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Chapter 8. Expectation for continuous random variables.

We will now generalize the definition of expectation to the case of continuous r.v.’s.

Since the sample space of a continuous r.v. is necessarily uncountably infinite the same

technicalities that arose in our discussion of expectation for a discrete r.v. with countably

infinite sample space need to be considered before we provide a general definition of the

expected value of a continuous r.v. As before the technicality is the requirement of abso-

lute convergence but now in association with an integral instead of a sum. The integral
∫∞

−∞
g(x) dx is said to be absolutely convergent if

∫∞

−∞
|g(x)| dx exists.

Definition. If X is a continuous r.v. with p.d.f. fX and if the integral
∫∞

−∞
xfX(x) dx is

absolutely convergent, then the expected value of X is defined by

E(X) =

∫ ∞

−∞

xfX(x) dx.

If the integral
∫∞

−∞
xfX(x) dx is not absolutely convergent, then the expected value of X

does not exist.

The definition of the expected value of X can be extended to functions of X. If X

is a continuous r.v. with p.d.f. fX , g is a real valued function for which Y = g(X) is a

continuous r.v. with p.d.f. fY , and if E(Y ) exists, then it is easy to see that

E(Y ) =

∫ ∞

−∞

yfY (y) dy =

∫ ∞

−∞

g(x)fX(x) dx = E(g(X)).

We will now consider the variance. Recall that the aim here is to define a measure of

variability and, assuming E(X) = µX exists, that this is done by letting g(X) = (X−µX)2

and using the expected value of this function as a measure of variability.

Definition. If X is a continuous r.v. with p.d.f. fX and mean µX = E(X), then the

variance of X is defined by

var(X) =

∫ ∞

−∞

(x− µX)2fX(x) dx,

provided this series converges. If the series does not converge, then the variance of X does

not exist. The principal square root of var(X) is know as the standard deviation of X.

Theorem. If a is a constant, X and Y are continuous r.v.’s, and E(X) and E(Y ) exist,

then

1) E(a) = a.

2) If Pr(X ≥ a) = 1, then E(X) ≥ a. Similarly, if Pr(X ≤ a) = 1, then E(X) ≤ a.

3) E(aX) = aE(X).
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4) E(a+X) = a+ E(X).

5) E(X + Y ) = E(X) + E(Y ).

6) if var(X) exists, then var(X) = E(X2)− [E(X)]2.

Proof. The proof, with integrals replacing sums, is completely analogous to that for discrete

r.v.’s. ut

Theorem. If a is a constant, X is a continuous r.v., and var(X) exists, then

1) var(a) = 0.

2) var(aX) = a2var(X).

3) var(a+X) = var(X).

4) var(X) = 0 if and only if there is a constant a such that Pr(X = a) = 1.

Proof. The proof, with integrals replacing sums, is completely analogous to that for discrete

r.v.’s. ut

Covariance.

The definitions and theorems regarding covariances we provided for discrete r.v.’s are

unchanged when we extend then to continuous r.v.’s. We summarize them in this section

for ease of reference.

Definition. If X and Y are discrete or continuous r.v.’s for which var(X) and var(Y )

exist, then the covariance of X and Y is

cov(X,Y ) = E[(X − µX)(Y − µY )] = E(XY )− µXµY ,

where µX = E(X) and µY = E(Y ).

Theorem. If X and Y are independent discrete or continuous r.v.’s for which var(X) and

var(Y ) exist, then cov(X,Y ) = 0.

It is important to note that the converse of this theorem is not true, i.e., in general

cov(X,Y ) = 0 does not imply that X and Y are independent.

Theorem. If X and Y are discrete or continuous r.v.’s for which var(X) and var(Y ) exist,

then

var(X + Y ) = var(X) + 2cov(X,Y ) + var(Y ).

Theorem. If X1, . . . , Xn are discrete or continuous r.v.’s with variances σ2

1
, . . . , σ2

n, then

var(X1 + · · ·+Xn) =
n
∑

i=1

σ2

i + 2
∑

i<j

cov(Xi, Xj).
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Corollary. If X1, . . . , Xn are independent discrete or continuous r.v.’s with variances

σ2

1
, . . . , σ2

n, then

var(X1 + · · ·+Xn) =

n
∑

i=1

σ2

i .

The Schwarz inequality. If X and Y are discrete or continuous r.v.’s for which E(X2)

and E(Y 2) exist, then

[E(XY )]2 ≤ E(X2)E(Y 2)

with equality if and only if there is a constant c such that Pr(Y = cX) = 1.

Theorem. If X and Y are discrete or continuous r.v.’s for which var(X) and var(Y ) exist,

then

|cov(X,Y )| ≤
√

var(X)var(Y ).

If we standardize the r.v.’s X and Y to have mean zero and variance one (by subtract-

ing the mean and dividing by the standard deviation) and then compute the covariance

between these standardized r.v.’s we obtain the correlation of X and Y

ρ(X,Y ) = E

[(

(X − µX)

σX

)(

(Y − µY )

σY

)]

.

Note that −1 ≤ ρ(X,Y ) ≤ 1. The r.v.’s X and Y are said to be uncorrelated when

ρ(X,Y ) = 0, which is equivalent to cov(X,Y ) = 0. When ρ(X,Y ) = 1, X and Y are

said to be perfectly positively correlated and when ρ(X,Y ) = −1, X and Y are said to be

perfectly negatively correlated.


