
26

Chapter 5. Discrete random variables.

5.1 Random variables.

In some of the examples we have considered the sample space can be represented

by a set of integers, e.g., Ω = {1, 2, 3, 4, 5, 6} corresponding to one toss of a die or Ω =

{1, 2, . . .} corresponding to the number of tosses required to obtain a one when tossing a

die repeatedly. In other examples we restricted our attention to events described in terms

of a numerical value, e.g., the number of heads, 0, 1, . . . , n, in n tosses of a coin. We

will now consider a more formal treatment of such assignments of numerical values to the

outcomes of an experiment.

A function which assigns numerical values (real numbers) to the elements of a sample

space is known as a random variable (denoted r.v.). The word variable indicates that the

values of the function are numbers. The adjective random is used here as it is used in

random experiment to indicate that the value of the random variable or outcome of the

experiment is not know with certainty before the experiment is conducted and the value

of the random variable or outcome of the experiment is determined.

Example. Consider the experiment of tossing a coin three times with sample space

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

If we let X denote the random variable “the number of heads”, then:

1) the elementary outcome HHH is mapped to 3, i.e., X(HHH) = 3;

2) each of HHT,HTH, and THH is mapped to 2,

i.e., X(HHT ) = X(HTH) = X(THH) = 2;

3) each of HTT, THT , and TTH is mapped to 1,

i.e., X(HTT ) = X(THT ) = X(TTH) = 1;

4) the outcome TTT is mapped to 0, i.e., X(TTT ) = 0.

The sample space (collection of possible values) for this r.v. is ΩX = {0, 1, 2, 3}.

Given a sample space Ω and a random variable X defined on Ω, the r.v. X defines a

new sample space ΩX comprised of all the possible values of X. If ΩX is discrete (finite

or countably infinite), then X is said to be a discrete random variable. In this chapter we

will restrict our attention to discrete random variables. If x ∈ ΩX , then the event X = x

(subset of ΩX) corresponds to the event {ω ∈ Ω : X(ω) = x} (subset of Ω), e.g., in the

coin tossing example the event X = 1 ({1} when viewed as a subset of ΩX) corresponds to

the event {HTT, THT, TTH} relative to the sample space of the underlying experiment.

To avoid technicalities involving uncountably infinite Ω, for each x ∈ R, we will assume

that the probability measure Pr on Ω assigns a probability to the event X ≤ x. For x ∈ R,

we define the probability of the event X ≤ x in terms of the original sample space and
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probability measure by setting Pr(X ≤ x) = Pr({ω ∈ Ω : X(ω) ≤ x}). The distribution

of any r.v. X can be characterized by assigning probabilities Pr(X ≤ x) for each x ∈ R.

If the r.v. X is discrete, then this characterization can be in terms of the probabilities

Pr(X = x) for each x ∈ R.

5.2 Distributions of discrete random variables.

As noted above, we can characterize the distribution of the discrete r.v.X by specifying

the probabilities Pr(X = x) for each x ∈ R. Thus we define the probability mass function

(denoted p.m.f.) fX , where

fX(x) = Pr(X = x),

with fX(x) ≥ 0 for all x ∈ R, and
∑

{x∈ΩX} fX(x) = 1. The sample space for X is

ΩX = {x ∈ R : fX(x) > 0}. Note that for any event A defined in terms of the r.v. X, i.e.,

any A ⊂ ΩX , the probability of A is the sum of the probabilities of each of its elements,

i.e.,

Pr(A) =
∑

x∈A

fX(x).

Note further that we can discuss such probabilities without reference to the original ex-

periment. In fact, it is legitimate to refer to any function fX with the requisite properties

(fX(x) ≥ 0 for all x ∈ R and
∑

{x∈ΩX} fX(x) = 1) as a p.m.f. on ΩX without reference to

any specific experiment.

Aside: Indicator functions. Given a set A the indicator function 1A is defined by

1A(x) =
{

1 if x ∈ A
0 if x /∈ A

.

Our main use of indicator functions will be to provide convenient representations of func-

tions with definitions involving cases. These representations simplify manipulations in-

volving such functions.

If the possible values of the discrete r.v. X are nonnegative integers, then a useful

alternate characterization of the distribution of X is provided by its probability generating

function (denoted p.g.f.) PX . Given a nonnegative integer valued r.v. X with p.m.f. fX ,

let px = fX(x). The probability generating function of X is

PX(t) =

∞
∑

x=0

txpx = p0 + tp1 + t2p2 + · · ·

The dummy variable t is of no significance. This series converges at least for −1 ≤ t ≤ 1.

The usefulness of the probability generating function as a characterization of a distri-

bution will become clear shortly. For now we only note the relationship between derivatives
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of PX(t) and the probabilities px. First note that PX(0) = p0. The derivative of the series

PX(t) is

P ′
X(t) =

∞
∑

x=1

xtx−1px = p1 + 2tp2 + 3t
2p3 + · · ·

and P ′
X(0) = p1. The second derivative of PX(t) is

P ′′
X(t) =

∞
∑

x=2

x(x− 1)tx−2px = 2p2 + 6tp3 + 12t
3p4 + · · ·

and
P ′′X(0)
2 = p2. Continuing with this differentiation process we find that

P
(k)

X
(0)

k! = pk,

i.e., for k = 0, 1, . . ., the kth derivative of PX(t) evaluated at t = 0 and divided by k! is

equal to pk = Pr(X = k).

A parametric family of distributions is a family of distributions of a specified form

indexed by a (possibly vector valued) parameter θ, e.g., for a discrete r.v. X the p.m.f. fX

might be written as a function of θ which is completely determined by assigning a value to

θ. The collection of parameter values for which the distribution is valid is the parameter

space Θ for the family. We will now describe several standard parametric families of

discrete distributions.

Several of these parametric families are associated with sequences of Bernoulli trials.

A sequence of independent dichotomous trials is said to be a sequence of Bernoulli trials

if the probabilities of the two possible outcomes are constant from trial to trial. The two

possible outcomes are generically known as success (S) and failure (F) and p denotes the

probability of success on a single trial, i.e., Pr(S) = p and Pr(F ) = 1 − p = q. We can

think of a Bernoulli trial with success probability p as the outcome of selecting a ball at

random from a box containing balls labeled S and F and such that the proportion of balls

labeled S is p, with 0 < p < 1. In this context a sequence of Bernoulli trials with success

probability p corresponds to the outcome of a sequence of selections of a ball from the

box with the ball being returned to the box after each draw. The binomial, geometric,

negative binomial, and Poisson distributions described below can be motivated in terms

of sequences of Bernoulli trials.

Binomial distribution.

For a positive integer n, 0 < p < 1, and q = 1 − p, the binomial distribution with

parameters n and p has p.m.f.

fX(x) =

(

n

x

)

pxqn−x1{0,1,...,n}(x),
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sample space ΩX = {0, 1, . . . , n}, and p.g.f.

PX(t) = (q + tp)n.

The fact that
∑n

x=0

(

n
x

)

pxqn−x = 1 follows from the binomial theorem as demonstrated in

the binomial distribution example of Section 3.3. The preceding expression for the p.g.f.

is derived similarly as follows

PX(t) =

n
∑

x=0

tx
(

n

x

)

pxqn−x =

n
∑

x=0

(

n

x

)

(tp)xqn−x = (q + tp)n.

If the distribution of the r.v. X is binomial with parameters n and p, then we will say

that X is a binomial r.v. and indicate this by writing X ∼ binomial (n, p). The binomial

(1, p) distribution is also known as the Bernoulli (p) distribution. If we let X denote the

number of successes in a sequence of n Bernoulli trials with success probability p, then X

is a binomial (n, p) r.v.

Geometric distribution.

For 0 < p < 1 and q = 1− p, the geometric distribution with parameter p has p.m.f.

fX(x) = pqx1{0,1,...}(x),

sample space ΩX = {0, 1, . . .}, and p.g.f.

PX(t) =
p

1− tq
.

The fact that
∑∞

x=0 pq
x = 1 follows from the fact that the geometric series

∑∞
x=0 q

x =
1
1−q =

1
p
. The preceding expression for the p.g.f. is derived similarly as follows

PX(t) =

∞
∑

x=0

txpqx = p

∞
∑

x=0

(tq)x = p

(

1

1− tq

)

=
p

1− tq
.

If the distribution of the r.v. X is geometric with parameter p, then we will say that

X is a geometric r.v. and indicate this by writing X ∼ geometric (p).

If we let X denote the number of trials up to but not including the first trial when a

success occurs in a potentially infinite sequence of Bernoulli trials with success probability

p, then X is a geometric (p) r.v. Note that this means that the first success occurs on trial

X + 1.
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The geometric distribution has an important and interesting lack of memory property.

Let a denote a positive integer, b a nonnegative integer, and X a geometric (p) r.v., then

Pr(X = a+ b | X ≥ a) = Pr(X = b).

Before we prove this result note that if we think of X as the waiting time up to but not

including the first trial when a success occurs in a sequence of Bernoulli trial with success

probability p (the number of failures before the first success), then this result states that

the conditional probability that the first success occurs on the (b + 1)th trial after the

ath trial given that the first a trials resulted in failures is the same as the unconditional

probability that the first success occurs on the (b+1)th trial. That is, if we have observed

a failures, then conditionally given this information the probability of observing exactly b

failures before the first success is exactly the same as it would be if we were starting from

scratch. Here is the proof:

Pr(X = a+ b|X ≥ a) =
pqa+b

∑∞
x=a pq

x
=

pqa+b

qa
∑∞

x=0 pq
x
= pqb = Pr(X = b).

Aside. The geometric distribution is the only distribution on the nonnegative integers

with this lack of memory property. More formally, if the nonnegative integer valued r.v.

X has the property that, for all positive integers k, Pr(X = k|X ≥ k) = p = Pr(X = 0),

then X is a geometric (p) r.v.

Proof. Let the nonnegative integer valued r.v. X be given and, for k = 0, 1, . . ., let

pk = Pr(X = k) and Qk = Pr(X > k) = pk+1+ pk+2+ . . . Note that Q0 = 1− p0. Assume

that Pr(X = k|X ≥ k) = p0 for all positive integers k. Then

p0 = Pr(X = k|X ≥ k) =
pk

Qk−1
=

Qk−1 −Qk

Qk−1
= 1−

Qk

Qk−1
.

Thus Qk

Qk−1
= 1 − p0 for all positive integers k, i.e., Qk = (1 − p0)Qk−1, so that Q1 =

(1− p0)
2, Q2 = (1− p0)

3, . . . Hence, Pr(X > k) = Qk = (1− p0)
k+1, Pr(X = 0) = p0, and

for each positive integer k, Pr(X = k) = Qk−1−Qk = (1−p0)
k(1−(1−p0)) = p0(1−p0)

k.

In other words, X is a geometric (p0) r.v. ut

Negative binomial distribution.

For a positive integer r, 0 < p < 1, and q = 1− p, the negative binomial distribution

with parameters r and p has p.m.f.

fX(x) =

(

r + x− 1

x

)

prqx1{0,1,...}(x),
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sample space ΩX = {0, 1, . . .}, and p.g.f.

PX(t) =

(

p

1− tq

)r

.

Verification that the expression above is a valid p.m.f. is provided following Theorem 5.1.

Assuming that this is a valid p.m.f. we can derive the p.g.f. as follows

PX(t) =

∞
∑

x=0

tx
(

r + x− 1

x

)

prqx =

[

pr

(1− tq)r

] ∞
∑

x=0

(

r + x− 1

x

)

(1−tq)r(tq)x =

[

p

1− tq

]r

.

If the distribution of the r.v. X is negative binomial with parameters r and p, then

we will say that X is a negative binomial r.v. and indicate this by writing X ∼ negative

binomial (r, p). Note that the negative binomial (1, p) distribution is the same as the

geometric (p) distribution.

Given a positive integer r, if we let X denote the number of trials up to but not

including the trial when the rth success occurs in a potentially infinite sequence of Bernoulli

trials with success probability p, then X is a negative binomial (r, p) r.v. Note that this

means that the rth success occurs on trial X+1. Thus, as mentioned above, the geometric

distribution is a special case of the negative binomial distribution.

We defined the binomial coefficient
(

n
k

)

for n, k ∈ Z+ with k ≤ n and with the

convention that
(

n
0

)

= 1. Note that for any α ∈ R and k ∈ Z+ the expression

(

α

k

)

=
α(α− 1) · · · (α− k + 1)

k!

is well defined. Adopting this expression as the definition of
(

α
k

)

, with the convention that
(

α
0

)

= 1 and the restriction that if α = n is an integer, then
(

n
k

)

= 0 whenever k > n yields

the following extended binomial theorem. We will use this theorem to prove that
∑∞

x=0

(

r+x−1
x

)

prqx = 1.

Theorem 5.1 (Extended binomial theorem). For α ∈ R and −1 < t < 1

(1 + t)α =
∞
∑

k=0

(

α

k

)

tk = 1 + αt+

(

α(α− 1)

2

)

t2 +

(

α(α− 1)(α− 2)

3!

)

t2 + · · ·

If α ∈ Z+, then the terms with k > α vanish, the sum contains a finite number of terms,

and this expression is valid for all values of t. If α is not a positive integer, then this is an

infinite series.

Proof. Expanding (1 + t)α in a Taylor series about zero yields this expression. ut
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For r ∈ Z+ and x = 0, 1, . . . , r

(

r + x− 1

x

)

=
(r + x− 1)(r + x− 2) · · · r

x!
=

r(r + 1) · · · (r + x− 1)

x!
= (−1)x

(

−r

x

)

since

r(r + 1) · · · (r + x− 1) = (−1)x(−r)(−r − 1)(−r − 2) · · · (−r − x+ 1).

(It is this expression which leads to the name negative binomial.) Thus

∞
∑

x=0

(

r + x− 1

x

)

qx =
∞
∑

x=0

(−1)x
(

−r

x

)

qx =
∞
∑

x=0

(

−r

x

)

(−q)x = (1− q)−r = p−r

and
∞
∑

x=0

(

r + x− 1

x

)

prqx = prp−r = 1.

Hypergeometric distribution.

For positive integers N1, N2, and n, with n ≤ N1+N2, the hypergeometric distribution

with parameters N1, N2, and n has p.m.f.

fX(x) =

(

N1

x

)(

N2

n−x

)

(

N1+N2

n

) 1ΩX
(x),

where ΩX = {max{0, n − N2}, . . . ,min{n,N1}} is the sample space. The p.g.f. for this

distribution exists but is not useful. The fact that these probabilities sum to one follows

from the argument given in the hypergeometric distribution example of Section 3.3. Note

that, as discussed in Section 3.3, the hypergeometric distribution serves as a model for

the distribution of the number of successes in a random sample of size n selected without

replacement from a finite population containing N1 objects classified as successes and N2

objects classified as failures.

If the distribution of the r.v. X is hypergeometric with parameters N1, N2, and n,

then we will say that X is a hypergeometric r.v. and indicate this by writing X ∼

hypergeometric (N1, N2, n).

Discrete uniform distribution.

For a positive integer N , the discrete uniform distribution on the integers {1, 2, . . . , N}

has p.m.f.

fX(x) =
1

N
1{1,2,...,N}(x),
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sample space ΩX = {1, . . . N}, and p.g.f.

PX(t) =
t+ t2 + · · ·+ pN

N
.

If the distribution of the r.v. X is uniform on the set {1, 2, . . . , N}, then we will say that

X is a discrete uniform r.v. and indicate this by writing X ∼ uniform({1, 2, . . . , N}).

Poisson distribution.

For a positive number λ, the Poisson distribution with parameter λ has p.m.f.

fX(x) =
λx

x!
e−λ1{0,1,...}(x),

sample space ΩX = {0, 1, . . .}, and p.g.f.

PX(t) = exp[λ(t− 1)].

The fact that
∑∞

x=0
λx

x! e
−λ = 1 follows from the fact that

∑∞
x=0

λx

x! is a power series

expansion of eλ. We can derive the p.g.f. as follows

PX(t) =

∞
∑

x=0

tx
λx

x!
e−λ =

[

e−λ

e−tλ

] ∞
∑

x=0

(tλ)x

x!
e−tλ = exp[λ(t− 1)].

If the distribution of the r.v. X is Poisson with parameter λ, then we will say that X

is a Poisson r.v. and indicate this by writing X ∼ Poisson (λ).

We will now provide an interesting connection between the binomial and Poisson

distributions. In some situations there is interest in the behavior of a binomial (n, p) r.v.

X when n is large, p is small, and np = λ for some λ > 0. The Poisson (λ) distribution can

be used to approximate the binomial (n, p) distribution in such a situation. More formally,

if we let n→∞ and p→ 0 in such a way that np = λ, then,

Pr(X = x) =

(

n

x

)

px(1− p)n−x →
λx

x!
e−λ.

To see this note that, setting p = λ
n
,

(

n

x

)

px(1− p)n−x =

(

n(n− 1) · · · (n− x+ 1)

x!

)(

λ

n

)x(

1−
λ

n

)n−x

=

(

n(n− 1) · · · (n− x+ 1)

nx

)(

λx

x!

)(

1−
λ

n

)n(

1−
λ

n

)−x
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Letting n→∞, and noting that
(

n(n−1)···(n−x+1)
nx

)

→ 1,
(

1− λ
n

)n
→ e−λ, and

(

1− λ
n

)−x
→ 1 establishes the result.

The Poisson distribution often serves as a useful model for the distribution of the

number of occurrences of an event in a fixed interval of time. The motivation of this

application given below is not rigorous but it can be made so. Consider events occurring

in time such as radioactive disintegrations. Assume that the conditions affecting the times

of occurrence of the events are constant over time. Assume also that nonoverlapping time

intervals are independent in the sense that information about the number of occurrences

in one interval reveals nothing about the number of occurrences in another interval. We

will argue that under these assumptions, and some others introduced below, the number

X of events which occur in a fixed interval of time, taken to be the interval (0, 1) without

loss of generality, is a Poisson (λ) r.v., with λ as defined below. Suppose that the interval

is divided into a large number n of equal length subintervals and define a success as the

occurrence of at least one event in such a subinterval. Since the n subintervals are of equal

length the probability of success pn is the same for each subinterval. Assume further that

the probability of two or more events in an interval is negligible in the limit as n → ∞.

Let X denote the number of events in the entire interval (0, 1), then, for x = 1, . . . , n, as

n→∞ we have the binomial probability

Pr(X = x) =

(

n

x

)

pxn(1− pn)
n−x.

If we subdivide each of the n intervals into equal length subintervals, then pn = 2p2n−p
2
2n

since the event must occur in the left interval, the right interval, or both. Thus pn < 2p2n

and it appears that pn is an increasing function of n (this can be proved rigorously). If the

expected number of events in one of the n subintervals npn tends to a limit λ as n→∞,

then a slight modification of the argument above for the Poisson approximation to the

binomial distribution yields the result that, as n→∞

Pr(X = x)→
λx

x!
e−λ.

Thus under these assumptions the number of occurrences of the event in the interval (0, 1)

is distributed as a Poisson (λ) r.v.
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5.3 Joint, marginal, and conditional discrete distributions.

In this section we will introduce some concepts related to relationships among two or

more random variables. We will concentrate our attention on the two variable (bivariate)

case while providing some indication of how the concepts extend to higher dimensional

(multivariate) cases.

We first extend the p.m.f from one dimension (univariate) to the two dimensional

(bivariate) case. If two discrete random variables X and Y are defined on the same sample

space, then their joint distribution is characterized by their joint probability mass function

fX,Y where

fX,Y (x, y) = Pr(X = x, Y = y),

i.e., the probability thatX = x and Y = y. The corresponding joint sample space (possible

values of the pair (X,Y )) is ΩX,Y = {(x, y) ∈ R
2 : fX,Y (x, y) > 0}; and, we must have

fX,Y (x, y) ≥ 0 for all (x, y) ∈ R
2 and

∑

{(x,y)∈ΩX,Y } fX,Y (x, y) = 1.

Note that the univariate p.m.f.’s fX and fY , which are known as marginal p.m.f.’s

in this context, can be obtained by summing the joint p.m.f.. For example, if ΩY =

{y1, . . . , yn}, then, for x ∈ ΩX ,

fX(x) =
∑

y∈ΩY

fX,Y (x, y) = fX,Y (x, y1) + · · ·+ fX,Y (x, yn),

since the event [X = x] is the union of the events [X = x, Y = y1], . . . , [X = x, Y = yn]

and these n events are disjoint.

Next we consider quantification of the effects of knowledge of the value of one variable

on the distribution of another. For x ∈ ΩX the conditional p.m.f. of Y given X = x,

fY |X=x(y|X = x), is defined by

fY |X=x(y|X = x) = Pr(Y = y|X = x) =
fX,Y (x, y)

fX(x)
,

i.e., the conditional probability that Y = y given that X = x. It is important to note that

the conditional sample space for Y given X = x,

ΩY |X=x = {y : fY |X=x(y|X = x) > 0}, may vary depending on the value of x; however,

for each x ∈ ΩX , we must have
∑

y∈ΩY |X=x
fY |X=x(y|X = x) = 1.

The joint p.m.f. fX,Y is conveniently represented in a two way table as demonstrated

in the following example. In this context the respective p.m.f.’s fX and fY are known as the

marginal p.m.f.’s of X and Y , since these probabilities are the (marginal) row and column

sums corresponding to the tabular representation of the joint distribution. The conditional

p.m.f. fY |X=x is obtained by extracting the row corresponding to the fixed value x and
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dividing the probabilities in this row by the corresponding marginal probability fX(x).

The conditional p.m.f. fX|Y=y is obtained similarly from the Y = y column and fY (y).

Example. Suppose that a pair of fair dice is tossed once. Let X denote the sum of the

two observed values and let Y denote the maximum of the two observed values. It is

easily verified that the joint p.m.f. fX,Y (x, y) of X and Y corresponds to the probabilities

in the body of the table below and the marginal p.m.f.’s of X and Y correspond to the

probabilities along the margins.

Joint distribution of X = sum and Y = max.

Y = max

X = sum 1 2 3 4 5 6 fX

2 1
36 0 0 0 0 0 1

36

3 0 2
36 0 0 0 0 2

36

4 0 1
36

2
36 0 0 0 3

36

5 0 0 2
36

2
36 0 0 4

36

6 0 0 1
36

2
36

2
36 0 5

36

7 0 0 0 2
36

2
36

2
36

6
36

8 0 0 0 1
36

2
36

2
36

5
36

9 0 0 0 0 2
36

2
36

4
36

10 0 0 0 0 1
36

2
36

3
36

11 0 0 0 0 0 2
36

2
36

12 0 0 0 0 0 1
36

1
36

fY
1
36

3
36

5
36

7
36

9
36

11
36 1

The conditional p.m.f. of X for a fixed value of Y is formed by selecting the appro-

priate column of the table (corresponding to the fixed value of Y ) and normalizing the

probabilities in the column so that they sum to one. The conditional p.m.f. of Y for a

fixed value of X is formed analogously operating on rows. Some examples corresponding

to fixing the value of the maximum are:

fX|Y=1(x|Y = 1) = 1{2}(x),

i.e., if we know that the maximum is 1, then we know that the sum is 2;

fX|Y=2(x|Y = 2) =
2

3
1{3}(x) +

1

3
1{4}(x),

i.e., if we know that the maximum is 2, then the sum must be 3 or 4; with 3 twice as

probable as 4;

fX|Y=4(x|Y = 4) =
2

7
1{5,6,7}(x) +

1

7
1{8}(x)
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i.e., if we know that the maximum is 4, then the sum must be 5, 6, 7, or 8; with 5, 6, and

7 equally probable and 8 half as probable as each of the other possible sums. Similarly,

fixing the value of the sum yields:

fY |X=6(y|X = 6) =
1

5
1{3}(y) +

2

5
1{4,5}(y),

i.e., if we know that the sum is 6, then the maximum must be 3, 4, or 5; with 4 and 5

being equally probable and 3 half as probable as each of the other possible maximums;

and

fY |X=7(y|X = 7) =
1

3
1{4,5,6}(y),

i.e., if we know that the sum is 7, then the maximum must be 4, 5, or 6 and these sums

are equally probable.

As we can see from the preceding example, the joint p.m.f. ofX and Y is not necessarily

determined by the marginal p.m.f.’s. If fX,Y (x, y) = fX(x)fY (y) for all x, y ∈ R, then

X and Y are said to be (stochastically) independent. If the joint p.m.f. does not factor

in this way, then X and Y are (stochastically) dependent. The r.v.’s X = sum and Y =

maximum in the dice tossing example are dependent. In this same example it is easy to

verify that the r.v.’s Z = number on the first die and W = number on the second die are

independent.

We will now establish discrete r.v. versions of the multiplication rule (Theorem 4.1)

and the law of total probability (Theorem 4.6). First we establish the multiplication

rule. If (x, y) ∈ ΩX,Y , then fX,Y (x, y) > 0. Thus if x ∈ ΩX , then, since fX(x) =
∑

y∈ΩY
fX,Y (x, y), there must be at least one y such that for this (x, y) pair fX,Y (x, y) > 0

(such that this pair belongs to ΩX,Y ). Similarly, if fX(x) = 0, then for this x we must

have fX,Y (x, y) = 0 for all values of y. Hence, for all (x, y) ∈ ΩX,Y

fX,Y (x, y) = fX(x)fY |X=x(y|X = x),

with the convention that when fX(x) = 0 and fY |X=x(y|X = x) is undefined we define

the corresponding product to be zero. Now we establish the law of total probability. Let

ΩX = {x1, x2, . . .} and let y ∈ ΩY be given, then with the convention from above we have

fY (y) =
∑

x∈ΩX

fX,Y (x, y) =
∑

x∈ΩX

fX(x)fY |X=x(y|X = x)

= fX(x1)fY |X=x1
(y|X = x1) + fX(x2)fY |X=x2

(y|X = x2) + · · ·

The concepts of joint, marginal, and conditional p.m.f.’s and independence are readily

generalized to three or more r.v.’s. For example, given three r.v.’s X1, X2 and X3 defined

on the same sample space:

fX1,X2,X3(x1, x2, x3) = Pr(X1 = x1, X2 = x2, X3 = x3),
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fX1(x1) =
∑

(x2,x3)∈ΩX2,X3

fX1,X2,X3(x1, x2, x3),

fX1,X2(x1, x2) =
∑

x3∈ΩX3

fX1,X2,X3(x1, x2, x3),

fX1,X2|X3=x3
(x1, x2|X3 = x3) =

fX1,X2,X3(x1, x2, x3)

fX3(x3)
,

and

X1, X2, and X3 are (mutually) independent if, and only if,

fX1,X2,X3(x1, x2, x3) = fX1(x1)fX2(x2)fX3(x3) for all x1, x2, x3 ∈ R.

We will now present two parametric families of joint distributions, the multinomial and

multiple hypergeometric distributions, which generalize the binomial and hypergeometric.

For k ≥ 3, let X = (X1, . . . , Xk) denote a vector of k random variables (a random vector)

and let x = (x1, . . . , xk) denote a potential value for X. With this notation fX(x) denotes

the joint p.m.f. of X = (X1, . . . , Xk) and ΩX the corresponding joint sample space.

Multinomial distribution.

For n ∈ Z+, k ≥ 3, and 0 < pi < 1 for i = 1, . . . , k with p1 + · · · + pk = 1,

the multinomial distribution with parameters n and p1, . . . , pk is the joint distribution of

X = (X1, . . . , Xk) which has joint p.m.f.

fX(x) =
n!

x1!x2! · · ·xn!
px1
1 px2

2 · · · p
xk

k 1ΩX
(x),

where the joint sample space ΩX is the set of nonnegative integer valued vectors x for

which x1 + · · ·+ xk = n.

Note that if k = 2, then the multinomial distribution with parameters n, p1, and

p2 = 1−p1 is degenerate, sinceX2 = n−X1, and the distribution reduces to the distribution

of X1 which is binomial with parameters n and p = p1, i.e. under these conditions

Pr(X1 = x1, X2 = n− x1) = Pr(X1 = x1) =
(

n
x1

)

px1
1 (1− p1)

n−x1 .

Example. If a fair die is tossed 10 times and we let X1 denote the number of ones, X2

the number of twos, and X3 the number of values other than one or two, then the joint

distribution of X1, X2, and X3 is the multinomial distribution with n = 10, p1 = p2 =
1
6 ,

and p3 =
4
6 . In this example k = 3 and this distribution is an example of a trinomial

distribution.
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Multiple hypergeometric distribution.

For n ∈ Z+, k ≥ 3, and positive integers N1, . . . , Nk with N1 + · · · + Nk = N ,

the multiple hypergeometric distribution with parameters n and N1, . . . , Nk is the joint

distribution of X = (X1, . . . , Xk) which has joint p.m.f.

fX(x) =

(

N1

x1

)(

N2

x2

)

· · ·
(

Nk

xk

)

(

N
n

) .

This expression only makes sense when 0 ≤ xi ≤ Ni for i = 1, . . . , k; however, this

expression is valid for all integral values of the xi provided we adopt the usual convention

that
(

Ni

x

)

= 0 whenever x > Ni.

Note that if k = 2, then the multiple hypergeometric distribution with parameters

n,N1, and N2 is degenerate, since X2 = n − X1, and the distribution reduces to the

distribution of X1 which is hypergeometric with parameters n,N1, and N −N1.

Example. If a poker hand is dealt randomly and we let X1 denote the number of aces in

the hand, X2 the number of kings, and X3 the number of cards which are neither aces

nor kings, then the joint distribution of X1, X2, and X3 is the multiple hypergeometric

distribution with parameters n = 5, N1 = N2 = 4, and N3 = 44. In this example k = 3

and this distribution is an example of a double hypergeometric distribution.

5.4 Sums of independent nonnegative integer valued random variables.

Let X and Y denote independent nonnegative integer valued r.v.’s with p.m.f.’s fX
and fY and p.g.f.’s PX and PY and consider the distribution of the r.v. Z = X + Y . Note

that Z is also a nonnegative integer valued r.v. The event [Z = z] can be expressed as the

union of the disjoint events [X = 0, Y = z], [X = 1, Y = z − 1], . . . , [X = z, Y = 0]. Thus

fZ(z) = fX(0)fY (z) + fX(1)fY (z − 1) + · · ·+ fX(z)fY (0).

A p.m.f. fZ of this form is said to be the convolution of the p.m.f.’s fX and fY and

this relationship is often denoted by fZ = fX ∗ fY . It is straightforward to verify that

fZ = fX ∗fY is equivalent to PZ(t) = PX(t)PY (t). This important property is summarized

in the following theorem for ease of reference.
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Theorem 5.2. If X and Y are independent nonnegative integer valued r.v.’s with p.g.f.’s

PX and PY , then the p.g.f. of their sumX+Y is the product of PX and PY , i.e., PX+Y (t) =

PX(t)PY (t).

The convolution can be generalized to convolutions of three or more nonnegative

integer valued r.v.’s in the obvious way. For example, if X1, X2, and X3 are three such

r.v.’s, then fX1 ∗ fX2 ∗ fX3 = [fX1 ∗ fX2 ] ∗ fX3 and PX1+X2+X3(t) = PX1(t)PX2(t)PX3(t).

Convolutions are of particular interest when the distributions of the component r.v.’s are

identical.

Applications to the binomial, negative binomial, and Poisson distributions are pro-

vided in the following theorems.

Theorem 5.3. If X1, . . . , Xk are independent r.v.’s and, for i = 1, . . . , k, Xi has the

binomial distribution with parameters ni and p, then X1 + · · · + Xk has the binomial

distribution with parameters n1 + · · ·+ nk and p.

Theorem 5.4. If X1, . . . , Xk are independent r.v.’s and, for i = 1, . . . , k, Xi has the

negative binomial distribution with parameters ri and p, then X1 + · · · + Xk has the

negative binomial distribution with parameters r1 + · · ·+ rk and p.

Theorem 5.5. If X1, . . . , Xk are independent r.v.’s and, for i = 1, . . . , k, Xi has the

Poisson distribution with parameter λi, then X1 + · · · +Xk has the Poisson distribution

with parameter λ1 + · · ·+ λk.


