
49

Chapter 7. Continuous random variables.

7.1 Cumulative distribution functions and continuous random variables.

Recall that a random variable is a function which assigns numerical values (real num-

bers) to the elements of a sample space. Furthermore, given a sample space Ω and a

random variable X defined on Ω, the r.v. X defines a new sample space ΩX comprised of

all the possible values of X. In Chapter 5 we considered the case when ΩX is discrete and

X is a discrete random variable. In this chapter we will extend our discussion to cover con-

tinuous random variables. As noted earlier, to avoid technicalities involving uncountably

infinite Ω, for each x ∈ R we will assume that the probability measure Pr on Ω assigns a

probability to the event [X ≤ x].

For x ∈ R, we define the probability of the event [X ≤ x] in terms of the original

sample space and probability measure by setting Pr(X ≤ x) = Pr({ω ∈ Ω : X(ω) ≤ x}).
The distribution of any r.v. X can be characterized by assigning probabilities Pr(X ≤ x)

for each x ∈ R. More formally, the distribution of the r.v. X can be characterized by

specifying its cumulative distribution function (denoted c.d.f.) FX , where, for all x ∈ R,

FX(x) = Pr(X ≤ x).

Note that FX(x) is a nondecreasing function of x, since [X ≤ x] ⊂ [X ≤ x+ a] for all

a > 0. Also note the following limiting values of FX(x): FX(−∞) = limx→−∞ FX(x) = 0

and FX(∞) = limx→∞ FX(x) = 1. These limiting values follow on noting that the event

[X ≤ x] approaches the null event when x → −∞ and approaches the sure event when

x → ∞. Finally, note that FX may have jump discontinuities, i.e., it is possible for

FX(x−) = limt↑x FX(t) to be less that FX(x); but, FX must be continuous from the

right, i.e., FX(x+) = limt↓x FX(t) = FX(x) for all x ∈ R. Any function FX(x) which is

nondecreasing, continuous from the right, and has the limiting values FX(−∞) = 0 and

FX(∞) = 1 is a valid c.d.f.

If X is a discrete r.v., then

FX(x) =
∑

t≤x
fX(t) and fX(x) = FX(x)− FX(x−).

For discrete X the c.d.f is a nondecreasing step function which rises from zero at −∞ to

one at∞, i.e., a function with vertical jumps (jump discontinuities) located at the possible

values of X (the points in ΩX) which is constant on the intervals between its jumps. If

xi ∈ ΩX is a possible value of X, then the vertical jump (increase in FX) at xi is equal

to fX(xi) = Pr(X = xi). Thus, if X is a discrete r.v., then the p.m.f. fX assigns positive

probabilities (point masses) to the possible values of X (discrete points on the number
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line) and probabilities of events are obtained by summation. For example, if a < b, then

Pr(a ≤ X ≤ b) =
∑

{x∈ΩX :a≤x≤b} fX(x).

The relationship between the c.d.f and p.m.f. of a discrete random variable is demon-

strated by the following example. It is instructive to graph these functions.

FX(x) =











0 if x < 1
.3 if 1 ≤ x < 2
.4 if 2 ≤ x < 3
1 if 3 ≤ x

corresponds to fX(x) =











.3 if x = 1

.1 if x = 2

.6 if x = 3
0 otherwise

.

If there is a function fX such that FX(x) =
∫ x

−∞ fX(t) dt for all x ∈ R, then FX

is said to be absolutely continuous and the associated random variable X is said to be

continuous. The function fX is known as the probability density function (denoted p.d.f.)

of X. Note that we must have fX(x) ≥ 0 for all x ∈ R and
∫∞
−∞ fX(x) dx = 1.

If X is a continuous r.v., then

FX(x) =

∫ x

−∞
fX(t) dt and fX(x) =

dFX(x)

dx
.

For continuous X the c.d.f is a continuous nondecreasing curve which rises from zero at

−∞ to one at ∞ and the p.d.f is a nonnegative curve with the property that the area

under this curve is one. If X is a continuous r.v., then Pr(X = x) = 0 for all x and

the values fX(x) of the p.d.f. are not probabilities. The p.d.f. fX indicates the density of

the probability associated with X along the number line and probabilities of events are

obtained by integration of fX . For example, if a < b, then Pr(a ≤ X ≤ b) =
∫ b

a
fX(t) dt is

the area of the region under the graph of fX over the interval from a to b.

The relationship between the c.d.f and p.d.f. of a continuous random variable is demon-

strated by the following example. It is instructive to graph these functions.

FX(x) =

{

0 if x < 1
x−1
2 if 1 ≤ x < 3

1 if 3 ≤ x
corresponds to fX(x) =

{

0 if x ≤ 1
1
2 if 1 < x < 3
0 if 3 ≤ x

.

Another useful characterization of the distribution of a continuous r.v. X is provided

by its moment generating function (denoted m.g.f.), when this exists. For many, but not

all, commonly encountered continuous r.v.’s the m.g.f. does exist. We will discuss the

connection between the m.g.f. and moments and convolutions later. Given a continuous

r.v. X with p.d.f. fX , the moment generating function of X is given by

MX(t) =

∫ ∞

−∞
etxfX(x) dx
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provided this integral converges for all t in an interval −t0 < t < t0 containing zero. If

there is not such an interval where the integral converges, then the moment generating

does not exist. As with the p.g.f the dummy variable t is of no significance.

If X is a continuous r.v. and g is a real valued function, then Y = g(X) is also a r.v.

For y ∈ ΩY = g(ΩX) (the image of ΩX under g), the c.d.f of Y is given, in terms of the

distribution of X, by

FY (y) = Pr(Y ≤ y) = Pr(X ∈ {x ∈ ΩX : g(x) ≤ y}).

If ΩY is discrete, then Y = g(X) is a discrete r.v. with p.m.f.

fY (y) = Pr(X ∈ {x ∈ ΩX : g(x) = y}),

e.g., if g(x) = y0 if and only if a ≤ x ≤ b, then fY (y0) =
∫ b

a
fX(t) dt.

Example. Let X be a continuous random variable which follows the continuous uniform

distribution on the interval [0, 10) and let Y = [X] be the greatest integer in X, i.e.,

Y = g(X), where g(x) = [x] is the largest integer which is less than or equal to x. The

p.d.f for X is fX(x) =
1
101[0,10)(x). In this example Y is discrete with ΩY = {0, 1, . . . , 9}

and the distribution of Y is the discrete uniform distribution on this ΩY . To see this note

that for y ∈ ΩY fY (y) = Pr(y ≤ X < y + 1) =
∫ y+1

y
fX(x) dx = 1

10 .

If Y = g(X) is a continuous r.v., then the c.d.f. of Y is

FY (y) = Pr(g(X) ≤ y) =

∫

{x:g(x)≤y}
fX(t) dt

and the p.d.f. of Y can be obtained by differentiating, i.e.,

fY (y) =
dFY (y)

dy
.

Example. Let X be a continuous random variable which follows the continuous uniform

distribution on the interval [0, 10), let g(x) = (x − 5)2, and let Y = g(X) = (X − 5)2. In

this example g maps ΩX = [0, 10) onto ΩY = [0, 25] and for y ∈ [0, 25] we have

FY (y) = Pr((X − 5)2 ≤ y) =

∫ 5+
√
y

5−√y
fX(x) dx =

2
√
y

10
,

with FY (y) = 0 when y < 0 and FY (y) = 1 when y ≥ 25. For y ∈ [0, 25] the p.d.f is

fY (y) =
d(
√
y/5)

dy
=

y−1/2

10
. Thus, in general fY (y) =

y−1/2

10
1[0,25](y).
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If y = g(x) defines a function that is one–to–one from ΩX onto ΩY and the derivative

of the inverse x = g−1(y) is continuous and nonzero for y ∈ ΩY , then Y = g(X) is a

continuous r.v. with p.d.f

fY (y) =
dFX(g

−1(y))

dy
=

∣

∣

∣

∣

dg−1(y)

dy

∣

∣

∣

∣

fX(g
−1(y)).

It is important to note that this expression for the p.d.f of Y is only valid for y ∈ ΩY and

our notation assumes that fX(x) is written with the indicator function 1ΩX
(x) so that the

restriction y ∈ ΩY which is equivalent to g−1(y) ∈ ΩX is implicit in the notation.

Example. Let X be a continuous random variable which follows the continuous uniform

distribution on the interval [0, 10), let g(x) = 2x+ 4, and let Y = g(X) = 2X + 4. In this

example g maps ΩX = [0, 10) onto ΩY = [4, 24) and for y ∈ [4, 24] we have

FY (y) = Pr(2X + 4 ≤ y) = Pr

(

X ≤ y − 4

2

)

=

∫
y−4

2

0

1

10
dx =

y − 4

20
,

with FY (y) = 0 when y < 0 and FY (y) = 1 when y ≥ 24. For y ∈ [0, 24) the p.d.f is

fY (y) =
d

dy

[

y − 4

20

]

=
1

20
,

i.e., as you might have expected the distribution of Y = 2X + 4 is continuous uniform on

[4, 24). In this example g is one–to–one and for y ∈ [4, 24) the inverse function g−1(y) =
y−4
2 is continuous and dg−1(y)

dy = 1
2 . Thus

fY (y) =

∣

∣

∣

∣

dg−1(y)

dy

∣

∣

∣

∣

fX(g
−1(y)) =

∣

∣

∣

∣

1

2

∣

∣

∣

∣

1

10
1[0,10)

(

y − 4

2

)

=
1

20
1[4,24)(y),

since 0 ≤ y−4
2 < 10 is equivalent to 4 ≤ y < 24.

7.2. Joint, marginal, and conditional continuous distributions.

For any r.v.’s X and Y defined on the same sample space, the joint c.d.f of X and Y ,

which is defined for all real x and y, is given by

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y).

If X and Y are jointly continuous r.v.’s, then there is a joint p.d.f. fX,Y (x, y) and a

joint c.d.f. FX,Y (x, y) such that, for all (x, y) ∈ R2,

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (t, u) dudt
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and

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
.

We can think of the joint p.d.f. fX,Y (x, y) as a surface over the plane. For a given region A

in the plane, Pr[(X,Y ) ∈ A] =
∫

(x,y)∈A fX,Y (x, y) dxdy is the volume under the fX,Y (x, y)

surface over the region A. The marginal p.d.f.’s fX(x) and fY (y) are defined, analogously

to the discrete case but with integrals instead of sums, by

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy and fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx.

Again appealing to the discrete analog, the conditional p.d.f.’s fX|Y=y(x|Y = y) and

fY |X=x(y|X = x) are obtained by fixing the value of one variable in the joint p.d.f and

normalizing this function so that it integrates to one. In particular, conditioning on X = x

is equivalent to restricting our attention to the function of y given by the values of the

joint p.d.f fX,Y (x, y) over the line X = x. If we normalize this function of y by dividing

by its integral (which is fX(x)), then we obtain the conditional p.d.f. fY |X=x(y|X = x) of

Y given X = x. Thus, given x such that fX(x) > 0,

fY |X=x(y|X = x) =
fX,Y (x, y)

∫∞
−∞ fX,Y (x, y) dy

=
fX,Y (x, y)

fX(x)
.

Example. Let X and Y be jointly continuous random variables with joint p.d.f.

fX,Y (x, y) = (x+ y)1(0,1)(x)1(0,1)(y).

Note that the joint sample space ΩX,Y is the square (0, 1) × (0, 1) in R2 and the surface

defined by fX,Y has equation z = x+ y over this square and is zero everywhere else. Since

this function is nonnegative we only need to verify that the integral of this function over

all of R2 is one to confirm that this is a valid joint p.d.f.. The confirmation follows.

∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dxdy =

∫ 1

0

∫ 1

0

(x+ y) dxdy =

∫ 1

0

(

x2

2
+ xy

)1

0

dy

=

∫ 1

0

(

1

2
+ y

)

dy =

(

y + y2

2

)1

0

= 1.

For this example: If (x, y) ∈ ΩX,Y , then

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y) =

∫ y

0

∫ x

0

(t+ u) dtdu =

∫ y

0

(

x2

2
+ xu

)

du =
x2y + xy2

2
;
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If x ≤ 0 or y ≤ 0, then FX,Y (x, y) = 0;

If 0 < x < 1 and y ≥ 1, then FX,Y (x, y) = FX(x);

If x ≥ 1 and 0 < y < 1, then FX,Y (x, y) = FY (y);

And, if x ≥ 1 and y ≥ 1, then FX,Y (x, y) = 1.

The marginal p.d.f of X is given by

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy =

∫ 1

0

(x+ y) dy1(0,1)(x) = (x+
1

2
)1(0,1)(x).

Since the joint p.d.f. is a symmetric function of x and y, we have fY (y) = (y+ 1
2 )1(0,1)(y).

Given x ∈ (0, 1), it is easy to see that the conditional p.d.f. of Y given X = x is

fY |X=x(y|X = x) =
x+ y

x+ 1
2

1(0,1)(y).

For example, taking x = 1
4 yields

fY |X= 1

4

(y|X =
1

4
) =

1
4 + y
3
4

1(0,1)(y) =
4y + 1

3
1(0,1)(y).

Recall that a parametric family of distributions is a family of distributions of a spec-

ified form which is indexed by a (possibly vector valued) parameter θ. The collection of

parameter values for which the distribution is valid is the parameter space Θ for the family.

We will now describe several standard parametric families of continuous distributions.

Uniform distribution.

For a < b, the continuous uniform distribution on the interval (a, b) has p.d.f.

fX(x) =
1

b− a
1(a,b)(x),

sample space ΩX = (a, b), c.d.f.

FX(x) =
x− a

b− a
1(a,b)(x) + 1[b,∞)(x),

and m.g.f

MX(t) =
ebt − eat

(b− a)t
.

If the distribution of the r.v. X is the continuous uniform distribution on the interval

(a, b), then we will say that X is a continuous uniform r.v. and indicate this by writing

X ∼ continuous uniform(a, b).
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Normal distribution.

For µ ∈ R and σ2 > 0, the normal distribution with parameters µ and σ2 has p.d.f.

fX(x) =
1√
2πσ2

exp

[−(x− µ)2

2σ2

]

,

where exp[a] = ea, sample space ΩX = (−∞,∞), c.d.f.

FX(x) =

∫ x

−∞

1√
2πσ2

exp

[−(t− µ)2

2σ2

]

dt,

and m.g.f

MX(t) = exp

[

µt+
σ2t2

2

]

.

If the distribution of the r.v. X is normal with parameters µ and σ2, then we will say

that X is a normal r.v. and indicate this by writing X ∼ normal(µ, σ2). The normal

distribution with µ = 0 and σ2 = 1 is known as the standard normal distribution.

Exponential distribution.

For λ > 0, the exponential distribution with parameter λ has p.d.f.

fX(x) = λe−λx1(0,∞)(x),

sample space ΩX = (0,∞), c.d.f.

FX(x) = (1− e−λx)1(0,∞)(x),

and m.g.f

MX(t) =
λ

λ− t
for t < λ.

If the distribution of the r.v. X is exponential with parameter λ, then we will say that X

is an exponential r.v. and indicate this by writing X ∼ exponential(λ).

Gamma distribution.

For r > 0 and λ > 0, the gamma distribution with parameters r and λ has p.d.f.

fX(x) =
λr

Γ(r)
xr−1e−λx1(0,∞)(x),
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where Γ(r) =
∫∞
0

xr−1e−x dx is the Gamma function, sample space ΩX = (0,∞), c.d.f.

FX(x) =

∫ x

0

λr

Γ(r)
tr−1e−λt dt1(0,∞)(x),

and m.g.f.

MX(t) =

(

λ

λ− t

)r

for t < λ.

If the distribution of the r.v. X is gamma with parameters r and λ, then we will say

that X is a gamma r.v. and indicate this by writing X ∼ gamma(r, λ). Notice that the

gamma(1,λ) distribution is the exponential(λ) distribution.


