analysis for both house design types

The UNIVARIATE Procedure Variable: gas type = extra

summary of gas consumption for the 14		Basic Statistical Measures					
		Location		Variability			
insulation		Mean	13.87143	Std Deviation	2.36364		
		Median	13.70000	Variance	5.58681		
		Mode	13.70000	Range	10.50000		
				Interquartile Range	2.30000		

	Tests for Normality						
	Test	St	atistic	p Val	ue		
<	Shapiro-Wilk	w	0.93277	Pr < W	0.3335	\triangleright	
	Kolmogorov-Smirnov	D	0.16723	Pr > D	>0.1500		
	Cramer-von Mises	W-Sq	0.085422	Pr > W-Sq	0.1649		
	Anderson-Darling	A-Sq	0.507886	Pr > A-Sq	0.1721		

Quantiles (D	Quantiles (Definition 5)				
Level	Quantile				
100% Max	18.8				
99%	18.8				
95%	18.8				
90%	16.0				
75% Q3	15.3				
50% Median	13.7				
25% Q1	13.0				
10%	11.7				
5%	8.3				
1%	8.3				
0% Min	8.3				

Test for normality assumption for the houses with extra insulation sample

The null hypothesis is that the data (the 14 gas consumption values) form a random sample from a normal distribution. The large P-value .3335 shows supports for the normality assumption.

<-----

The distribution is reasonably symmetric

med-min=5.4 max-med=5.1 very slight skewness to the left

	Extreme Values								
Lowest				Highest					
	Order	Value	Freq	Order	Value	Freq			
	1	8.3	1	9	14.6	1			
	2	11.7	1	10	15.3	1			
	3	12.7	1	11	15.6	1			
	4	13.0	1	12	16.0	1			
	5	13.4	1	13	18.8	1			

The UNIVARIATE Procedure Variable: gas type = standard

summary of gas consumption for the 12 houses with standard insulation

	Basic Statistical Measures					
Location		Variability				
Mean	16.76667	Std Deviation	2.99586			
Median	18.00000	Variance	8.97515			
Mode	13.90000	Range	10.30000			
		Interquartile Range	5.00000			

Note: The mode displayed is the smallest of 3 modes with a count of 2.

	Tests for Normality						
	Test	Sta	atistic	p Valı			
<	Shapiro-Wilk	w	0.927281	Pr < W	0.3522		
	Kolmogorov-Smirnov	D	0.243046	Pr > D	0.0483		
	Cramer-von Mises	W-Sq	0.097949	Pr > W-Sq	0.1076		
	Anderson-Darling	A-Sq	0.514106	Pr > A-Sq	0.1574		

Quantiles (Definition 5)				
Level	Quantile			
100% Max	21.70			
99%	21.70			
95%	21.70			
90%	19.00			
75% Q3	18.95			
50% Median	18.00			
25% Q1	13.95			
10%	13.90			
5%	11.40			
1%	11.40			
0% Min	11.40			

Test for normality assumption for the houses with standard insulation sample

The null hypothesis is that the data (the 12 gas consumption values) form a random sample from a normal distribution. The large P-value .3522 shows supports for the normality assumption.

The distribution is slightly skewed to the left but reasonably symmetric (The Shapiro-Wilk test supports this claim)

med-min=6.6 max-med=3.7 slight skewness to the left

Extreme Values								
Lowest			Highest					
Order	Value	Freq	Order	Value	Freq			
1	11.4	1	5	18.0	2			
2	13.9	2	6	18.1	1			
3	14.0	1	7	18.9	1			
4	15.3	1	8	19.0	2			
5	18.0	2	9	21.7	1			

energy usage summary (both house designs) Friday, June 15, 2018 02:51:26 PM 3

-			Th	e TTES Varial	T Proce	dure	samp stanc	le means and lard deviation	t s		
	type	Method	N	Mean	Std Dev	Std Err	Minim	um Maximum]		
	extra		14	13.8714	2.3636	0.6317	8.3	000 18.8000			
	standard		12	16.7667	2.9959	0.8648	11.4	000 21.7000			
	Diff (1-2)	Pooled		-2.8952	2.6720	1.0512					
	Diff (1-2)	Satterthwaite		-2.8952		1.0710					
check for common popula	ation]_/						pooled sar	nple stan	idard deviation	
variance:		type	Meth	od	Mean	95% C	L Mean				
The ratio of the sample st	tandard	extra			13.8714	12.5067	15.236	2			
is between 1/2 and 2	070275	standard			16.7667	14.8632	18.670	1			
so the assumption of a co	ommon (Diff (1-2)	Pool	ed	-2.8952	-5.0648	-0.725	7 5	% confide	ence interval for	1
population valiance ie en	·	Diff (1-2)	Satte	erthwaite	-2.8952	-5.1234	-0.667	0 <u>u</u>	(extra) - r	mu_(standard)	
								_			
		Method		Variance	s DF	t Value	Pr > t				
		Pooled		Equal	24	-2.75	0.0110				
		Satterthwa	ite	Unequal	20.848	-2.70	0.0134			ו	
								.0110 is the I	P-value fo	or	
				Equality	of Varianc	es		H_1: mu_(ex	tra) noteo	qual mu_(standa	ard)
		Method	N	um DF	Den DF F	Value F	Pr > F	divide by 2 to	get the	P-value .0055 fc	or
		Folded I	=	11	13	1.61 0	.4127	H_1: mu_(ex	.tra) < mu	ı_(standard)	

The TTEST Procedure Histograms with smoothed histograms

Variable: gas

Histograms with smoothed histograms (fitted density curves "kernel") and fitted normal density curves for each sample.

The TTEST Procedure

Variable: gas

The UNIVARIATE Procedure Variable: gas type = extra

summary of gas consumption for the 11 solar design houses with extra insulation

	Basic Statistical Measures						
Loc	ation	Variability					
Mean	14.22727	Std Deviation	2.72253				
Median	14.50000	Variance	7.41218				
Mode	15.70000	Range	8.50000				
		Interquartile Range	4.30000				

Tests for Normality					
Test	St	atistic	p Value		
Shapiro-Wilk	w	0.956073	Pr < W	0.7219	
Kolmogorov-Smirnov	D	0.128473	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.033874	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.227742	Pr > A-Sq	>0.2500	

Quantiles (I	Definition 5)
Level	Quantile
100% Max	19.0
99%	19.0
95%	19.0
90%	17.6
75% Q3	15.7
50% Median	14.5
25% Q1	11.4
10%	11.3
5%	10.5
1%	10.5
0% Min	10.5

Test for normality assumption for the houses with extra insulation sample

The null hypothesis is that the data (the 11 gas consumption values) form a random sample from a normal distribution. The large Pvalue .7219 shows supports for the normality assumption.

> The distribution is reasonably symmetric (The Shapiro-Wilk test

med-min=4 max-med=4.5

Extreme Values							
Lowest			Highest				
Order	Value	Freq	Order	Value	Freq		
1	10.5	1	6	14.5	1		
2	11.3	1	7	15.2	1		
3	11.4	1	8	15.7	2		
4	12.6	1	9	17.6	1		
5	13.0	1	10	19.0	1		

supports this claim)

The UNIVARIATE Procedure Variable: gas

type = standard

Basic Statistical Measures								
Loc	ation	Variability						
Mean	16.13750	Std Deviation	2.07906					
Median	16.40000	Variance	4.32250					
Mode		Range	7.60000					
		Interquartile Range	3.35000					

	Tests for Normality					
	Test	Statistic		p Value		
\langle	Shapiro-Wilk	w	0.959144	Pr < W	0.6463	\triangleright
	Kolmogorov-Smirnov	D	0.132841	Pr > D	>0.1500	
	Cramer-von Mises	W-Sq	0.054795	Pr > W-Sq	>0.2500	\
	Anderson-Darling	A-Sq	0.337386	Pr > A-Sq	>0.2500	

Quantiles (I	Quantiles (Definition 5)				
Level	Quantile				
100% Max	19.90				
99%	19.90				
95%	19.90				
90%	18.00				
75% Q3	17.70	l			
50% Median	16.40				
25% Q1	14.35				
10%	13.30				
5%	12.30				
1%	12.30				
0% Min	12.30				

Extreme Values						
Low	Lowest		nest			
Order	Value	Order	Value			
1	12.3	12	17.6			
2	13.3	13	17.8			
3	13.7	14	17.9			
4	13.8	15	18.0			
5	14.9	16	19.9			

Test for normality assumption for the houses with standard insulation sample The null hypothesis is that the data (the 16

gas consumption values) form a random sample from a normal distribution. The large P-value .6463 shows supports for the normality assumption.

> The distribution is slightly skewed to the left but reasonably symmetric (The Shapiro-Wilk test supports this claim)

med-min=4.1 max-med=3.5 slight skewness to the left

The TTEST Procedure

			Variab	le: gas	K	s s	ample mea tandard de	ans and eviations
type	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum	
extra		11	14.2273	2.7225	0.8209	10.5000	19.0000	
standard		16	16.1375	2.0791	0.5198	12.3000	19.9000	
Diff (1-2)	Pooled 1		-1.9102	2.3576	0,9234			
Diff (1-2)	Satterthwaite		-1.9102		0.9716			
pooled sample standard devi								

check for common population variance:

The ratio of the sample standard deviations 2.7225/2.0791 = 1.3095 is between 1/2 and 2 so the assumption of a common population variance is OK

/						
type		Method	Mean	95% C	L Mean	
extra	a		14.2273	12.3983	16.0563	
stan	dard		16.1375	15.0296	17.2454	
Diff	(1-2)	Pooled	-1.9102	-3.8120	-0.00841	← 95% confidence interval for
Diff	(1-2)	Satterthwaite	-1.9102	-3.9537	0.1333	mu_(extra) - mu_(standard)
						-

Method	Variances	DF	t Value	Pr > t		
 Pooled	Equal	25	-2.07	0.0491	~	/
Satterthwaite	Unequal	17.726	-1.97	0.0652	'	

Equality of Variances						
Method	Num DF	Den DF	F Value	Pr > F		
Folded F	10	15	1.71	0.3344		

.0491 is the P-value for H_1: mu_(extra) notequal mu_(standard)

divide by 2 to get the P-value .02455 for H_1: mu_(extra) < mu_(standard)

Variable: gas

Histograms with smoothed histograms (fitted density curves "kernel") and fitted normal density curves for each sample.

The TTEST Procedure

Variable: gas

