The TTEST Procedure

inocul		12	8.9750	4.6384	1.3390	3.9000	19.7000
notinoc		12	13.4917	4.0230	1.1613	6.2000	21.8000
Diff (1-2)	Pooled	\dagger	-4.516	4.3416	1.7725		
Diff (1-2)	Satterth		-4.5167		1.77		

check for common population variance:

The ratio of the sample standard deviations $4.6384 / 4.0230=1.1530$ is between $1 / 2$ and 2 so the assumption of a
 variance is OK

Method	Variances	DF	\mathbf{t} Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	22	-2.55	0.0183
Satterthwaite	Unequal	21.569	-2.55	0.0185

.0183 is the P -value for

Equality of Variances					divide by 2 to get the P-value .00915 for H_1: mu_(inocul) < mu_(notinoc)
Method	Num DF	Den DF	F Value	Pr $>\mathrm{F}$	
Folded F	11	11	1.33	0.6450	

Variable: weight

Histograms with smoothed histograms (fitted density curves "kernel") and fitted normal density curves for each sample.

The TTEST Procedure
Variable: weight

Formal tests of the normality assumption are given below.

Quantiles (Definition 5)	
Level	Quantile
100\% Max	19.70
99\%	19.70
$\mathbf{9 5 \%}$	19.70
$\mathbf{9 0 \%}$	13.60
$\mathbf{7 5 \%}$ Q3	11.20
$\mathbf{5 0 \%}$ Median	8.60
$\mathbf{2 5 \%}$ Q1	5.05
$\mathbf{1 0 \%}$	4.30
$\mathbf{5 \%}$	3.90
$\mathbf{1 \%}$	3.90
$\mathbf{0 \%}$ Min	3.90

Extreme Values			
Lowest		Highest	
Order	Value	Order	Value
1	3.9	8	10.0
2	4.3	9	10.1
3	4.9	10	12.3
4	5.2	11	13.6
5	6.5	12	19.7

Test for normality assumption for the inoculated sample

The null hypothesis is that the data (the 12 weights) form a random sample from a normal distribution. The large P-value . 1879 shows supports for the normality assumption.

This P -value is somewhat small due to the mild outlier and slight skewness to the right.

The distribution is somewhat skewed to the right but reasonably symmetric (see the Shapiro-Wilk test to confirm that this is not a problem)
med-min=4.7
max-med=11.1

Quantiles (Definition 5)	
Level	Quantile
$\mathbf{1 0 0 \%}$ Max	21.80
$\mathbf{9 9 \%}$	21.80
$\mathbf{9 5 \%}$	21.80
$\mathbf{9 0 \%}$	16.70
$\mathbf{7 5 \%}$ Q3	15.90
$\mathbf{5 0 \%}$ Median	13.35
$\mathbf{2 5 \%}$ Q1	11.60
$\mathbf{1 0 \%}$	8.70
$\mathbf{5 \%}$	6.20
$\mathbf{1 \%}$	6.20
$\mathbf{0 \%}$ Min	6.20

Test for normality assumption for the not inoculated sample

The null hypothesis is that the data (the 12 weights) form a random sample from a normal distribution. The large P -value .9735 shows supports for the normality assumption.

The distribution is reasonably symmetric
med-min=7.15
max-med=8.45
(very slight skewness to the right)

Extreme Values			
Lowest		Highest	
Order	Value	Order	Value
1	6.2	8	14.5
2	8.7	9	15.4
3	11.0	10	16.4
4	12.2	11	16.7
5	12.3	12	21.8

