paspalum root weight example

pooled sample standard deviation

The TTEST Procedure

		sample means and standard deviations							
	treat	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	inocul		12	8.9750	4.6384	1.3390	3.9000	19.7000	
	notinoc		12	13.4917	4.0230	1.1613	6.2000	21.8000	
	Diff (1-2)	Pooled	1	-4.516	4.3416	1.7 25			
	Diff (1-2)	Satterthwaite		-4.5167		1.7725			

check for common population variance:

The ratio of the sample standard deviations 4.6384/4.0230 = 1.1530 is between 1/2 and 2 so the assumption of a common population variance is OK

						-		
treat	Method		Mean	95% CI	L Mean]		
inocul	ocul		8.9750	6.0279	11.9221]		
notinoc		13.4917	10.9356	16.0478	L	95% confidence interval for		
Diff (1-2)	(1-2) Pooled		-4.5167	-8.1925	-0.8408		mu_(inocul)-mu_(notinoc)	inoc)
Diff (1-2) Satterthwaite		-4.5167	-8.1968	-0.8366				
						-		
Method		Variances	DF	t Value	Pr > t			

						- 14	
Pooled		Equal		22 -2.5	55 0	0.0183	€
Satterthwaite		Unequa	l 21.5	59 -2.S	55 0	0.0185	
Equality of Variances				nces	Н)183 is the P-value for _1: mu_(inocul) notequal mu_(notinoc)	
	Method	Num DF	Den DF	F Value	Pr	> F d	ivide by 2 to get the P-value .00915 for
	Folded F	11	11	1.33	0.64	450	

The TTEST Procedure

Variable: weight

assumption are given below.

paspalum root weight example summary

The UNIVARIATE Procedure Variable: weight treat = inocul

summary of fresh root weight for the inoculated sample

Basic Statistical Measures							
Location Variability							
Mean 8.975000 Std Deviation		Std Deviation	4.63840				
Median	8.600000	Variance	21.51477				
Mode .		Range	15.80000				
		Interquartile Range	6.15000				

	Tests for Normality							
	Test Statistic p Value							
<	Shapiro-Wilk	w	0.905711	Pr < W	0.1879			
	Kolmogorov-Smirnov	D	0.154181	Pr > D	>0.1500			
	Cramer-von Mises	W-Sq	0.053296	Pr > W-Sq	>0.2500			
	Anderson-Darling	A-Sq	0.39804	Pr > A-Sq	>0.2500			

Quantiles (Definition 5)				
Level	Quantile			
100% Max	19.70			
99%	19.70			
95%	19.70			
90%	13.60			
75% Q3	11.20			
50% Median	8.60			
25% Q1	5.05			
10%	4.30			
5%	3.90			
1%	3.90			
0% Min	3.90			

Extreme Values							
Low	vest	High	nest				
Order	Order Value		Value				
1	3.9	8	10.0				
2	4.3	9	10.1				
3	4.9	10	12.3				
4	5.2	11	13.6				
5	6.5	12	19.7				

Test for normality assumption for the inoculated sample

The null hypothesis is that the data (the 12 weights) form a random sample from a normal distribution. The large P-value .1879 shows supports for the normality assumption.

This P-value is somewhat small due to the mild outlier and slight skewness to the right.

The distribution is somewhat skewed to the right but reasonably symmetric (see the Shapiro-Wilk test to confirm that this is not a problem)

med-min=4.7 max-med=11.1

paspalum root weight example summary

The UNIVARIATE Procedure Variable: weight treat = notinoc

Basic Statistical Measures							
Loc	ation	Variability					
Mean	13.49167	Std Deviation	4.02299				
Median	13.35000	Variance	16.18447				
Mode .		Range	15.60000				
		Interquartile Range	4.30000				

summary of fresh root weight for the not inoculated sample

	Tests for Normality							
	Test Statistic p Value							
<	Shapiro-Wilk	w	0.97782	Pr < W	0.9735	\triangleright		
	Kolmogorov-Smirnov	D	0.129247	Pr > D	>0.1500	R		
	Cramer-von Mises	W-Sq	0.028647	Pr > W-Sq	>0.2500			
	Anderson-Darling	A-Sq	0.202913	Pr > A-Sq	>0.2500			

Quantiles (Uerinition 5) Level Quantile 100% Max 21.80 99% 21.80 95% 21.80 90% 21.80 95% 21.80 95% 21.80 95% 16.70 75% Q3 15.90 50% Median 13.35 25% Q1 11.60 10% 8.70 5% 6.20						
LevelQuantile100% Max21.8099%21.8095%21.8090%16.7075% Q315.9050% Median13.3525% Q111.6010%8.705%6.20	Quantiles (Definition 5)					
100% Max21.8099%21.8095%21.8090%16.7075% Q315.9050% Median13.3525% Q111.6010%8.705%6.20	Level	Quantile				
99%21.8095%21.8090%16.7075% Q315.9050% Median13.3525% Q111.6010%8.705%6.20	100% Max	21.80				
95%21.8090%16.7075% Q315.9050% Median13.3525% Q111.6010%8.705%6.20	99%	21.80				
90%16.7075% Q315.9050% Median13.3525% Q111.6010%8.705%6.20	95%	21.80				
75% Q3 15.90 50% Median 13.35 25% Q1 11.60 10% 8.70 5% 6.20	90%	16.70				
50% Median 13.35 25% Q1 11.60 10% 8.70 5% 6.20	75% Q3	15.90				
25% Q1 11.60 10% 8.70 5% 6.20	50% Median	13.35				
10%8.705%6.20	25% Q1	11.60				
5% 6.20	10%	8.70				
	5%	6.20				
1% 6.20	1%	6.20				
0% Min 6.20	0% Min	6.20				

Test for normality assumption for the not inoculated sample

The null hypothesis is that the data (the 12 weights) form a random sample from a normal distribution. The large P-value .9735 shows supports for the normality assumption.

The distribution is reasonably symmetric

med-min=7.15

max-med=8.45

(very slight skewness to the right)

Extreme Values							
Low	vest	Highest					
Order Value		Order	Value				
1	6.2	8	14.5				
2	8.7	9	15.4				
3	11.0	10	16.4				
4	12.2	11	16.7				
5	12.3	12	21.8				

no extreme outliers