
Inference for a Proportion

Introduction

A dichotomous population is a collection of units which can be divided into two

nonoverlapping subcollections corresponding to the two possible values of a dichotomous

variable, e.g. male or female, dead or alive, pass or fail. It is conventional to refer to one

of the two possible values which dichotomize the population as “success” and the other as

“failure.” These generic labels are not meant to imply that success is good. Rather, we can

think of choosing one of the two possible classifications and asking “does the unit belong

to the subcollection of units with this classification?” with the two possibilities being yes

(a success) and no (a failure). When a unit is selected from the population and the unit

is found to belong to the success subgroup we say that a success has occurred. Similarly,

when a member of the failure subgroup is selected we say that a failure has occurred.

The proportion of units in the population that belong to the success subgroup (the units

classified as successes) is the population success proportion. This population success

proportion is denoted by the lower case letter p. The population success proportion p

is a parameter, since it is a numerical characteristic of the population. The sample

success proportion or observed proportion of successes in a sample from a dichotomous

population is denoted by p̂ (read this as p hat). The observed success proportion p̂ is a

statistic, since it is a numerical characteristic of the sample.

We can use the selection of balls from a box of balls as a model for sampling from a

dichotomous population. Consider a box containing balls of which some are red (successes)

and the rest are green (failures). The population success proportion, p, is the proportion

of red balls in the box. If we select a random sample of n balls from this box, then

the sample success proportion, p̂, is the proportion of red balls in the sample. Thus, in

this model, a ball is a unit, the box of balls is the population, selecting a red ball is a

success, the proportion of red balls in the box p is the parameter (the population success

proportion), and the proportion of red balls in the sample p̂ is the statistic (the sample

success proportion).

The sampling distribution and the normal approximation

We will now discuss how the sample proportion p̂ can be used to make inferences about

the population proportion p. Assuming that the sample size n is reasonably large, it seems

reasonable to view the sample proportion p̂ as an estimate of the population proportion

p. Clearly there will be some variability from sample to sample in the computed values of

the statistic p̂. That is, if we took several random samples from the population, we would
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not expect the observed sample success proportions, the p̂’s, to be exactly the same. In

the box of balls example, if we took several samples from the box we would expect the

proportion of red balls in the sample to vary from sample to sample.

Two questions we might ask about the sample proportion p̂ as an estimator of the

population proportion p are:

(1) Can we expect the sample proportion p̂ to be close to the population proportion p?

(2) Can we quantify how close p̂ will be to p?

The sampling distribution of p̂, which describes the sample to sample variability in p̂, can

be used to address these questions.

In general, the sampling distribution of a statistic is the distribution of the

possible values of the statistic that could be obtained from random samples. We can think

of the sampling distribution of a statistic as a theoretical relative frequency distribution

for the possible values of the statistic which describes the sample to sample variability in

the statistic. The form of the sampling distribution of a statistic depends on the nature of

the population the sample is taken from, the size of the sample, and the method used to

select the sample.

Figure 1. Sampling distribution of p̂ when n = 10 and p = .6

p̂ probability

0 .0001
.1 .0016
.2 .0106
.3 .0425
.4 .1115
.5 .2007
.6 .2508
.7 .2150
.8 .1209
.9 .0403
1 .0060

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

For example, suppose that we select a simple random sample of n = 10 balls, with

replacement, from a box containing six red balls and four green balls. If we identify red

as a success, then, in this example, the population success proportion is p = .6, since 60%

of the balls in the box are red. The possible values of the sample success proportion p̂

when n = 10 are: 0, .1, .2, . . . , 1. The sampling distribution of p̂ summarized in Figure 1

gives the probabilities corresponding to these possible values. As you would expect, the
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probabilities are highest for values near p = .6 and very small for values far away from

p = .6. In particular, when we select a simple random sample of size n = 10 from this box,

25.08% of the time we would observe p̂ = .6, 20.07% of the time we would observe p̂ = .5,

and 21.50% of the time we would observe p̂ = .7. On the other hand, it would be possible

but very unlikely to observe p̂ = .2 (only 1.06% of the time) or p̂ = .9 (only 4.03% of the

time).

The mean and the standard deviation of the sampling distribution are of particular

interest. The mean of the sampling distribution indicates whether the statistic is biased as

an estimator of the parameter of interest. If the mean of the sampling distribution is equal

to the parameter of interest, then the statistic is said to be unbiased as an estimator of the

parameter. Otherwise, the statistic is said to be biased as an estimator of the parameter.

To say that a statistic is unbiased means that, even though the statistic will overestimate

the parameter for some samples and will underestimate the parameter for other samples,

it will do so in such a way that, in the long run, the values of the statistic will average

to give the correct value of the parameter. When the statistic is biased the statistic will

tend to consistently overestimate or consistently underestimate the parameter; therefore,

in the long run, the values of a biased statistic will not average to give the correct value

of the parameter. The standard deviation of the sampling distribution is known as the

standard error of the statistic. The standard error of the statistic provides a measure of

the sample to sample variability in the values of the statistic. The standard error of the

statistic can be used to quantify how close we can expect the value of the statistic to be

to the value of the parameter.

Returning to our discussion of the sampling distribution of p̂ we first present two

important properties of this sampling distribution. The observed proportion p̂ in a simple

random sample selected with replacement from a population with population proportion

p has a sampling distribution with the following properties.

1. The mean of the sampling distribution of p̂ is the population probability p. Therefore,

p̂ is unbiased as an estimator of p.

2. The population standard error of p̂, denoted by SE(p̂), is

SE(p̂) =

√

p(1− p)

n
.
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The inferential methods we will consider are based on a large sample size normal

approximation to the sampling distribution of p̂. A detailed discussion of the exact form

of the sampling distribution of p̂, the normal distribution, and the normal approximation

to the sampling distribution of p̂ can be found in a separate document. Here we will

provide an indication of some basic properties of the sampling distribution of p̂ in terms of

some graphical representations of the probability histogram of the distribution of p̂ with

superimposed fitted normal density curves.

First consider how the sampling distribution of p̂ depends on the sample size n. From

the expression given above for the population standard error of p̂ we can see that, as you

would expect, the variability in p̂ as an estimator of p decreases as the sample size increases.

This behavior of the sampling distribution is illustrated in Figure 2.

Figure 2. The sampling distribution of p̂ with normal approximation for p = .6.

Histograms are provided for n = 10, 20, 30, 40, 50, and 60. All of these distributions are

centered at p = .6. Notice how the variability in the distribution decreases as the sample

size n increases and how much better the normal density curve matches the histogram.

n = 10 n = 20 n = 30

n = 40 n = 50 n = 60

Next consider how the sampling distribution of p̂ depends on the value of the popu-

lation success proportion p. The sampling distribution of p̂ is unimodal (single peaked)

with its peak at p. If p = .5, then the sampling distribution of p̂ is symmetric. If p < .5,
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then sampling distribution of p̂ is skewed right. If p > .5, then sampling distribution of p̂

is skewed left. Since p̂ is unbiased as an estimator of p, the mean of the distribution of p̂

is p. Thus, the probability histogram of the distribution of p̂ has its balance point at p.

From the expression given above for the population standard error of p̂ we can see that,

for fixed n, the variability in p̂ as an estimator of p is highest when p = .5 and decreases

as p moves away from .5. These properties of the sampling distribution are illustrated in

Figure 3.

Figure 3. The sampling distribution of p̂ with normal approximation for n = 20.

Histograms are provided for p = .5, .6, .7, .8, and .9. Each distribution is centered at its p.

Notice how the variability in the distribution decreases as p moves away from .5.

Notice also how the distribution becomes more skewed left as p moves away from .5.

p = .5 p = .6 p = .7

p = .8 p = .9

The normal approximation to the sampling distribution of p̂ is illustrated graphically

in Figure 4. In this figure, the probability histogram of the sampling distribution of p̂ for

the situation when a simple random sample of size n = 20 is selected with replacement

from a dichotomous population with p = .6 is given along with the approximating normal

density curve. The exact probabilities which correspond to the areas of the rectangles of

the histogram are given as percentages, e.g., the probability of observing p̂ = .06 is .17971

(17.97%). The normal approximation, explained more fully below, basically says that, over
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a specified range of p̂ values, the area under the normal density curve and the area in the

rectangles of the histogram are similar. You can see that the curve matches the histogram

reasonably well in Figure 4.

Figure 4. The sampling distribution of p̂ with normal approximation for n = 20 and p = .6.

This assumes a simple random sample selected with replacement. If the p̂ values were converted

to counts, X = np̂, then this would be a binomial distribution.

The normal approximation to the sampling distribution of p̂ says that, for large values

of n, the standardized value of p̂ obtained by subtracting the population proportion p

from p̂ and dividing this difference by the population standard error of p̂, behaves in

approximate accordance with the standard normal distribution. That is, for large values

of n the quantity Z = (p̂− p)/SE(p̂) behaves like a standard normal variable. This means,

as will be shown below, that we can use an area under the standard normal density curve

(a probability in terms of Z) to approximate an area in the probability histogram of the

sampling distribution of p̂ (a probability in terms of p̂). The relationship between p̂ and p

indicated by this expression for Z and the normal distribution itself allow us to use p̂ to

make formal, quantifiable inferences about p.
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Estimation of p

As noted above, the sample proportion p̂ is an unbiased estimator of the population

proportion p. We can think of p̂ as our “best guess” of the value of p. To allow for sampling

variability it would be more useful to report a range or interval of plausible values for p.

In particular, given the data we would like to be able to say, with a reasonable level of

confidence, that the true value of p is between two particular limiting values. We will now

use the normal approximation to the sampling distribution of p̂ to develop such an interval

estimate of p.

The probability that a standard normal variable Z takes on a value between −1.96

and 1.96 is equal to .95, i.e., P (−1.96 ≤ Z ≤ 1.96) = .95. Thus, when we observe the value

of a standard normal variable Z, 95% of the time we will find that −1.96 ≤ Z ≤ 1.96.

Graphically this means that the area under the standard normal density curve over the

interval from -1.96 to 1.96 is .95. Thus, for sufficiently large values of n we have the

approximation,

P

[

−1.96 ≤
p̂− p

SE(p̂)
≤ 1.96

]

= .95

or equivalently

P [p− 1.96 · SE(p̂) ≤ p̂ ≤ p+ 1.96 · SE(p̂)] = .95.

Note that this indicates that 95% of the time when a simple random sample is selected and

p̂ is computed the observed value of p̂ will be between p− 1.96 ·SE(p̂) and p+1.96 ·SE(p̂),

i.e., p̂ will be within 1.96 population standard error units of p. We will refer to the interval

from p− 1.96 · SE(p̂) to p + 1.96 · SE(p̂) as the central 95% interval of the distribution of

p̂, since it is centered at p and it will contain the observed value of p̂ 95% of the time.

The relationship between p̂ and p is illustrated, for n = 100 and p = .6, in Figure 5.

In this case, p = .6, SE(p̂) =
√

.6(.4)/100 = .0490, and p1 = .6− 1.96 · SE(p̂) = .5040 and

p2 = .6+1.96 ·SE(p̂) = .6960 are the limits of the central 95% interval of the distribution of

p̂. The shaded region with area .95 in Figure 5 indicates that 95% of all samples will yield

a sample proportion p̂ which is between p1 and p2. That is, when p = .6 and n = 100, 95%

of all samples will yield a sample proportion p̂ which is between p1 = .5040 and p2 = .6960.

In terms of a box of balls this means that, if exactly 60% of the balls in the box were red,

then 95% of the time when we selected n = 100 balls from the box, at random and with

replacement, we would find between 51 and 69 red balls (between 50.40 and 69.60) among

the 100 balls in the sample.
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The plot on the right in Figure 5 shows how the endpoints of the central 95% interval

of the distribution of p̂ depend on p. In this plot the sample size is n = 100. (The

pattern is similar for other values of n.) The upper (red) curve gives values of p + 1.96 ·

SE(p̂) = p+ 1.96
√

p(1− p)/n as a function of p and the lower (blue) curve gives values of

p− 1.96 · SE(p̂) = p− 1.96
√

p(1− p)/n as a function of p. The intersections of a vertical

line draw at a particular value of p with these curves are the endpoints of the central

95% interval of the distribution of p̂ for that value of p. The lines drawn in the figure

demonstrate this for the case p = .6. Note that, as mentioned above, p1 = .5040 and

p2 = .6960, and these are the endpoints of the interval in the plot on the left in Figure 5.

Figure 5. The plot on the left shows the central 95% interval of the distribution of p̂

for n = 100 and p = .6.

The curves in the plot on the right show the endpoints, p± 1.96
√

p(1− p)/n, of the

central 95% interval of the distribution of p̂ as a function of p for n = 100.

The endpoints for the case p = .6 are indicated by the lines marking the intersections

at p1 = .5040 and p2 = .6960.

p2 ←

p1 ←

95%

| ←−−→ | p̂ ↑ p
p1 p2 p = .60

A confidence interval for p.

As noted above, for a particular value of p, 95% of all samples will yield a value of p̂

within the corresponding central 95% interval from p− 1.96SE(p̂) to p+ 1.96SE(p̂). Thus

for each possible value of p we can find an interval of likely values for p̂. But we need an

interval of plausible values for p not for p̂ ! We will now show how the central 95% intervals

of the distribution of p̂ can be used to form a 95% confidence interval estimate of p. We

will provide a formal definition of a 95% confidence interval estimate later.
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Suppose that a simple random sample has been selected and let p̂obs denote the

observed value of p̂. Given this p̂obs, we want to know which values of p are plausible.

More precisely, we want to know which values of p determine sampling distributions for

p̂ under which seeing p̂ = p̂obs would not be surprising. We can formalize this goal by

saying that we want to know which values of p determine a sampling distributions for p̂ for

which the central 95% interval of the distribution of p̂ contains the observed value p̂obs.

The plot on the right in Figure 5 shows how the central 95% interval of the distribution

of p̂ depends on the value of p. We want to determine which values of p yield central 95%

intervals which contain p̂obs. This requires using the graph of Figure 5 in the other

direction. In Figure 6 a horizontal line is drawn at p̂obs and its intersections, pL and pU ,

with the two curves are indicated. Notice that pL is the smallest value of p for which the

central 95% interval of the distribution of p̂ contains p̂obs and pU is the largest value of

p for which the central 95% interval of the distribution of p̂ contains p̂obs. (Figure 6 is

drawn for n = 100 and p̂obs = .55. In this case, pL = .4524 and pU = .6439.) Thus, if

we draw a vertical line, as in Figure 5, at any value of p between pL and pU , then the

corresponding central 95% interval of the distribution of p̂ contains p̂obs.

Figure 6. The smallest and largest values of p, pL and pU , for which the central 95%

interval of the distribution of p̂ contains p̂obs.

This example is drawn for n = 100 and p̂obs = .55.

p̂obs

↓ ↓
pL pU

In order to determine the value of pL we simply set p+ 1.96SE(p̂) equal to p̂obs and

solve for p (draw the horizontal line as in Figure 6 and project down at the intersection

with the upper (red) curve). To determine the value of pU we set p − 1.96SE(p̂) equal
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to p̂obs and solve for p (draw the horizontal line as in Figure 6 and project down at the

intersection with the lower (blue) curve).

Table 1. Central 95% intervals [p1, p2] of the distribution of p̂ for selected values

of p when n = 100. The intervals for p = .46 through p = .64 contain p̂obs = .55.

central 95% interval
p p1 p2
.10 .041 .159
.20 .122 .278
.30 .210 .390
.40 .304 .496
.45 .352 .548 ***
.46 .362 .558
.47 .372 .568
.48 .382 .578
.49 .392 .588
.50 .402 .598
.51 .412 .608
.52 .422 .618
.53 .432 .628
.54 .442 .638
.55 .452 .648
.56 .463 .657
.57 .473 .667
.58 .483 .677
.59 .494 .686
.60 .504 .696
.61 .514 .706
.62 .525 .715
.63 .535 .725
.64 .546 .734
.65 .556 .743 ***
.70 .610 .790
.80 .722 .878
.90 .841 .959

A simple example will help to clarify this discussion. Consider a box containing a

large number of balls. Suppose that some of the balls in the box are red. Let p denote the

proportion of red balls in the box. Now suppose that a simple random sample of n = 100

balls has been selected and 55 of the 100 balls found to be red. In this example 55% of

the balls in the sample are red, i.e., p̂obs = .55. Table 1 contains central 95% intervals of
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the distribution of p̂ for n = 100 and selected values of p. Notice that when p is between

.46 and .64 the intervals contain p̂obs = .55.

For example, when p = .50, 95% of all samples will yield a p̂ value between .402 and

.598. In a case like this, where the central interval contains .55, it would not be surprising

to see p̂obs = .55 and the correspond value of p would be deemed plausible. That is, if

exactly 50% of the balls in the box were red, then 95% of the time when we selected a

random sample of n = 100 balls we would find that between 40.2% and 59.8% of the 100

balls in the sample were red. Since 55% belongs to this range it is plausible that exactly

50% of all the balls in the box are red (p = .50).

On the other hand, if p = .30, 95% of all samples will yield a p̂ value between .210 and

.390. Thus, if exactly 30% of the balls in the box were red, then 95% of the time when we

selected a random sample of n = 100 balls we would find that between 21.0% and 39.0%

of the 100 balls in the sample were red. Since this entire interval is less than 55%, it would

be surprising to see p̂ as large as .55 when p was .30. Therefore, when we see p̂obs = .55 it

is reasonable to conclude that the percentage of red balls in the box is not 30% (p 6= .30).

Similarly, if p = .70, 95% of all samples will yield a p̂ value between .610 and .790.

Thus, if exactly 70% of the balls in the box were red, then 95% of the time when we

selected a random sample of n = 100 balls we would find that between 61.0% and 79.0%

of the 100 balls in the sample were red. Since this entire interval is greater than 55%,

it would be surprising to see p̂ as small as .55 when p was .70. Therefore, when we see

p̂obs = .55 it is reasonable to conclude that the percentage of red balls in the box is not

70% (p 6= .70).

In cases like the last two, where the entire interval is less than .55 or the entire interval

is greater than .55, it would be surprising to see p̂obs = .55 and the correspond value of p

would not be deemed plausible. From the table we can see that pL ≈ .45, since the upper

endpoint of the central 95% interval p2 is approximately .55 when p = .45, and pU ≈ .64,

since the lower endpoint p1 of the central 95% interval is approximately .55 when p = .64.

More precise computation indicates that pL = .4524 and pU = .6439. Using this reasoning,

we see that when n = 100 and we observe p̂obs = .55 we can argue that values of p between

pL = .4524 and pU = .6439 are plausible. In other words, if we selected a simple random

sample of n = 100 balls from the box and found that 55% of the balls in the sample were

red, then we would conclude that somewhere between 45.24% and 64.39% of all the balls

in the box are red.
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The interval of plausible values for p with endpoints pL and pU discussed above is a

95% confidence interval estimate of p. In the preceding example, the more formal way of

stating the conclusion is as follows. If we selected a simple random sample of n = 100

balls from the box and found that 55% of the balls in the sample were red, then we would

conclude that we were 95% confident that the percentage of red balls in the box was

somewhere between 45.24% and 64.39% (in terms of p, .4524 ≤ p ≤ .6439).

A confidence interval for p – more formally.

We will now give a more formal definition of a confidence interval estimate of p.

The purpose of a confidence interval estimate is to provide a range or interval of plausible

values for p. In particular, given the data we would like to be able to say, with a reasonable

level of confidence (95% in the example above), that the true value of p is between two

particular values (pL and pU in the example above). A confidence interval estimate of p

consists of two parts. There is an interval of plausible values for p and a corresponding

level of confidence. We will adopt the usual convention of using a confidence level of 95%.

The confidence level indicates our confidence that the unknown p actually belongs to the

corresponding interval.

There is some chance for confusion about what it means to say we are 95% confident

that p is between pL and pU . The important thing to remember is that it is the endpoints

of the interval pL and pU that vary from sample to sample. The population proportion p

is a fixed, unknown parameter which does not vary. Therefore, the 95% confidence level

applies to the method used to generate the confidence interval estimate. That is, the

method (obtain a simple random sample and compute the numbers pL and pU forming the

confidence interval is such that 95% of the time it will yield a pair of confidence interval

limits which bracket the population success proportion p. Therefore, when we obtain a

sample, compute the confidence interval, and say that we are 95% confident that this

interval contains p what we mean is that we feel “pretty good” about claiming that p is in

this interval, since the method used to construct the interval works for 95% of all possible

samples and so it probably worked for our sample.

A 95% confidence interval for p – summary and computation.

As noted above, a 95% confidence interval estimate of p is an interval of plausible

values for p constructed using a method of generating such intervals with the property
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that this method will work, in the sense of generating an interval that contains p, for 95%

of all possible samples.

The Wilson (score) 95% confidence interval for p.

The 95% confidence interval estimate of the population proportion p discussed above

is usually called the Wilson interval or the score interval. The graphical derivation above

is readily modified for a confidence level other that 95%. The requisite modification is to

change the 95% confidence level multiplier 1.96 to the value appropriate for the desired

confidence level, e.g., the multiplier 1.645 leads to a 90% confidence interval.

Computation of the Wilson (score) 95% confidence interval for p.

Computations of the Wilson 95% confidence interval estimate of p for the box of balls

example with n = 100 and 55 red balls are illustrated in Figures 7–10. Recall that in this

example, we selected a simple random sample of n = 100 balls from the box and found that

55% of the balls in the sample were red, then we concluded that we were 95% confident

that the percentage of red balls in the box was somewhere between 45.24% and 64.39% (in

terms of p, .4524 ≤ p ≤ .6439).

Figure 7. SAS output giving the Wilson 95% confidence interval for the box of balls

example with n = 100 and p̂obs = .55 with SAS command file.

SAS command file: boxofballs onepropexample.sas

/* box of balls example */
data boxofballs;

input outcome $ count;
/* the coding outcome $ indicates that outcome is character valued */
cards;
red 55
green 45
;
proc freq data=boxofballs order=data;

tables outcome / alpha=.05 binomial(cl=wilson level=’red’);
weight count;

title ’box of balls example’;
/* tables option

-- alpha=.05 requests 95% confidence level
this is the default Use alpha=.10 to
get a 90% confidence interval and use
the appropriate endpoint of the 90% CI
as a 95% lower/upper confidence bound */

/* binomial options
-- cl=wilson Wilson confidence interval
-- level=’red’ define "success" default is

the first level which is "red" in this example */
run;
/* ---------------------------------------------------------*/
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Figure 8. R commands and output giving the Wilson 95% confidence interval for

the box of balls example with n = 100 and p̂obs = .55.

R commands and output for the box of balls example

R Commands:

# box of balls example
prop.test(55,100,correct=0)

R Output:

1-sample proportions test without continuity correction

data: 55 out of 100, null probability 0.5
X-squared = 1, df = 1, p-value = 0.3173
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4524460 0.6438546
sample estimates:

p
0.55

Figure 9. JMP commands and output giving the Wilson 95% confidence interval for

the box of balls example with n = 100 and p̂obs = .55.

Distributions

color

green

red

Frequencies

Level

green

red

Total

Count

45

55

100

Prob

0.45000

0.55000

1.00000

N Missing 0

2 Levels

Confidence Intervals

Level

green

red

Total

Count

45

55

100

Prob

0.45000

0.55000

Lower CI

0.356145

0.452446

Upper CI

0.547554

0.643855

1-Alpha

0.950

0.950

Note: Computed using score confidence intervals.

JMP directions for the box of balls example

step 1: create a data table: file --> new --> data table
input in columns 1 and 2 as:

color count
red 55
green 45

step 2: analyze --> distribution
assign variables as:

y, columns : color
freq : count

under the "color tab" select options
display options --> horizontal layout
histogram options --> vertical
confidence interval --> .95

14



Figure 10. TI84 program “WILSON2” screen captures followed by command listing.

This output shows how to get the Wilson 95% confidence interval for

the box of balls example with n = 100 and p̂obs = .55.

Example. Insects in an apple orchard. The manager of a large apple orchard is

concerned with the presence of a particular insect pest in the apple trees in the orchard.

An insecticide that controls this particular insect pest is available. However, application

of this insecticide is rather expensive. It has been determined that the cost of applying

the insecticide is not economically justifiable unless more than 20% of the apple trees in

the orchard are infested. The manager has decided to assess the extent of infestation in

the orchard by examining a simple random sample of 200 apple trees. In this example a

unit is an apple tree and the target population is all of the apple trees in this orchard. We

will assume that the simple random sample is selected from all of the apple trees in the

orchard so that the sampled population is the same as the target population. We will also

assume that the 200 trees in the sample form a small proportion of all of the trees in the

entire orchard so that we do not need to worry about whether the sample is chosen with

or without replacement. An appropriate dichotomous variable is whether an apple tree is

infested with possible values of yes (the tree is infested) and no (the tree is not infested).

Since we are interested in the extent of the infestation we will view a tree that is infested

as a success. Thus, the population success proportion p is the proportion of all of the apple

trees in the entire orchard that are infested.

Two (related) questions of interest in this situation are:

(1) What proportion of all of the trees in this orchard are infested? (What is p?)

(2) Is there sufficient evidence to justify the application of the insecticide? (Is p > .20?)
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We will consider four hypothetical outcomes for this scenario to demonstrate how a 95%

confidence interval estimate can be used to address these questions. The SAS output for

these examples is provided in Figures 11a and 11b.

Figure 11a. SAS output for the apple orchard example – confidence intervals

Case 1. Suppose that 35 of the 200 apple trees in the sample are infested so that

p̂ = .175. In this case we know that 17.5% of the 200 trees in the sample are infested and

we can conjecture that a similar proportion of all of the trees in the entire orchard are

infested. However, we need a confidence interval estimate to get a handle on which values

of the population success proportion p are plausible when we observe 17.5% infested trees

in a sample of size 200. Using the Wilson method we get a 95% confidence interval ranging

from .1286 to .2336 (see Figure 11a). Thus we can conclude that we are 95% confident

that between 12.86% and 23.36% of all of the trees in this orchard are infested. Notice that

this confidence interval does not exclude the possibility that more than 20% of the trees

in the entire orchard are infested, since the upper limit of the confidence interval 23.36%

is greater than 20%. In other words, even though less than 20% of the trees in the sample

were infested, when we take sampling variability into account we find that it is possible

that more than 20% (as high as 23.36%) of the trees in the entire orchard are infested. Of
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course the interval also indicates that it is possible that less than 20% (as low as 12.86%)

of the trees in the entire orchard are infested.

Case 2. Suppose that 26 of the 200 apple trees in the sample are infested so that

p̂ = .13. In this case we know that 13% of the 200 trees in the sample are infested. Using

the Wilson method we get a 95% confidence interval ranging from .0903 to .1837 (see

Figure 11a). Thus we can conclude that we are 95% confident that between 9.03% and

18.37% of all of the trees in this orchard are infested. In this case the entire confidence

interval is below 20% excluding the possibility that more than 20% of the trees in the

entire orchard are infested. Therefore, in this case we have sufficient evidence to conclude

that less than 20% of the trees in the entire orchard are infested, i.e., that p < .20.

Figure 11b. SAS output for the apple orchard example – confidence intervals

Case 3. Suppose that 45 of the 200 apple trees in the sample are infested so that

p̂ = .225. In this case we know that 22.5% of the 200 trees in the sample are infested.

Using the Wilson method we get a 95% confidence interval ranging from .1726 to .2877 (see

Figure 11b). Thus we can conclude that we are 95% confident that between 17.26% and

28.77% of all of the trees in this orchard are infested. Notice that this confidence interval

does not exclude the possibility that less than 20% of the trees in the entire orchard are

infested, since the lower limit of the confidence interval 17.26% is less than 20%. In other
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words, even though more than 20% of the trees in the sample were infested, when we take

sampling variability into account we find that it is possible that less than 20% (as low as

17.26%) of the trees in the entire orchard are infested. Of course the interval also indicates

that it is possible that more than 20% (as high as 28.77%) of the trees in the entire orchard

are infested.

Case 4. Finally, suppose that 54 of the 200 apple trees in the sample are infested so

that p̂ = .27. In this case we know that 27% of the 200 trees in the sample are infested.

Using the Wilson method we get a 95% confidence interval ranging from .2132 to .3354

(see Figure 11b). Thus we can conclude that we are 95% confident that between 21.32%

and 33.54% of all of the trees in this orchard are infested. In this case the entire confidence

interval is above 20% excluding the possibility that less than 20% of the trees in the entire

orchard are infested. Therefore, in this case we have sufficient evidence to conclude that

more than 20% of the trees in the entire orchard are infested, i.e., that p > .20.

A formula for the Wilson (score) 95% confidence interval for p.

Some readers may find an algebraic expression for the Wilson confidence interval

useful. Refer to the computer code and output of Figures 7–10 for an illustration of the

computations of the Wilson 95% confidence interval for a simple example. For greater

generality we will provide these expressions in terms of k, where k is the multiplier for the

desired confidence level. For a 95% confidence level k = 1.96 and for a 90% confidence

level k = 1.645. The Wilson confidence interval estimate of p is given by

p̃k −ME(p̃k) ≤ p ≤ p̃k +ME(p̃k),

(read p̃k as p tilde sub k) where

p̃k =
np̂+ k

2

2

n+ k2

determines the center of the interval, and the margin of error of p̃k

ME(p̃k) =

√

p̃2
k
−

np̂2

n+ k2

determines the length of the interval.

If we use k = 1.96 in these expressions, then we can claim that we are 95% confident

that the population success proportion p is between p̃k −ME(p̃k) and p̃k + ME(p̃k). As

noted above, there is some chance for confusion about what this statement actually means.
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The important thing to remember is that it is the statistic p̃k and the margin of error

ME(p̃k) that vary from sample to sample. The population proportion p is a fixed, unknown

parameter which does not vary. Therefore, the 95% confidence level applies to the method

used to generate the confidence interval estimate. That is, the method (obtain a simple

random sample and compute the numbers p̃ − ME(p̃) and p̃ + ME(p̃)) used to generate

the limits of the confidence interval is such that 95% of the time it will yield a pair of

confidence interval limits which bracket the population success proportion p. Therefore,

when we obtain a sample, compute the confidence interval, and say that we are 95%

confident that this interval contains p what we mean is that we feel “pretty good” about

claiming that p is in this interval, since the method works for 95% of all possible samples

and so it probably worked for our sample.

Aside – derivation of the Wilson interval formula.

This aside contains an algebraic derivation of the Wilson confidence interval for p.

The starting point for this derivation is the interval p − kSE(p̂) ≤ p̂ ≤ p + kSE(p̂) for p̂.

Notice that we can re–express this relationship as |p̂ − p| ≤ kSE(p̂). Since |p̂− p|, k, and

SE(p̂) =
√

p(1− p)/n are positive, we can square each side of the inequality

|p̂− p| ≤ kSE(p̂)

to get the equivalent inequality

(p̂− p)2 ≤
k2

n
(p− p2).

Straightforward algebra allows us to re–express this inequality as the following quadratic

inequality in p

(n+ k2)p2 − 2(np̂+
k2

2
)p+ np̂2 ≤ 0.

Treating this inequality as an equality and solving for p gives the two values

p̃k ±ME(p̃k),

where p̃k =
np̂+ k

2

2

n+ k2
and ME(p̃k) =

√

p̃2
k
−

np̂2

n+ k2
.

Thus, letting C denote the desired confidence level, the probability statement

P
[

|p̂− p| ≤ kSE(p̂)
]

= C.
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is equivalent to the probability statement

P
[

p̃k −ME(p̃k) ≤ p ≤ p̃k +ME(p̃k)
]

= C.

The endpoints of this interval, which are functions of n, p̂, and k, are computable. There-

fore, the Wilson confidence interval is given by

p̃k −ME(p̃k) ≤ p ≤ p̃k +ME(p̃k).

Testing a hypothesis about p

In the apple orchard example we used a confidence interval estimate of p to decide

whether the data supported the contention that more than 20% of the apple trees in the

entire orchard were infested. We will now develop some formal methodology for assessing

the evidence in favor of such a contention. We will start with some terminology.

A hypothesis (statistical hypothesis) is a conjecture about the nature of the popu-

lation. When the population is dichotomous, a hypothesis is a conjecture about the value

of the population success proportion p.

A hypothesis test (test of significance) is a formal procedure for deciding between

two complementary hypotheses. These hypotheses are known as the null hypothesis (H0 for

short) and the research (or alternative) hypothesis (H1 for short). The research hypothesis

is the hypothesis of primary interest, since the testing procedure is designed to address the

question: “Do the data support the research hypothesis?” The null hypothesis is defined as

the negation of the research hypothesis. The test begins by tentatively assuming that the

null hypothesis is true (the research hypothesis is false). The data are then examined to

determine whether the null hypothesis can be rejected in favor of the research hypothesis.

The probability of observing data as unusual (surprising) or more unusual as that actually

observed under the tentative assumption that the null hypothesis is true is computed. This

probability is known as the P–value of the test. (The P in P–value indicates that it is

a probability it does not refer to the population success proportion p.) A small P–value

indicates that the observed data would be unusual (surprising) if the null hypothesis was

actually true. Thus if the P–value is small enough, then the null hypothesis is judged

untenable and the test rejects the null hypothesis in favor of the research (alternative)

hypothesis. On the other hand, a large (not small) P–value indicates that the observed

data would not be unusual (not surprising) if the null hypothesis was actually true. Thus
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if the P–value is large (not small enough), then the null hypothesis is judged tenable and

the test fails to reject the null hypothesis.

There is a strong similarity between the reasoning used for a hypothesis test and the

reasoning used in the trial of a defendant in a court of law. In a trial the defendant is

presumed innocent (tentatively assumed to be innocent) and this tentative assumption

is not rejected unless sufficient evidence is provided to make this tentative assumption

untenable. In this situation the research hypothesis states that the defendant is guilty and

the null hypothesis states that the defendant is not guilty (is innocent). The P–value of

a hypothesis test is analogous to a quantification of the weight of the evidence that the

defendant is guilty with small values indicating that the evidence is unlikely under the

assumption that the defendant is innocent.

We will introduce hypothesis testing in the context of the apple orchard example.

Details and formalization will follow the example.

Example. Insects in an apple orchard (revisited). Recall that the manager of

a large apple orchard examined a simple random sample of 200 apple trees to gauge the

extent of insect infestation in the orchard. The manager has determined that applying the

insecticide is not economically justifiable unless more than 20% of the apple trees in the

orchard are infested. Since the manager does not want to apply the insecticide unless there

is evidence that it is needed, the question of interest here is: “Is there sufficient evidence

to justify application of the insecticide?” In terms of the population success proportion p

(the proportion of all of the apple trees in this orchard that are infested) the research

hypothesis is H1 : p > .20 (more than 20% of all the trees in the orchard are infested);

and the null hypothesis is H0 : p ≤ .20 (no more than 20% of all the trees in the orchard

are infested).

A test of the null hypothesis H0 : p ≤ .20 versus the research hypothesis H1 : p > .20

begins by tentatively assuming that no more than 20% of all the trees in the orchard are

infested. Under this tentative assumption it would be surprising to observe a proportion

of infested trees in the sample, p̂, that was much larger than .20. For example, when

n = 200 and p = .2, the central 95% interval for p̂ ranges from .1446 to.2554 and the

central 99% interval for p̂ ranges from .1272 to.2728. Therefore, if exactly 20% of all the

trees in the orchard were infested, then it would be surprising to see much more than about

25% infested trees in the sample (above the central 95% interval) and it would be very

surprising to see more than about 27% infested trees in the sample (above the central 99%
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interval). On the other hand, if exactly 30% of all the trees in the orchard were infested,

then the central 95% interval for the sample percentage ranges from 23.65% to 36.35% and

the central 99% interval for the sample percentage ranges from 21.65% to 38.35%, so that

sample percentages around 25% to 28% would not be surprising. Thus the test should

reject H0 : p ≤ .20 in favor of H1 : p > .20 if the observed value of p̂ is sufficiently large

relative to .20. That is, if p̂ is large enough to make us doubt our tentative assumption

that p itself is not larger than .20.

Figure 12a. SAS output for the apple orchard example – tests and confidence intervals.

The commands to produce this output are provided in Figure 12b.

Case 1. Suppose that 52 of the 200 apple trees in the sample are infested so that

p̂ = .26. In this case we know that 26% of the 200 trees in the sample are infested and

we need to decide whether this suggests that the proportion of all the trees in the orchard

that are infested, p, exceeds .20. More specifically, we need to determine whether observing

52 or more infested trees in a simple random sample of 200 trees would be surprising if

in fact no more than 20% of all the trees in the orchard were infested. Assuming that

exactly 20% of all the trees in the orchard are infested, we find that the probability of

observing 52 or more infested trees in a sample of 200 trees (seeing p̂ ≥ .26), is .0169

(this is the P–value of the test). In the SAS output of Figure 12a (case 5) this P–value
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is labeled “one–sided Pr > Z”. In other words, if no more than 20% of all the trees in

the orchard were infested, then a simple random sample of 200 trees would give p̂ ≥ .26

about 1.69% of the time. Therefore, observing 52 infested trees in a sample of 200 would

be very surprising if no more than 20% of all the trees in the orchard were infested and we

have sufficient evidence to reject the null hypothesis H0 : p ≤ .20 in favor of the research

hypothesis H1 : p > .20. In the case we would conclude that there is sufficient evidence to

contend that more than 20% of all the trees in the orchard are infested and, in this sense,

application of the insecticide is justifiable. Referring to the SAS output, we see that we

can also conclude with 95% confidence that between 20.41% and 32.49% of all the trees

in the entire orchard are infested. As expected, we find that the entire 95% confidence

interval is above 20%. Note, however, that values as low as 20.41%, which is not much

above 20%, are deemed plausible here.

The SAS commands which produced the output in Figure 12a are provided in Figure

12b.

Case 2. Next suppose that 45 of the 200 apple trees in the sample are infested so that

p̂ = .225. Assuming that exactly 20% of all the trees in the orchard are infested, we find

that the probability of observing 45 or more infested trees in a sample of 200 trees (seeing

p̂ ≥ .225), is .1884 (this is the P–value of the test). In the SAS output of Figure 12a (case

6) this P–value is labeled “one–sided Pr > Z”. In other words, if no more than 20% of

all the trees in the orchard were infested, then a simple random sample of 200 trees would

give p̂ ≥ .225 about 18.84% of the time. Therefore, observing 45 infested trees in a sample

of 200 would not be very surprising if no more than 20% of all the trees in the orchard were

infested and we do not have sufficient evidence to reject the null hypothesis H0 : p ≤ .20

in favor of the research hypothesis H1 : p > .20. In the case we would conclude that there

is not sufficient evidence to contend that more than 20% of all the trees in the orchard are

infested and, in this sense, application of the insecticide not is justifiable. Referring to the

SAS output, we see that we can also conclude with 95% confidence that between 17.26%

and 28.77% of all the trees in the entire orchard are infested. As expected, we see that the

95% confidence interval contains values which are both above and below 20%.
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Figure 12b. SAS commands for the apple orchard example – tests and confidence intervals

SAS command file: Apple orchard examples cases 5 and 6

/* apple orchard example */
data orchard;

input case outcome : $ 11. count;
/* the coding outcome : $ 11. indicates that we want

to allocate 11 characters for outcome */
cards;
5 infested 52
5 notinfested 148
6 infested 45
6 notinfested 155
;
proc freq data=orchard order=data;

tables outcome / alpha=.05 binomial(cl=wilson p=.2 level=’infested’);
weight count;
by case;

title ’apple orchard example’;
/* binomial options

-- cl=wilson Wilson confidence interval
-- p=.2 use p_0=.2 in the hypothesis
-- level=’infested’ define "success" default is

the first level which is infested in this example */
run;

The research hypothesis in the apple orchard example is a directional hypothesis

of the form H1 : p > p0, where p0 = .20. We will now discuss the details of a hypothesis

test for a directional research hypothesis of this form. For the test procedure to be valid

the specified value p0 and the direction of the research hypothesis must be motivated from

subject matter knowledge before looking at the data that are to be used to perform the

test.

Testing a directional hypothesis of the form p > p0

Research question. Is there sufficient evidence to conclude that the population

proportion p is greater than the hypothesized value p0?

Research hypothesis. H1 : p > p0, The population proportion p is greater than the

hypothesized value p0.

Tentative assumption – null hypothesis. H0 : p ≤ p0, We tentatively assume

that the population proportion p is not greater than the hypothesized value p0.

Evidence in favor of the research hypothesis. The relationship between the

observed proportion of successes in the sample p̂ and the hypothesized value p0 will be
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used to assess the strength of the evidence in favor of the research hypothesis. Generally,

we would expect to observe larger values of p̂ more often when the research hypothesis

H1 : p > p0 is true than when the null hypothesis H0 : p ≤ p0 is true. In particular, we can

view the observation of a value of p̂ that is sufficiently large relative to p0 as constituting

evidence against the null hypothesis H0 : p ≤ p0 and in favor of the research hypothesis

H1 : p > p0.

Assessment of the strength of the evidence – the P–value of the test. De-

ciding whether the observed value of p̂ is “sufficiently large relative to p0” is based on the

P–value of the test. The P–value for testing the null hypothesis H0 : p ≤ p0 versus the

research hypothesis H1 : p > p0 is the probability of observing a value of p̂ as large or larger

than the value of p̂ that we actually do observe. The P–value quantifies the consistency of

the observed data with the null hypothesis and may be interpreted as a, somewhat indirect,

measure of the strength of the evidence in the data in favor of the research hypothesis and

against the null hypothesis. Because the P–value is computed under the assumption that

the null hypothesis is true (and the research hypothesis is false), the smaller the P–value

is, the less consistent the observed data are with the null hypothesis. Therefore, since one

of the hypotheses must be true, when we observe a small P–value we can conclude that the

research hypothesis is more consistent with the observed data than is the null hypothesis.

Computation of the P–value. The P–value of the test is computed under the

assumption that the research hypothesis H1 : p > p0 is false and the null hypothesis

H0 : p ≤ p0 is true. Because the null hypothesis only specifies that p ≤ p0, we need to

choose a particular value of p (that is no larger than p0) in order to compute the P–value. It

is most appropriate to use p = p0 for this computation. (Recall that in the apple orchard

example we used p0 = .20 to compute the P–value.) Using p = p0, which defines the

boundary between p ≤ p0, where the null hypothesis is true, and p > p0, where the research

hypothesis is true, provides some protection against incorrectly rejecting H0 : p ≤ p0.

The derivation below is meant to clarify the procedure. We can use a suitable cal-

culator or computer program to perform these computations. We will use the normal

approximation to the sampling distribution of p̂ to compute the P–value. As noted above

we will use the hypothesized value p0 in our computation of the P–value. Thus we will

use the population standard deviation of p̂

SE(p̂) =

√

p0(1− p0)

n
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in our computation of the Z–score. The calculated Z statistic or Z score corresponding to

the observed value of p̂, denoted by Zcalc, is

Zcalc =
p̂− p0
SE(p̂)

=
p̂− p0

√

p0(1− p0)/n
.

Recall that the P–value for testing the null hypothesis H0 : p ≤ p0 versus the research

hypothesis H1 : p > p0 is the probability of observing a value of p̂ as large or larger than

the value of p̂ that we actually do observe, computed assuming that p = p0. Using the

normal approximation, this P–value is equal to the probability that a standard normal

variable takes on a value at least as large as Zcalc. This P–value is

P–value = P (Z ≥ Zcalc),

where Z denotes a standard normal variable, i.e., this P–value is the area under the

standard normal density curve to the right of Zcalc, as shown in Figure 13. Notice that

the P value (the area to the right of Zcalc) is small when Zcalc is far to the right of zero

which is equivalent to p̂ being far to the right of p0.

Figure 13. P–value for H0 : p ≤ p0 versus H1 : p > p0.

0 Zcalc

Once the P–value has been computed we need to decide whether the P–value is small

enough to justify rejecting the null hypothesis in favor of the research hypothesis. In the

apple orchard example we argued that observing 52 infested trees in a sample of 200 would

be very surprising if no more than 20% of all the trees in the orchard were infested, since

the corresponding P–value of .0169 was very small. We also argued that observing 45

infested trees in a sample of 200 would not be very surprising if no more than 20% of all

the trees in the orchard were infested, since the corresponding P–value of .1884 is fairly

large. Deciding whether a P–value is small enough to reject a null hypothesis requires

a subjective judgment by the investigator in the context of the problem at hand. Some

guidelines for interpreting a P–value are provided below.
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Returning to our discussion for the directional research hypothesis H1 : p > p0. The

final steps for performing a hypothesis test for

H0 : p ≤ p0 versus H1 : p > p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≥ Zcalc),

where Z denotes a standard normal variable, Zcalc = (p̂ − p0)/SE(p̂), and SE(p̂) =
√

p0(1− p0)/n. This P–value is the area under the standard normal density curve to

the right of Zcalc, as shown in Figure 13. This P–value is the “one–sided Pr > Z” of

the SAS output.

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p > p0 over H0 : p ≤ p0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportion p is greater than p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p > p0 over H0 : p ≤ p0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population success proportion p is greater than p0.

Remarks and guidelines about P–values.

The following general remarks regarding the use of P–values to assess the evidence

against a null hypothesis and in favor of a research hypothesis apply to hypothesis tests

in general, not just hypothesis tests for a proportion.

One approach to hypothesis testing is to use a fixed cutoff value to decide whether

the P–value is “large” or “small”. The most common application of this approach is

to conclude that there is sufficient evidence to reject the null hypothesis in favor of the

research hypothesis only when the P–value is less than .05. When a fixed cutoff value like

.05 (5%) is used to decide whether to reject the null hypothesis in favor of the research

hypothesis this cutoff value is known as the significance level of the test. Hence, if we

adopt the rule of rejecting the null hypothesis in favor of the research hypothesis only

when the P–value is less than .05, then we are performing a hypothesis test at the 5%

level of significance. In accordance with this terminology, the P–value is also known as
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the observed significance level of the test and if the P–value is less than the prescribed

significance level, then the results are said to be statistically significant.

To perform a hypothesis test at the 5% level of significance we compute the appropriate

P–value and compare it to the fixed significance level .05. If the P–value is less than .05,

then we conclude that there is sufficient evidence, at the 5% level of significance, to reject

the null hypothesis H0 in favor of the research hypothesis H1, i.e., if the P–value is less

than .05, then the data do support H1. If the P–value is not less than .05, then we

conclude that there is not sufficient evidence, at the 5% level of significance, to reject the

null hypothesis H0 in favor of the research hypothesis H1, i.e., if the P–value is not less

than .05, then the data do not support H1.

Instead of, or in addition to, using a fixed significance level like 5% we can use the

P–value as a measure of the evidence (in the data) against the null hypothesis H0 and in

favor of the research hypothesis H1. Some guidelines for deciding how strong the evidence

is in favor of the research hypothesis H1 are given below.

Guidelines for interpreting a P–value:

1. If the P–value is greater than .10, there is no evidence in favor of H1.

2. If the P–value is between .05 and .10, there is suggestive but very weak evidence in

favor of H1.

3. If the P–value is between .04 and .05, there is weak evidence in favor of H1.

4. If the P–value is between .02 and .04, there is moderately strong evidence in favor of

H1.

5. If the P–value is between .01 and .02, there is strong evidence in favor of H1.

6. If the P–value is less than .01, there is very strong evidence in favor of H1.

Whether you choose to use a fixed significance level or the preceding guidelines based

on the P–value you should always report the P–value since this allows someone else to

interpret the evidence in favor of H1 using their personal preferences regarding the size of

a P–value.

In the U.S. legal system there is a similar set of guidelines for assessing the level of

proof or weight of the evidence against the null hypothesis of innocence and in favor of

the research hypothesis of guilt. The weakest level of proof is “the preponderance of the

evidence” (this is similar to a reasonably small P–value), the next level of proof is “clear
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and convincing evidence” (this is similar to a small P–value), and the highest level of proof

is “beyond a reasonable doubt” (this is similar to a very small P–value).

Example. Acceptance sampling for electronic devices. A large retailer receives

a shipment of 10,000 electronic devices from a supplier. The supplier guarantees that no

more than 6% of these devices are defective. In fact, if more than 6% of the devices in

the shipment are defective, then the supplier will allow the retailer to return the entire

shipment, provided this is done with 10 days of receiving the shipment. Therefore, the

retailer needs to decide between accepting the shipment and returning the shipment to the

supplier. This decision will be based on the information provided by examining a simple

random sample of electronic devices selected from the shipment.

In this example one of these electronic devices is a unit and the collection of 10,000

units constituting the shipment is the population. Notice that, in this example, the target

population and the sampled population are the same (each is the shipment of 10,000

devices). A suitable variable for the indicated objective is whether an electronic device

is defective with the two possible values: yes (it is defective) and no (it is not defective).

A relevant parameter is the proportion p of defective devices in the shipment of 10,000

devices. The corresponding statistic p̂ is the proportion of defective devices in the sample

of devices that is examined.

The boundary between the null and research hypotheses is clearly p0 = .06, since

we need to decide whether the population proportion of defective devices p exceeds .06.

Assuming that the supplier is trustworthy, it would seem to be a reasonable business

practice to accept the shipment of electronic devices unless we find sufficient evidence,

by examining the sample of devices, to conclude that more than 6% of the devices in

the shipment are defective. Hence, we will use a hypothesis test to determine whether

there is sufficient evidence to conclude that the population defective proportion p exceeds

.06. More formally, our research hypothesis is H1 : p > .06 and our null hypothesis is

H0 : p ≤ .06.

To continue with this example we need to know the sample size n and the results

of the examination of the sample of electronic devices. Suppose that the simple random

sample contains n = 200 electronic devices. For a sample of size n = 200 the standard

error of p̂ for testing a hypothesis with p0 = .06 is

SE(p̂) =

√

(.06)(.94)

200
= .0168.
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Figure 14. SAS output for the acceptance sampling example

Case 1. Suppose that 16 of the 200 devices in the sample are defective so that p̂ = .08.

In this case we know that 8% of the 200 devices in the sample are defective and we need

to decide whether this suggests that more than 6% of all the devices in the shipment are

defective. The calculated Z statistic is

Zcalc =
p̂− p0
SE(p̂)

=
.08− .06

.0168
= 1.1910

and the P–value is

P–value = P (Z ≥ Zcalc) = P (Z ≥ 1.1910) = .1168.

In the SAS output of Figure 14 this P–value is labeled “one–sided Pr > Z. Since this

P–value is large there is not sufficient evidence to reject the null hypothesis p ≤ .06 in

favor of the research hypothesis p > .06. Therefore, if we observe 16 defective devices in a

random sample of n = 200 devices, then we should accept the shipment of devices, since

there is not sufficient evidence to conclude that more than 6% of the shipment of 10,000

devices is defective.
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Case 2. Now suppose that 20 of the 200 devices in the sample are defective so that

p̂ = .10. In this case

Zcalc =
p̂− p0
SE(p̂)

=
.10− .06

.0168
= 2.3820

and the P–value is

P–value = P (Z ≥ Zcalc) = P (Z ≥ 2.3820) = .0086.

In the SAS output of Figure 14 this P–value is labeled “one–sided Pr > Z. This P–value is

very small indicating that we have strong evidence against the null hypothesis p ≤ .06 and

in favor of the research hypothesis p > .06. Therefore, if we observe 20 defective devices

in a random sample of n = 200 devices, then we are justified in returning the shipment of

devices, since there is strong evidence that more than 6% of the shipment of 10,000 devices

is defective.

In both of the cases described above, in addition to the conclusion of the hypothesis

test the retailer might also wonder exactly what proportion of devices in the shipment of

10,000 devices are defective. We can use a 95% confidence interval estimate of p to answer

this question.

In the first case there are 16 defective devices in the sample of n = 200 giving an

observed proportion of defective devices of p̂ = .08. From the SAS output in Figure 14, we

are 95% confident that the actual proportion of defective devices in the shipment of 10,000

is between .0498 and .1260. As expected, since we did not reject the tentative assumption

that p ≤ .06, we see that this confidence interval includes proportions that are both less

than .06 and greater than .06.

In the second case there are 20 defective devices in the sample of n = 200 giving p̂ =

.10. From the SAS output in Figure 14, we are 95% confident that the actual proportion of

defective devices in the shipment of 10,000 is between .0656 and .1494. As expected, since

we did reject the tentative assumption that p ≤ .06, we see that all of the values in this

confidence interval are greater than .06. Notice that in this case the P–value .0086 is quite

small indicating that there is very strong evidence that the proportion of defective devices

in the shipment is larger than .06. However, from the 95% confidence interval estimate

of p we find that this proportion of defective devices might actually be as small as .0656,

which is not much larger than .06. Thus, the small P–value indicates strong evidence that

p is greater than .06 but it does not necessarily indicate that p is a lot larger than .06. Of
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course the 95% confidence interval estimate also indicates that p may be as large as .1494

which is a good bit larger than .06.

The scenario in the acceptance sampling example where there is strong evidence that

p > .06 (P–value .0086) but the lower limit of the 95% confidence interval .0656 is not

much larger than .06 highlights the need for a confidence interval to estimate the value

of p in addition to a hypothesis test to clarify the practical importance of the result of

the test. Bear in mind that a hypothesis test addresses a very formal distinction between

two complementary hypotheses and that in some situations the results may be statistically

significant (in the sense that the P–value is small) but of little practical significance (in

the sense that p is not very different from p0).

Testing a directional hypothesis of the form p < p0

The procedure for testing the null hypothesis H0 : p ≤ p0 versus the research hypoth-

esis H1 : p > p0 given above is readily modified for testing the null hypothesis H0 : p ≥ p0

versus the research hypothesis H1 : p < p0. The essential modification is to change the

direction of the inequality in the definition of the P–value. Consider a situation where

the research hypothesis specifies that the population success proportion p is less than the

particular, hypothesized value p0, i.e., consider a situation where the research hypothesis

is H1 : p < p0 and the null hypothesis is H0 : p ≥ p0. For these hypotheses values of the

observed success proportion p̂ that are sufficiently small relative to p0 provide evidence in

favor of the research hypothesis H1 : p < p0 and against the null hypothesis H0 : p ≥ p0.

Therefore, the P–value for testing H0 : p ≥ p0 versus H1 : p < p0 is the probability of

observing a value of p̂ as small or smaller than the value actually observed. As before, the

P–value is computed under the assumption that p = p0. The calculated Z statistic Zcalc

is defined as before; however, in this situation the P–value is the area under the standard

normal density curve to the left of Zcalc, since values of p̂ that are small relative to p0

constitute evidence in favor of the research hypothesis.

The steps for performing a hypothesis test for

H0 : p ≥ p0 versus H1 : p < p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (Z ≤ Zcalc),

where Z denotes a standard normal variable, Zcalc = (p̂ − p0)/SE(p̂), and SE(p̂) =
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√

p0(1− p0)/n. This P–value is the area under the standard normal density curve to

the left of Zcalc as shown in Figure 15. This P–value is the “one–sided Pr < Z” of the

SAS output.

Figure 15. P–value for H0 : p ≥ p0 versus H1 : p < p0.

Zcalc 0

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p < p0 over H0 : p ≥ p0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportion p is less than p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p < p0 over H0 : p ≥ p0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population success proportion p is less than p0.

Bernoulli trials

Some applications of these inferential methods for a proportion, such as the following

machine parts example, correspond to a sequence of n trials. In this context a dichotomous

trial is a process of observation or experimentation which results in one of two distinct

outcomes (success or failure).

A sequence of n trials is said to constitute a sequence of n Bernoulli trials with

success probability p if the following conditions are satisfied.

1. There is a common probability of success p for every trial. That is, on every trial the

probability that the outcome of the trial will be a success is p.

2. The outcomes of the trials are independent of each other. That is, if we knew the out-

come of a particular trial or trials this would provide no additional information about

the probability of observing a success (or failure) on any other trial. For example, if

we knew that a success (or failure) occurred in the first trial, this would not change

the probability of success in any other trial.
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The simple example below will help to clarify the definition of a sequence of n Bernoulli

trials and the connection between sampling from a dichotomous population and Bernoulli

trials.

Example. Tossing a fair die. Let a trial consist of tossing a fair (balanced) die and

observing the number of dots on the upturned face. Define a success to be the occurrence

of a 1, 2, 3, or 4. Since the die is fair, the probability of a success on a single trial is

p = 4/6 = 2/3. Furthermore, if the die is always tossed in the same fashion, then the

outcomes of the trials are independent. Therefore, with success defined as above, tossing

the fair die n times yields a sequence of n Bernoulli trials with success probability p = 2/3.

Note that this process of tossing a die is abstractly the same as the process of selecting

a ball at random from a box containing six balls with the balls numbered from 1 to 6. Thus

tossing the die n times is equivalent to selecting a simple random sample of size n with

replacement from this box containing six balls.

Example. Machine parts. The current production process used to manufacture

a particular machine part is known (from past experience) to produce parts which are

unacceptable, in the sense that they require further machining, 35% of the time. A new

production process has been developed with the hope that it will reduce the chance of pro-

ducing unacceptable parts. Suppose that 200 parts are produced using the new production

process and that 54 of these parts are found to be unacceptable.

In this example we have a sequence of 200 dichotomous trials, where a trial consists

of producing a part with the new production process and determining whether it is unac-

ceptable. In this example p denotes the probability that a part produced using the new

production process will be unacceptable. We will model these 200 trials as a sequence of

n = 200 Bernoulli trials with population success probability p. This assumption is reason-

able provided: (1) the probability that a part is unacceptable is essentially constant from

part to part; and, (2) whether a specific part is unacceptable or not has no effect on the

probability that any other part is unacceptable.

In this example the boundary between the null and research hypotheses is clearly

p0 = .35. Since these data were collected to determine if the new production process

is better than the old process, we want to know whether there is sufficient evidence to

conclude that less than 35% of the parts produced using the new production process would

be unacceptable. Thus our research hypothesis is H1 : p < .35 and our null hypothesis is
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H0 : p ≥ .35. Since 54 of the 200 parts in our sample are unacceptable we know that p̂ = .27

and we need to determine whether this is small enough to suggest that the corresponding

population probability p is also less than .35. For a sample of size n = 200 the standard

error of p̂ for testing a hypothesis with p0 = .35 is

SE(p̂) =

√

(.35)(.65)

200
= .0337.

The calculated Z statistic is

Zcalc =
p̂− p0
SE(p̂)

=
.27− .35

.0337
= −2.3739

and the P–value is

P–value = P (Z ≤ Zcalc) = P (Z ≤ −2.3739) = .0088.

You can find these values in the SAS output of Figure 16. Since this P–value is very small,

there is sufficient evidence to reject the null hypothesis p ≥ .35 in favor of the research

hypothesis p < .35. Hence, based on this sample of 200 parts there is very strong evidence

that the new production process is superior in the sense that the probability of producing

an unacceptable part is less than .35.

Clearly this conclusion should be accompanied by an estimate of how much smaller this

probability is likely to be. Observing 54 unacceptable parts in the sample of n = 200 gives

p̂ = .27 and a 95% confidence interval ranging from .2132 to .3354. Therefore, we are 95%

confident that the probability of a part produced using the new production process being

unacceptable is between .2132 and .3354. As expected, since we did reject the tentative

assumption that p ≥ .35, we see that all of the values in this confidence interval are less

than .35. The P–value .0088 is quite small indicating that there is very strong evidence

that the probability of producing an unacceptable part is less than .35. However, from the

95% confidence interval estimate of p we find that this probability might actually be as

large as .3354 which is not much smaller than .35. Of course the 95% confidence interval

estimate also indicates that p may be as small as .2132 which is a good bit smaller than

.35.

35



Figure 16. SAS output for the machine parts example

Testing a nondirectional research hypothesis

The hypothesis tests we have discussed thus far are only appropriate when we have

enough a priori information, i.e., information that does not depend on the data to be

used for the hypothesis test, to postulate that the population success proportion p is on

one side of a particular value p0. That is, we have only considered situations where the

research hypothesis is directional in the sense of specifying either that p > p0 or that

p < p0. In some situations we will not have enough a priori information to allow us to

choose the appropriate directional research hypothesis. Instead, we might only conjecture

that the population success proportion p is different from some particular value p0. In a

situation like this our research hypothesis specifies that the population success proportion

p is different from p0, i.e., H1 : p 6= p0 and the corresponding null hypothesis specifies

that p is exactly equal to p0, i.e., H0 : p = p0. As we will see in the inheritance model

considered below, when testing to see whether p is equal to a specified value p0 the null

hypothesis H0 : p = p0 often corresponds to the validity of a particular theory or model

and the research hypothesis or alternative hypothesis specifies that the theory is invalid.
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Testing a nondirectional research (alternative) hypothesis of the form p 6= p0.

Research question. Is there sufficient evidence to conclude that the population

proportion p is different from the hypothesized value p0?

Research hypothesis. H1 : p 6= p0, The population proportion p is not equal to the

hypothesized value p0.

Tentative assumption – null hypothesis. H0 : p = p0, We tentatively assume

that the population proportion p is exactly equal to the hypothesized value p0.

Evidence in favor of the research hypothesis. As with the directional hypothesis

cases, the relationship between the observed proportion of successes in the sample p̂ and

the hypothesized value p0 will be used to assess the strength of the evidence in favor of

the research hypothesis. Generally, we would expect to observe values of p̂ farther away

from p0 more often when the research hypothesis H1 : p 6= p0 is true than when the null

hypothesis H0 : p = p0 is true. In particular, we can view the observation of a value of p̂

that is sufficiently far away from p0, in either direction, as constituting evidence against

the null hypothesis H0 : p = p0 and in favor of the research hypothesis H1 : p 6= p0.

Assessment of the strength of the evidence – the P–value of the test. Decid-

ing whether the observed value of p̂ is “sufficiently far away from p0 in either direction” is

based on the P–value of the test. The P–value for testing the null hypothesis H0 : p = p0

versus the research hypothesis H1 : p 6= p0 is the probability of observing a value of p̂ for

which the distance |p̂ − p0| (the absolute value of the difference between p̂ and p0) is as

large or larger than the value of this distance that we actually do observe.

Computation of the P–value. The P–value of the test is computed under the

assumption that the research hypothesis H1 : p 6= p0 is false and the null hypothesis

H0 : p = p0 is true. In this situation the calculated Z statistic Zcalc is the absolute value

of the Z statistic that would be used for testing a directional hypothesis. That is, the

calculated Z statistic is

Zcalc =

∣

∣

∣

∣

p̂− p0
SE(p̂)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

p̂− p0
√

p0(1− p0)/n

∣

∣

∣

∣

∣

.

In terms of this Z statistic the P–value is the probability that the absolute value of a

standard normal variable Z would take on a value as large or larger than Zcalc assuming

that p = p0. This probability is the sum of the area under the standard normal density

curve to the left of −Zcalc and the area under the standard normal density curve to the
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right of Zcalc, as shown in Figure 17. We need to add these two areas (probabilities) since

we are finding the probability that the observed success proportion p̂ would be as far or

farther away from p0 in either direction as is the value that we actually observe, when

p = p0. Notice that this P value (the area to the left of −Zcalc plus the area to the right

of Zcalc) is small when Zcalc is far away from zero in one direction or the other which is

equivalent to p̂ being far away from p0 in one direction or the other.

Figure 17. P–value for H0 : p = p0 versus H1 : p 6= p0.

Zcalc-Zcalc 0

The steps for performing a hypothesis test for

H0 : p = p0 versus H1 : p 6= p0

are summarized below.

1. Use a suitable calculator or computer program to find the P–value = P (|Z| ≥ Zcalc) =

P (Z ≤ −Zcalc) +P (Z ≥ Zcalc), where Z denotes a standard normal variable, Zcalc =

|(p̂ − p0)/SE(p̂)|, and SE(p̂) =
√

p0(1− p0)/n. This P–value is the sum of the area

under the standard normal density curve to the left of −Zcalc and the area under

the standard normal density curve to the right of Zcalc as shown in Figure 17. This

P–value is the “two–sided Pr > |Z|” of the SAS output.

2a. If the P–value is small enough (less than .05 for a test at the 5% level of significance),

conclude that the data favor H1 : p 6= p0 over H0 : p = p0. That is, if the P–value is

small enough, then there is sufficient evidence to conclude that the population success

proportion p is different from p0.

2b. If the P–value is not small enough (is not less than .05 for a test at the 5% level of

significance), conclude that the data do not favor H1 : p 6= p0 over H0 : p = p0. That

is, if the P–value is not small enough, then there is not sufficient evidence to conclude

that the population success proportion p is different from p0.
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Example. Inheritance in peas (flower color). In his investigations, during the

years 1856 to 1868, of the chromosomal theory of inheritance Gregor Mendel performed

a series of experiments on ordinary garden peas. One characteristic of garden peas that

Mendel studied was the color of the flowers (red or white). When Mendel crossed a plant

with red flowers with a plant with white flowers, the resulting offspring all had red flowers.

But when he crossed two of these first generation plants, he observed plants with white as

well as red flowers. We will use the results of one of Mendel’s experiments to test a simple

model for inheritance of flower color. Mendel observed 929 pea plants arising from a cross

of two of these first generation plants. Of these 929 plants he found 705 plants with red

flowers and 224 plants with white flowers.

The gene which determines the color of the flower occurs in two forms (alleles). Let R

denote the allele for red flowers (which is dominant) and r denote the allele for white flowers

(which is recessive). When two plants are crossed the offspring receives one allele from

each parent, thus there are four possible genotypes (ordered combinations) RR,Rr, rR,

and rr. The three genotypes RR,Rr, and rR, which include the dominant R allele, will

yield red flowers while the fourth genotype rr will yield white flowers. If a red flowered

RR genotype parent is crossed with a white flowered rr genotype parent, then all of the

offspring will have genotype Rr and will produce red flowers. If two of these first generation

Rr genotype plants are crossed, each of the four possible genotypes RR,Rr, rR, and rr is

equally likely and plants with white as well as red flowers will occur. Under this simple

model for inheritance, with each of the four genotypes having the same probability of

occurring (and with each plant possessing only one genotype), the probability that a plant

will have red flowers is p = 3/4 and the probability that a plant will have white flowers is

1− p = 1/4. In other words, this model for inheritance of flower color says that we would

expect to see red flowers 3/4 of the time and white flowers 1/4 of the time.

We can test the validity of this model by testing the null hypothesisH0 : p = 3/4 versus

the alternative hypothesis H1 : p 6= 3/4. Notice that the model is valid under the null

hypothesis and the model is not valid under the alternative hypothesis. Mendel observed

705 plants with red flowers out of the n = 929 plants giving an observed proportion of

plants with red flowers of p̂ = 705/929 = .7589. The standard error of p̂, computed under

the assumption that p = p0 = 3/4, is

SE(p̂) =

√

(.75)(.25)

929
= .0142
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and the calculated Z statistic is Zcalc = .6251 giving a P–value of

P–value = P (|Z| ≥ Zcalc) = P (|Z| ≥ .6251) = .5319.

You can find these values in the SAS output of Figure 18. This P–value is quite large

and we are not able to reject the null hypothesis; therefore, we conclude that the observed

data are consistent with Mendel’s model. Technically, we should say that the data are not

inconsistent with the model in the sense that we cannot reject the hypothesis that p = 3/4.

In this example, the 95% confidence interval estimate of p ranges from .7303 to .7853.

Figure 18. SAS output for the Mendel pea flower color example

Directional confidence bounds

In our discussion of hypothesis testing we considered directional research hypotheses

of the form p > p0 and p < p0 as well as nondirectional research hypotheses of the form

p 6= p0. However, in our discussion of 95% confidence intervals for p we only considered

“nondirectional” confidence intervals of the form pL ≤ p ≤ pU . A 95% confidence interval

of this form, consisting of a lower bound pL for p and an upper bound pU for p, gives a

range of plausible values for p. In a situation where we have enough a priori information to

justify a directional research hypothesis we might argue that it would be more appropriate

40



to determine a 95% confidence bound (a lower bound or an upper bound) for p instead of

a range of values.

A lower confidence bound on p allows us to estimate the smallest value of p which is

plausible in light of the observed value of p̂. Similarly, an upper confidence bound on p

allows us to estimate the largest value of p which is plausible in light of the observed value

of p̂. For example, in the acceptance sampling example we might argue that we are less

concerned with a limit on how large p might be than with a limit on how small it might be.

Therefore, we might be satisfied with an estimate of the smallest value of p which would

be consistent with the data, i.e., we might only need a 95% confidence lower bound for p.

The reasoning which led to the “nondirectional” Wilson interval ( a range of values

for p) can be adapted to yield a directional interval (a lower or upper confidence bound

for p). Recall that our development of the Wilson 95% confidence interval estimate of p

was based on the observation that, for each possible value of p, we can view the central

95% interval from p− 1.96SE(p̂) to p+ 1.96SE(p̂) as an interval which is likely to contain

p̂. This starting point led us to a confidence interval estimate of p which provided a range

of values between a lower limit and an upper limit. If we use an upper 95% interval for p̂

or a lower 95% interval for p̂ instead, we will end up with a directional confidence interval,

i.e., we will end up with a 95% confidence bound (lower or upper) for p. In practice, 95%

confidence bounds are usually computed by selecting the appropriate endpoint of a 90%

confidence interval. That is, if pL ≤ p ≤ pU is a 90% confidence interval estimate of p,

then PL is a 95% lower confidence bound for p and pU is a 95% upper confidence bound

for p.

We will illustrate some applications of confidence bounds in the context of some of

the examples we discussed earlier. Detailed derivations of 95% lower and upper confidence

bounds are provided after the examples.

Example. Acceptance sampling for electronic devices (revisited). Recall

that in this example the retailer had received a shipment of 10,000 electronic devices from

a supplier with a guarantee that no more than 6% of these devices were defective. The

retailer is interested in p, the value of the proportion of defective devices in the shipment

of 10,000 devices. In particular, the retailer is concerned that this proportion might be

too large (greater than .06). Thus we proposed a test of the null hypothesis H0 : p ≤ .06

versus the research hypothesis H1 : p > .06. We considered two cases to illustrate the
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corresponding hypothesis testing procedure. We will now show how a directional confidence

bound can supplement the formal hypothesis test.

As noted above, in this example, we are less concerned with a limit on how large p

might be than with a limit on how small it might be. Therefore, we might be satisfied with

an estimate of the smallest value of p which would be consistent with the data, i.e., we

might only need a 95% confidence lower bound for p. Note that a lower confidence bound

will always include values greater than .06 (6%). The important consideration is whether

it also includes values less than .06.

Figure 19. SAS output for the acceptance sampling example

Case 1 If there are 16 defective devices in a sample of n = 200, then the observed

proportion of defective devices is p̂ = .08. The lower endpoint .0538 of the 90% confidence

interval in the SAS output for case 1 in Figure 19 is the 95% confidence lower bound for p.

Hence, we can conclude that we are 95% confident that the actual percentage of defective

devices in the shipment of 10,000 is at least 5.38%. More importantly, with 95% confidence

we can say that the percentage could be as low as 5.38%. Since this lower bound is less

than 6% we do not have sufficient evidence to claim that more than 6% of the 10,00 devices

are defective.

Recall that, in this case, the P–value for testing H0 : p ≤ .06 versus H1 : p > .06

was .1168 and we concluded that there is not sufficient evidence to claim that more than
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6% of the 10,000 devices are defective. Thus the lower confidence bound and the formal

hypothesis test lead to the same conclusion.

Case 2 If there are 20 defective devices in a sample of n = 200, then the observed

proportion of defective devices is p̂ = .10. The lower endpoint .0703 of the 90% confidence

interval in the SAS output for case 2 in Figure 19 is the 95% confidence lower bound for

p. In this case we can conclude that we are 95% confident that the actual percentage of

defective devices in the shipment of 10,000 is at least 7.03%. That is, with 95% confidence

we can say that the percentage is not less than 7.03%. Since this lower bound is greater

than 6% we have sufficient evidence to claim that more than 6% of the 10,000 devices are

defective. Note also that the lower bound 7.03% indicates that the percentage of defective

devices among the 10,000 is at least 1.03 percentage points higher than the 6% cutoff value.

In this case, the P–value for testing H0 : p ≤ .06 versus H1 : p > .06 was .0086 and

we concluded that there is strong evidence that more than 6% of the 10,000 devices are

defective. Again, the lower confidence bound and the test lead to the same conclusion.

Example. Machine parts (revisited). Recall that, in this example, the current

production process used to manufacture a particular machine part is known (from past

experience) to produce parts which are unacceptable, in the sense that they require further

machining, 35% of the time. A new production process has been developed with the hope

that it will reduce the chance of producing unacceptable parts. In this example p denotes

the probability that a part produced using the new production process will be unacceptable

and our goal is to decide whether this probability is less than .35. A sample of 200 parts

was produced using the new production process and 54 of these parts were found to be

unacceptable. The SAS output for this example is provided in Figure 20. In this example,

the P–value for testing H0 : p ≥ .35 versus H1 : p < .35 is .0088 and we concluded

that there is very strong evidence that the new production process is superior in the

sense that the probability of producing an unacceptable part is less than .35. Using the

upper endpoint of the 90% confidence interval in the SAS output of Figure 20, we can

conclude that we are 95% confident that the probability that a part produced using the

new production process will be unacceptable is no larger than .3245. Since this value is less

than .35, the 95% confidence upper bound leads to the conclusion that the new production

process is superior to the old process and indicates the extent of the improvement.
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Figure 20. SAS output for the machine parts example

For completeness, we will now provide detailed derivations of 95% lower and upper

confidence bounds. The probability that a standard normal variable Z takes on a value

less than 1.645 is equal to .95, P (Z ≤ 1.645) = .95. That is, when we observe the value of

a standard normal variable Z, 95% of the time we will find that Z ≤ 1.645. Graphically

this means that the area under the standard normal density curve over the interval from

−∞ to 1.645 is .95. Thus, for sufficiently large values of n we have the approximation,

P

[

p̂− p

SE(p̂)
≤ 1.645

]

= .95.

Note that this indicates that 95% of the time when a simple random sample is selected

and p̂ is computed the observed value of p̂ will be between zero and p + 1.645SE(p̂), i.e.,

p̂ will be no more than 1.645 population standard error units above p. We will refer to

the interval from zero to p+1.645SE(p̂) as the lower 95% interval of the distribution of p̂,

since it will contain the observed value of p̂ 95% of the time.

The plots in Figure 21 show how the lower 95% interval of the distribution of p̂

depends on the value of p. On the left we have a representation of the lower 95% interval,

the interval from p1 = 0 to p2. The plot on the right shows how p2 depends on p. We

want to determine the values of p which yield lower 95% intervals which contain p̂obs. To
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do this we need to use the graph on the right of Figure 21 in the other direction, as shown

in Figure 22. In Figure 22 a horizontal line is drawn at p̂obs and its intersection, pL, with

the upper curve is indicated. Notice that pL is the smallest value of p for which the lower

95% interval of the distribution of p̂ contains p̂obs. (Figure 22 is drawn for n = 100 and

p̂obs = .55. In this case, pL = .4679.) Thus, if we draw a vertical line, as in Figure 21, at

any value of p between pL and pU = 1, then the corresponding lower 95% interval of the

distribution of p̂ contains p̂obs. Note that pL is the 95% confidence lower bound for p.

Figure 21. The plot on the left shows the lower 95% interval of the distribution of p̂

for n = 100 and p = .6.

The upper (red) curve in the plot on the right shows the upper endpoint,

p+ 1.645
√

p(1− p)/n, of the lower 95% interval of the distribution of p̂ as a

function of p for n = 100. The upper endpoint for the case p = .6 is indicated by the line

marking the intersections at p2 = .6806. (The lower endpoint is zero.)

p2 ←

95%

| ←−−−−−−−−−−−−−−−−−→ | p̂ ↑ p
p1 = 0 p2 p = .60

In order to determine the value of pL we simply set p+1.645SE(p̂) equal to p̂obs and

solve for p (draw the horizontal line as in Figure 22 and project down at the intersection

with the upper (red) curve).

An analogous argument starting with the upper 95% interval of the distribution of

p̂, i.e., the interval from p − 1.645SE(p̂) to one, leads to a 95% confidence upper bound

for p. In this case, as shown in Figure 23, we start with the upper 95% interval of the

distribution of p̂, the interval from p1 = p− 1.645SE(p̂) to one. The graph on the right in

Figure 23 shows how the upper 95% interval of the distribution of p̂ depends on value of

p.
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Figure 22. The smallest value of p, pL, for which the lower 95% interval of the

distribution of p̂ contains p̂obs. (The interval goes from pL to pU = 1.)

This example is drawn for n = 100 and p̂obs = .55. Here pL = .4679.

p̂obs

↓
pL pU = 1

Figure 23. The plot on the left shows the upper 95% interval of the distribution of p̂

for n = 100 and p = .6.

The lower (blue) curve in the plot on the right shows the lower endpoint,

p− 1.645
√

p(1− p)/n, of the upper 95% interval of the distribution of p̂ as a

function of p for n = 100. The lower endpoint for the case p = .6 is indicated by the line

marking the intersections at p1 = .6806. (The upper endpoint is one.)

p1 ←

95%

| ←−−−−−−−−−−−→ | p̂ ↑ p
p1 p2 = 1 p = .60

In Figure 24 a horizontal line is drawn at p̂obs and its intersection, pU , with the lower

curve is indicated. Notice that pU is the largest value of p for which the upper central

95% interval of the distribution of p̂ contains p̂obs. (Figure 24 is drawn for n = 100 and

p̂obs = .55. In this case, pU = .6806.) Thus, if we draw a vertical line, as in Figure 23, at
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any value of p between pL = 0 and pU , then the corresponding upper 95% interval of the

distribution of p̂ contains p̂obs. Note that pU is the 95% confidence upper bound for p.

In order to determine the value of pU we simply set p− 1.645SE(p̂) equal to p̂obs and

solve for p (draw the horizontal line as in Figure 24 and project down at the intersection

with the lower (blue) curve).

Figure 24. The largest value of p, pU , for which the upper 95% interval of the

distribution of p̂ contains p̂obs. (The interval goes from pL = 0 to pU .)

This example is drawn for n = 100 and p̂obs = .55. Here pU = .6294.

p̂obs

↓
pL = 0 pU
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