Chapter 8. Expectation for continuous random variables.

We will now generalize the definition of expectation to the case of continuous r.v.'s. Since the sample space of a continuous r.v. is necessarily uncountably infinite the same technicalities that arose in our discussion of expectation for a discrete r.v. with countably infinite sample space need to be considered before we provide a general definition of the expected value of a continuous r.v. As before the technicality is the requirement of absolute convergence but now in association with an integral instead of a sum. The integral $\int_{-\infty}^{\infty} g(x) dx$ is said to be absolutely convergent if $\int_{-\infty}^{\infty} |g(x)| dx$ exists.

Definition. If X is a continuous r.v. with p.d.f. f_X and if the integral $\int_{-\infty}^{\infty} x f_X(x) dx$ is absolutely convergent, then the expected value of X is defined by

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) \, dx.$$

If the integral $\int_{-\infty}^{\infty} x f_X(x) dx$ is not absolutely convergent, then the expected value of X does not exist.

The definition of the expected value of X can be extended to functions of X. If X is a continuous r.v. with p.d.f. f_X , g is a real valued function for which Y = g(X) is a continuous r.v. with p.d.f. f_Y , and if E(Y) exists, then it is easy to see that

$$E(Y) = \int_{-\infty}^{\infty} y f_Y(y) \, dy = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx = E(g(X)).$$

We will now consider the variance. Recall that the aim here is to define a measure of variability and, assuming $E(X) = \mu_X$ exists, that this is done by letting $g(X) = (X - \mu_X)^2$ and using the expected value of this function as a measure of variability.

Definition. If X is a continuous r.v. with p.d.f. f_X and mean $\mu_X = E(X)$, then the variance of X is defined by

$$\operatorname{var}(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) \, dx,$$

provided this series converges. If the series does not converge, then the variance of X does not exist. The principal square root of var(X) is know as the standard deviation of X.

Theorem. If a is a constant, X and Y are continuous r.v.'s, and E(X) and E(Y) exist, then

1) E(a) = a. 2) If $Pr(X \ge a) = 1$, then $E(X) \ge a$. Similarly, if $Pr(X \le a) = 1$, then $E(X) \le a$. 3) E(aX) = aE(X). 58 8. Expectation for continuous random variables

4) E(a + X) = a + E(X).
5) E(X + Y) = E(X) + E(Y).
6) if var(X) exists, then var(X) = E(X²) - [E(X)]².

Proof. The proof, with integrals replacing sums, is completely analogous to that for discrete r.v.'s. \Box

Theorem. If a is a constant, X is a continuous r.v., and var(X) exists, then 1) var(a) = 0. 2) $var(aX) = a^2 var(X)$. 3) var(a + X) = var(X). 4) var(X) = 0 if and only if there is a constant a such that Pr(X = a) = 1.

Proof. The proof, with integrals replacing sums, is completely analogous to that for discrete r.v.'s. \Box

Covariance.

The definitions and theorems regarding covariances we provided for discrete r.v.'s are unchanged when we extend then to continuous r.v.'s. We summarize them in this section for ease of reference.

Definition. If X and Y are discrete or continuous r.v.'s for which var(X) and var(Y) exist, then the covariance of X and Y is

$$cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y,$$

where $\mu_X = E(X)$ and $\mu_Y = E(Y)$.

Theorem. If X and Y are independent discrete or continuous r.v.'s for which var(X) and var(Y) exist, then cov(X, Y) = 0.

It is important to note that the converse of this theorem is not true, *i.e.*, in general cov(X, Y) = 0 does not imply that X and Y are independent.

Theorem. If X and Y are discrete or continuous r.v.'s for which var(X) and var(Y) exist, then

$$var(X+Y) = var(X) + 2cov(X,Y) + var(Y).$$

Theorem. If X_1, \ldots, X_n are discrete or continuous r.v.'s with variances $\sigma_1^2, \ldots, \sigma_n^2$, then

$$\operatorname{var}(X_1 + \dots + X_n) = \sum_{i=1}^n \sigma_i^2 + 2 \sum_{i < j} \operatorname{cov}(X_i, X_j).$$

Corollary. If X_1, \ldots, X_n are independent discrete or continuous r.v.'s with variances $\sigma_1^2, \ldots, \sigma_n^2$, then

$$\operatorname{var}(X_1 + \dots + X_n) = \sum_{i=1}^n \sigma_i^2.$$

The Schwarz inequality. If X and Y are discrete or continuous r.v.'s for which $E(X^2)$ and $E(Y^2)$ exist, then

$$[E(XY)]^2 \le E(X^2)E(Y^2)$$

with equality if and only if there is a constant c such that Pr(Y = cX) = 1.

Theorem. If X and Y are discrete or continuous r.v.'s for which var(X) and var(Y) exist, then

$$|cov(X,Y)| \le \sqrt{var(X)var(Y)}.$$

If we standardize the r.v.'s X and Y to have mean zero and variance one (by subtracting the mean and dividing by the standard deviation) and then compute the covariance between these standardized r.v.'s we obtain the correlation of X and Y

$$\rho(X,Y) = E\left[\left(\frac{(X-\mu_X)}{\sigma_X}\right)\left(\frac{(Y-\mu_Y)}{\sigma_Y}\right)\right].$$

Note that $-1 \leq \rho(X, Y) \leq 1$. The r.v.'s X and Y are said to be uncorrelated when $\rho(X, Y) = 0$, which is equivalent to $\operatorname{cov}(X, Y) = 0$. When $\rho(X, Y) = 1$, X and Y are said to be perfectly positively correlated and when $\rho(X, Y) = -1$, X and Y are said to be perfectly negatively correlated.