Variable: fecund

The summary statistics and normality checks here are the same as those in the output for fruitfly 1 .

$$
\text { line }=\text { NS }
$$

Basic Statistical Measures			
Location		Variability	
Mean	33.37200	Std Deviation	8.94201
Median	34.40000	Variance	79.95960
Mode		Range	36.90000
		Interquartile Range	9.70000

Tests for Normality				
Test	Statistic		p Value	
Shapiro-Wilk	W	0.983892	Pr < W	0.9498
Kolmogorov-Smirnov	D	0.11463	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.037842	Pr $>$ W-Sq	>0.2500
Anderson-Darling	A-Sq	0.21906	Pr $>$ A-Sq	>0.2500

Quantiles (Definition 5)	
Level	Quantile
100\% Max	51.8
99%	51.8
95%	47.4
90%	42.4
75% Q3	37.9
50% Median	34.4
$\mathbf{2 5 \%}$ Q1	28.2
10%	20.3
5%	19.3
1%	14.9
0% Min	14.9

Extreme Values			
Lowest		Highest	
Order	Value	Order	Value
1	14.9	21	41.7
2	19.3	22	41.8
3	20.3	23	42.4
4	22.6	24	47.4
5	23.4	25	51.8

The UNIVARIATE Procedure
Variable: fecund line $=$ RS

Basic Statistical Measures			
Location		Variability	
Mean	25.25600	Std Deviation	7.77239
Median	23.60000	Variance	60.41007
Mode	20.30000	Range	31.60000
		Interquartile Range	9.00000

Tests for Normality				
Test	Statistic		p Value	
Shapiro-Wilk	W	0.949559	Pr < W	0.2450
Kolmogorov-Smirnov	D	0.139336	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.076663	Pr > W-Sq	0.2253
Anderson-Darling	A-Sq	0.473402	Pr > A-Sq	0.2288

Quantiles (Definition 5)	
Level	Quantile
100\% Max	44.4
99%	44.4
95%	38.7
90%	38.6
75% Q3	29.3
50% Median	23.6
$\mathbf{2 5 \%}$ Q1	20.3
10%	14.9
5%	14.8
1%	12.8
0% Min	12.8

Extreme Values					
Lowest			Highest		
Order	Value	Freq	Order	Value	Freq
1	12.8	1	20	29.6	1
2	14.8	1	21	34.6	1
3	14.9	1	22	38.6	1
4	16.4	1	23	38.7	1
5	19.7	1	24	44.4	1

The UNIVARIATE Procedure
Variable: fecund line $=\mathbf{S S}$

Basic Statistical Measures			
Location		Variability	
Mean	23.62800	Std Deviation	9.76847
Median	22.50000	Variance	95.42293
Mode		Range	37.70000
		Interquartile Range	14.20000

Tests for Normality				
Test	Statistic		p Value	
Shapiro-Wilk	W	0.939562	Pr < W	0.1446
Kolmogorov-Smirnov	D	0.153393	Pr > D	0.1312
Cramer-von Mises	W-Sq	0.070113	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.457935	Pr > A-Sq	0.2463

Quantiles (Definition 5)	
Level	Quantile
100\% Max	48.5
99%	48.5
95%	39.0
90%	38.4
75% Q3	30.2
$\mathbf{5 0 \%}$ Median	22.5
$\mathbf{2 5 \%}$ Q1	16.0
$\mathbf{1 0 \%}$	12.2
5%	11.6
$\mathbf{1 \%}$	10.8
$\mathbf{0 \%}$ Min	10.8

Extreme Values			
Lowest		Highest	
Order	Value	Order	Value
1	10.8	21	32.9
2	11.6	22	33.4
3	12.2	23	38.4
4	12.8	24	39.0
5	14.6	25	48.5

The UNIVARIATE Procedure

The UNIVARIATE Procedure

ANOVA and model comparison approach to the fruitfly fecundity example.
We begin with the full model with 3 means -- one for each genetic line
We will consider the reduced model obtained by grouping the two selected lines (RS and SS) to give the reduced model with 2 means -- one for NS and one for selected.

The GLM Procedure

Coefficients for Estimate RS vs SS Row 1 Intercept 0 line NS line RS line SS				

contrast coefficients for
the model comparison
mu_RS - mu_SS

The GLM Procedure

Dependent Variable: fecund					
Source DF Sum of Squares Mean Square F Value Pr > F					
Model	2	1362.211467	681.105733	8.67	0.0004
Error	72	5659.022400	78.597533		
Corrected Total	74	7021.233867			

R-Square	Coeff Var	Root MSE	fecund Mean
0.194013	32.33390	8.865525	27.41867

Source	DF	Type I SS	Mean Square	F Value	Pr > F
line	2	1362.211467	681.105733	8.67	0.0004

Source	DF	Type III SS	Mean Square	F Value	Pr > F
line	2	1362.211467	681.105733	8.67	0.0004

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
RS vs SS	1	33.12980000	33.12980000	0.42	0.5182

Parameter	Estimate	Standard Error	t Value	$\operatorname{Pr}>\|\mathrm{t}\|$	95\% Confidence Limits
RS vs SS	1.62800000	2.50754914	0.65	0.5182	-3.37070784

the large P -value .5182 indicates that we cannot reject the null hypothesis
H_0: mu_RS=mu_SS
Thus we do not need the full model with three means and the reduced model with 2 means mu_NS and mu_S will suffice.

The GLM Procedure
Dependent Variable: fecund

The GLM Procedure

Class Level Information		
Class	Levels	Values
line2	2	NS S

Number of Observations Read	75
Number of Observations Used	75

The GLM Procedure

Dependent Variáie: fecund					
Source DF Sum of Squares Mean Square F Value Pr > F					
Model	1	1329.081667	1329.081667	17.05	$<.0001$
Error	73	5692.152200	77.974688		
Corrected Total	74	7021.233867			

R-Square	Coeff Var	Root MSE	fecund Mean
0.189295	32.20553	8.830328	27.41867

Source	DF	Type I SS	Mean Square	F Value	Pr > F
line2	1	1329.081667	1329.081667	17.05	$<.0001$

Source	DF	Type III SS	Mean Square	F Value	Pr > F
line2	1	1329.081667	1329.081667	17.05	$<.0001$

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F	
	NS vs selected	1	1329.081667	1329.081667	17.05	$<.0001$

Parameter	Estimate	Standard Error	\mathbf{t} Value	$\operatorname{Pr}>\|\mathbf{t}\|$
NS vs selected	8.93000000	2.16297972	4.13	$<.0001$
\boldsymbol{N}				

The small P-value < . 0001 shows strong evidence that mu_NS is not equal to mu_(selected)
The F and t tests are equivalent with
$F=17.05=(4.13)^{\wedge} 2=t^{\wedge} 2$
On average the mean fecundity for the nonselected (NS) population is 8.93 units larger than the mean fecundity for the combined (selected) population.

The GLM Procedure
Dependent Variable: fecund

Source	DF	Type I SS	Mean Square	F Value	Pr > F
line	2	1362.211467	681.105733	8.67	0.0004

Source	DF	Type III SS	Mean Square	F Value	Pr > F
line	2	1362.211467	681.105733	8.67	0.0004

The GLM Procedure
Dependent Variable: fecund

The GLM Procedure

The GLM Procedure
Scheffe's Test for fecund
Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.
The pairwise comparisons considered earlier are reconsidered here making adjustments for multiple comparisons.

Alpha	0.05
Error Degrees of Freedom	72
Error Mean Square	78.59753
Critical Value of F	3.12391
Minimum Significant Difference	6.2678

We can be 95\% confident that all of these intervals apply simultaneously!

Comparisons significant at the 0.05 level are indicated by ***.				
line Comparison	Difference Between Means	Simult 95 Confi		
NS - RS	8.116	1.848	14.384	***
NS - SS	9.744	3.476	16.012	***
RS - NS	-8.116	-14.384	-1.848	***
RS - SS	1.628	-4.640	7.896	
SS - NS	-9.744	-16.012	-3.476	*
SS - RS	-1.628	-7.896	4.640	

the multiplier for the Scheffe intervals

This is the multiplier used to form the simultaneous confidence intervals.
simultaneous Scheffe type intervals

Obs	differ	estimate	stderr	lowerCL	upperCL
$\mathbf{1}$	RS_SS	1.628	2.50755	-4.6398	7.8958
$\mathbf{2}$	RS_NS	-8.116	2.50755	-14.3838	-1.8482
$\mathbf{3}$	SS_NS	-9.744	2.50755	-16.0118	-3.4762
$\mathbf{4}$	NS_other	8.930	2.17160	3.5019	14.3581

The first three intervals here are the same simultaneous intervals for the pairwise differences as above. The last interval is for the contrast mu_NS-(mu_RS+mu_SS)/2.

The 95\% confidence level is for all 4 intervals simultaneously.

