 .080 .540
4 .147 .780 .180 .740 .133 .727 .160 .700 .120 .680 .147 .647 .107 .640 .133 .620
5 .220 .853 .260 .820 .200 .800 .233 .767 .180 .753 .207 .727 .160 .707 .193 .687
6 .313 .920 .333 .893 .273 .867 .300 .840 .247 .820 .273 .793 .227 .773 .253 .747

n 13 14 15 16
k (1) (2) (1) (2) (1) (2) (1) (2)

0 0 .233 0 .227 0 .220 0 .213 0 .207 0 .200 0 .193 0 .187
1 .007 .347 .007 .340 .007 .327 .007 .320 .007 .307 .007 .300 .007 .287 .007 .280
2 .027 .440 .033 .420 .027 .413 .033 .387 .020 .387 .033 .373 .020 .367 .027 .367
3 .060 .520 .073 .500 .053 .493 .067 .473 .053 .467 .067 .467 .047 .440 .060 .433
4 .100 .600 .120 .573 .093 .567 .113 .540 .087 .533 .107 .533 .080 .507 .100 .500
5 .153 .667 .173 .653 .140 .633 .160 .607 .127 .600 .153 .587 .120 .573 .140 .560
6 .207 .733 .233 .713 .187 .700 .220 .673 .173 .660 .200 .640 .167 .627 .187 .620
7 .267 .793 .287 .767 .247 .753 .260 .740 .227 .720 .240 .700 .213 .687 .227 .667
8 .333 .847 .347 .827 .300 .813 .327 .780 .280 .773 .300 .760 .260 .740 .287 .713
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Table 5. 95% confidence intervals for a negative binomial p

r + k 1 2 3 4
r (1) (2) (1) (2) (1) (2) (1) (2)

1 .025 1 .025 1 .013 .975 .013 .950 .008 .842 .008 .776 .006 .708 .006 .631
2 .158 1 .158 1 .094 .987 .094 .975 .068 .906 .068 .865
3 .292 1 .292 1 .194 .992 .194 .983
4 .398 1 .398 1

r + k 5 6 7 8
r (1) (2) (1) (2) (1) (2) (1) (2)

1 .005 .602 .005 .527 .004 .522 .004 .451 .004 .459 .004 .393 .003 .410 .003 .348
2 .053 .806 .053 .751 .043 .716 .043 .657 .037 .641 .037 .582 .032 .579 .032 .521
3 .147 .932 .147 .902 .118 .853 .118 .811 .099 .777 .099 .729 .085 .710 .085 .659
4 .284 .994 .284 .987 .223 .947 .223 .924 .184 .882 .184 .847 .157 .816 .157 .775

r + k 9 10 11 12
r (1) (2) (1) (2) (1) (2) (1) (2)

1 .003 .369 .003 .312 .003 .336 .003 .283 .002 .308 .002 .259 .002 .285 .002 .238
2 .028 .527 .028 .471 .025 .482 .025 .429 .023 .445 .023 .394 .021 .413 .021 .364
3 .075 .651 .075 .600 .067 .600 .067 .550 .060 .556 .060 .507 .055 .518 .055 .470
4 .137 .755 .137 .711 .122 .701 .122 .655 .109 .652 .109 .607 .099 .610 .099 .564
5 .212 .843 .212 .807 .187 .788 .187 .749 .167 .738 .168 .696 .152 .692 .152 .650
6 .299 .915 .299 .889 .262 .863 .262 .831 .234 .813 .234 .778 .211 .766 .211 .729

r + k 13 14 15 16
r (1) (2) (1) (2) (1) (2) (1) (2)

1 .002 .265 .002 .221 .002 .247 .002 .206 .002 .232 .002 .193 .002 .218 .002 .181
2 .019 .385 .019 .339 .018 .360 .018 .316 .017 .339 .017 .297 .016 .319 .016 .279
3 .050 .484 .050 .438 .047 .454 .047 .410 .043 .428 .043 .385 .040 .405 .040 .363
4 .091 .572 .091 .527 .084 .538 .084 .495 .078 .508 .078 .466 .073 .481 .073 .440
5 .139 .651 .139 .609 .128 .614 .128 .573 .118 .581 .118 .540 .110 .551 .110 .511
6 .192 .723 .192 .685 .177 .684 .177 .645 .163 .649 .163 .610 .152 .616 .152 .577
7 .251 .789 .251 .755 .230 .749 .230 .713 .213 .711 .213 .675 .198 .677 .198 .640
8 .316 .848 .316 .819 .289 .808 .289 .776 .266 .770 .266 .736 .247 .734 .247 .700

Note: (1) Exact intervals; (2) the combined intervals.
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