fruitfly fecundity example summary

The UNIVARIATE Procedure Variable: fecund

line=NS

	Basic Statistical Measures					
Location Variability						
Mean	33.37200	Std Deviation	8.94201			
Median	34.40000	Variance	79.95960			
Mode	•	Range	36.90000			
		Interquartile Range	9.70000			

\langle					
Test	St	atistic	p Value		
Shapiro-Wilk	w	0.983892	Pr < W	0.9498	ン
Kolmogorov-Smirnov	D	0.11463	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.037842	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.21906	Pr > A-Sq	>0.2500	

Quantiles (Definition 5)					
Level	Quantile				
100% Max	51.8				
99%	51.8				
95%	47.4				
90%	42.4				
75% Q3	37.9				
50% Median	34.4				
25% Q1	28.2				
10%	20.3				
5%	19.3				
1%	14.9				
0% Min	14.9				

Test for normality assumption

The null hypothesis is that the data (the 25 fecundities) form a random sample from a normal distribution. The large P-value .9498 shows supports for the normality assumption.

The distribution is slightly skewed to the left but reasonably symmetric (see the Shapiro-Wilk test to confirm that this is not a problem)

med-min=19.5 max-med=17.4

Extreme Values						
Lowest Highest						
Order	Value	Order	Value			
1	14.9	21	41.7			
2	19.3	22	41.8			
3	20.3	23	42.4			
4	22.6	24	47.4			
5	23.4	25	51.8			

fruitfly fecundity example summary

The UNIVARIATE Procedure Variable: fecund

line=RS

Basic Statistical Measures						
Location Variability						
Mean	25.25600	Std Deviation	7.77239			
Median	23.60000	Variance	60.41007			
Mode	20.30000	Range	31.60000			
		Interquartile Range	9.00000			

Tests for Normality							
Test Statistic p Value							
Shapiro-Wilk	w	0.949559	Pr < W	0.2450			
Kolmogorov-Smirnov	D	0.139336	Pr > D	>0.1500			
Cramer-von Mises	W-Sq	0.076663	Pr > W-Sq	0.2253			
Anderson-Darling	A-Sq	0.473402	Pr > A-Sq	0.2288			

Quantiles (D	Definition 5)	
Level	Quantile	Test for normality assumption
100% Max	44.4	The null hypothesis is that the data
99%	44.4	sample from a normal distribution.
95%	38.7	The large P-value .2450 shows
90%	38.6	assumption.
75% Q3	29.3	\leftarrow
50% Median	23.6	
25% Q1	20.3	The distribution is somewhat skewed to
10%	14.9	the Shapiro-Wilk test to confirm that this is
5%	14.8	not a problem)
1%	12.8	med-min=10.8
0% Min	12.8	max-med=20.8

Extreme Values							
	Lowest			Highest			
Order	Value	Freq	Order	Value	Freq		
1	12.8	1	20	29.6	1		
2	14.8	1	21	34.6	1		
3	14.9	1	22	38.6	1		
4	16.4	1	23	38.7	1		
5	19.7	1	24	44.4	1		

The observation 44.4 is a mild outlier. The gap from 38.7 is 5.7

fruitfly fecundity example summary

The UNIVARIATE Procedure Variable: fecund

line=SS

Basic Statistical Measures					
Location Variability					
Mean	23.62800	Std Deviation	9.76847		
Median	22.50000	Variance	95.42293		
Mode		Range	37.70000		
		Interquartile Range	14.20000		

Tests for Normality					
Test	St	atistic	p Value		
Shapiro-Wilk	w	0.939562	Pr < W	0.1446	-
Kolmogorov-Smirnov	D	0.153393	Pr > D	0.1312	
Cramer-von Mises	W-Sq	0.070113	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.457935	Pr > A-Sq	0.2463	$ \rangle$

Quantiles (Definition 5)			
Level	Quantile		
100% Max	48.5		
99%	48.5		
95%	39.0		
90%	38.4		
75% Q3	30.2		
50% Median	22.5		
25% Q1	16.0		
10%	12.2		
5%	11.6		
1%	10.8		
0% Min	10.8		

Test for normality assumption

The null hypothesis is that the data (the 25 fecundities) form a random sample from a normal distribution. The large P-value .1446 shows supports for the normality assumption.

The distribution is somewhat skewed to the right (see the Shapiro-Wilk test to confirm that this is not a problem)

med-min=11.7 max-med=26

Extreme Values					
Low	Lowest Highest				
Order	Value	Order	Value		
1	10.8	21	32.9		
2	11.6	22	33.4		
3	12.2	23	38.4		
4	12.8	24	39.0		
5	14.6	25	48.5		

The observation 48.5 is a mild outlier. The gap from 39.0 is 9.5

fruitfly fecundity example: RS versus SS

Friday, June 15, 2018 02:55:22 PM 4

The TTEST Procedure

Variable: fecund

sample means and standard deviations

pooled sample standard deviation

	line	Method	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	RS		25	25.2560	7.7724	1.5545	12.8000	44.4000	
	SS		25	23.6280	9.7685	1.9537	10.8000	48.5000	
\nearrow	Diff (1-2)	Pooled		1.6280	8.8270	2.4967			
	Diff (1-2)	Satterthwaite		1.6280		2.4967			

check for common population variance:

The ratio of the sample standard deviations 7.7724/9.7685 = .7956 s between 1/2 and 2 o the assumption of a common population variance is OK line Method Mean 95% CL Mean RS 25.2560 22.0477 28.4643 95% confidence interval for mu_(RS) - mu_(SS) SS 23.6280 19.5958 27.6602 Diff (1-2) Pooled 1.6280 -3.3919 6.6479 Diff (1-2) Satterthwaite 1.6280 -3.3984 6.6544

Method	Variances	DF	t Value	Pr > t	
Pooled	Equal	48	0.65	0.5175	.5175 is the P-value for
Satterthwaite	Unequal	45.693	0.65	0.5176	

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	24	24	1.58	0.2698			

fruitfly fecundity example: RS versus SS

The TTEST Procedure

Variable: fecund

Histograms with smoothed histograms (fitted density curves "kernel") and fitted normal density curves for each sample.

fruitfly fecundity example: RS versus SS

The TTEST Procedure

Variable: fecund

fruitfly fecundity example: NS versus S

The TTEST Procedure

Variable: fecund

sample means and standard deviations

line2	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
NS		25	33.3720	8.9420	1.7884	14.9000	51.8000
s		50	24.4420	8.7751	1.2410	10.8000	48.5000
Diff (1-2)	Pooled		8.930	8.8303	21630		
Diff (1-2)	Satterthwaite		8.9300		2.1768		

check for common population variance:

The ratio of the sample standard deviations 8.9420/8.7751 = 1.0190 s between 1/2 and 2 o the assumption of a common population variance is OK

90				pooled sample standard deviation			
	line2	Method	Mean	95% C	L Mean		
	NS		33.3720	29.6809	37.0631	·	
	s		24.4420	21.9481	26.9359	95% confidence interval for mu (NS) - mu (S)	
	Diff (1-2)	Pooled	8.9300	4.6192	13.2408	3	-
	Diff (1-2)	Satterthwaite	8.9300	4.5516	13.3084	4	

Method	Variances	DF	t Value	Pr > t		
Pooled	Equal	73	4.13	<.0001	4	
Satterthwaite	Unequal	47.305	4.10	0.0002		

The P-value for H_1: mu_(NS) notequal mu_(S) is < .0001

	Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F				
Folded F	24	49	1.04	0.8833				

fruitfly fecundity example: NS versus S

Variable: fecund

The TTEST Procedure Histograms with smoothed histograms (fitted density curves "kernel") and fitted normal density curves for each sample.

fruitfly fecundity example: NS versus S

The TTEST Procedure

Variable: fecund

