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Chapter 4. Conditional probability.

In many situations we have partial information about the outcome of an experiment

and we may wish to update the probability measure to reflect this additional information.

For example, suppose that a population of N people contains NA females and NB college

graduates. For an individual selected at random from this population let A denote the

event that the individual is a female and let B denote the event that the individual is a

college graduate. Then, Pr(A) = NA

N
and Pr(B) = NB

N
. Now suppose that it is known

that the individual is a female. That is suppose that we know that the individual belongs

to the subpopulation of females (event A). Using the subpopulation A as our reference

space (new sample space) we note that the event that the individual is a college graduate

given that the individual is a female is the intersection AB. Thus letting NAB denote the

number of people in this population who are female college graduates, we find that the

conditional probability of the selected individual being a college graduate given that the

selected individual is a female is

Pr(B|A) =
NAB

NA

=
Pr(AB)

Pr(A)
.

Definition. Given events A and B with Pr(A) > 0 the conditional probability of B given

A is

Pr(B|A) =
Pr(AB)

Pr(A)
.

Theorem 4.1 (Multiplication rule). Given events A and B with Pr(A) > 0,

Pr(AB) = Pr(A)Pr(B|A).

Proof. Obvious from the definition of Pr(B|A). ut

Note that if Pr(AB) > 0, then Pr(A) > 0 and Pr(B) > 0 and we have Pr(AB) =

Pr(A)Pr(B|A) = Pr(B)Pr(A|B).

Corollary 4.2. Given events A1, . . . , An with Pr(A1A2 · · ·An) > 0,

Pr(A1A2 · · ·An) = Pr(A1)Pr(A2|A1)Pr(A3|A1A2) · · ·Pr(An|A1A2 · · ·An−1)

Corollary 4.3. Given events A1, . . . , An and B with Pr(A1 · · ·AnB) > 0,

Pr(A1A2 · · ·An|B) = Pr(A1|B)Pr(A2|A1B)Pr(A3|A1A2B) · · ·Pr(An|A1A2 · · ·An−1B)

Intuitively we say that the events A and B are independent (stochastically indepen-

dent) when knowing that B has occurred has no effect on the probability of occurrence

of A, i.e. when Pr(A) = Pr(A|B). For mathematical convenience the formal definition

of independence is in terms of a product so that it does not depend on the existence of

conditional probabilities.
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Definition. The events A and B are said to be independent (stochastically independent)

when Pr(AB) = Pr(A)Pr(B).

Example. If a fair die is tossed once and we let A = {2, 4, 6} denote the event that an even

value occurs and B = {1, 2, 3, 4} the event that the value is four or less, then Pr(A) = 1
2
,

Pr(B) = 2
3
, and Pr(AB) = 1

3
. Thus, in this case, Pr(AB) = Pr(A)Pr(B) and A and B are

independent.

Note that if two events are disjoint (mutually exclusive), then they cannot occur at

the same time; thus if A and B are mutually exclusive, then they cannot be independent

unless one or both is the null event.

Theorem 4.4. If the events A and B are independent, then: the events A and Bc are

independent; the events Ac and B are independent; and, the events Ac and Bc are inde-

pendent.

Proof. Let the independent events A and B be given. We will show that A and Bc

are independent, the other results are proved analogously. Theorem 2.5 implies that

Pr(ABc) = Pr(A)−Pr(AB). Thus the independence of A and B implies that Pr(ABc) =

Pr(A)− Pr(A)Pr(B) = Pr(A)(1− Pr(B)) which establishes the result. ut

Definition. The events A1, . . . , An are said to be independent (mutually independent)

when

Pr(AiAj) = Pr(Ai)Pr(Aj) for all pairs (i, j) with distinct elements

Pr(AiAjAk) = Pr(Ai)Pr(Aj)Pr(Ak) for all triples (i, j, k) with distinct elements

and so on for sets of four, five, . . ., up to

Pr(Ai · · ·An) = Pr(A1) · · ·Pr(An).

Definition. The events A1, . . . , An are said to be pairwise independent when

Pr(AiAj) = Pr(Ai)Pr(Aj) for all pairs (i, j) with distinct elements.

Example. Let Pr(ω) = 1/8 for ω ∈ Ω = {1, 2, 3, 4, 5, 6, 7, 8}, let A = {1, 2, 3, 4}, B =

{1, 2, 5, 6}, and C = {1, 3, 5, 7}. Then Pr(A) = Pr(B) = Pr(C) = 1
2
, Pr(AB) = Pr((AC) =

Pr(BC) = 1
4
= ( 1

2
)2, and Pr(ABC) = 1

8
= ( 1

2
)3. Thus, in this example, the events A, B,

and C are independent (mutually independent).

Example. Let Pr(ω) = 1/8 for ω ∈ Ω = {1, 2, 3, 4, 5, 6, 7, 8}, let A = {1, 2, 3, 4}, B =

{1, 2, 5, 6}, and C = {1, 2, 7, 8}. Then Pr(A) = Pr(B) = Pr(C) = 1
2
and Pr(AB) =

Pr((AC) = Pr(BC) = 1
4
= ( 1

2
)2. But Pr(ABC) = 1

4
6= ( 1

2
)3. Thus, in this example, the

events A, B, and C are pairwise independent but not mutually independent.

Recall that if Pr(AB) > 0, then A and B are independent if, and only if Pr(A|B) =

Pr(A) and Pr(B|A) = Pr(B). A similar result holds for a collection of events.
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Theorem 4.5. Given events A1, . . . , An with Pr(A1A2 · · ·An) > 0.

The events A1, . . . , An are independent if, and only if

Pr(Ai1 · · ·Aia
|Aj1 · · ·Ajb

) = Pr(Ai1 · · ·Aia
)

for all nonempty disjoint subsets {i1, . . . , ia} and {j1, . . . , jb} of {1, . . . , n}.

Definition. Given events A,B, and C with Pr(ABC) > 0, the events A and B are said

to be conditionally independent given the event C when Pr(AB|C) = Pr(A|C)Pr(B|C).

Theorem 4.6 (The law of total probability). If the events B1, . . . , Bn form a partition

of Ω, i.e. if BiBj = ∅ for all i 6= j and Ω = B1 ∪ · · · ∪Bn, then, for any event A,

Pr(A) =

n
∑

i=1

Pr(ABi).

Corollary 4.7. If the events B1, . . . , Bn form a partition of Ω, and Pr(Bi) > 0 for i =

1, . . . , n, then

Pr(A) =

n
∑

i=1

Pr(A|Bi)Pr(Bi).

Corollary 4.8 (Bayes’ theorem). If the events B1, . . . , Bn form a partition of Ω, and

Pr(Bi) > 0 for i = 1, . . . , n, then for any event A with Pr(A) > 0, we have

Pr(B1|A) =
Pr(A|B1)Pr(B1)

∑n
i=1 Pr(A|Bi)Pr(Bi)

.

Bayes’ theorem is particularly useful for a situation where the occurrence of event

A follows the occurrence of one of the events Bi in time and we are interested in the

conditional probability that a particular Bi, say B1, has occurred given that event A has

occurred.

Note that if A and B are events and 0 < Pr(B) < 1, then the events AB and ABc

form a partition of Ω. Thus Pr(A) = Pr(AB) + Pr(ABc) and Bayes’ theorem reduces to

Pr(B|A) =
Pr(AB)

Pr(AB) + Pr(ABc)
=

Pr(A|B)Pr(B)

Pr(A|B)Pr(B) + Pr(A|Bc)Pr(Bc)
.

Example. Consider a box containing 100 balls of which 20 are labeled A, 30 are labeled B,

and 50 are labeled C, and three other boxes labeled A,B, and C such that: box A contains

8 red and 2 green balls; box B contains 7 red and 3 green balls; and, box C contains 6 red

and 4 green balls. Now suppose that a ball is chosen at random from the box containing

100 balls, the letter (A,B,C) on the ball is noted, and then a ball is chosen at random
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from the 10 balls in the box with the appropriate letter label. Obviously, the conditional

probabilities of choosing a red ball given the letter label are: Pr(R|A) = .8, Pr(R|B) = .7,

and Pr(R|C) = .6. It is also obvious that the probabilities of selecting the label (A,B,C)

are: Pr(A) = .2, Pr(B) = .3, and Pr(C) = .5. The values of conditional probabilities of the

form Pr(A|R), the conditional probability that the ball was selected from box A given that

it was red, are less obvious. However, these conditional probabilities are readily computed

using Bayes’ Theorem. Thus

Pr(R) = Pr(R|A)Pr(A) + Pr(R|B)Pr(B) + Pr(R|C)Pr(C) = .16 + .21 + .30 = .67

Pr(A|R) =
Pr(R|A)Pr(A)

Pr(R)
=

16

67
≈ .24

Pr(B|R) =
Pr(R|B)Pr(B)

Pr(R)
=

21

67
≈ .31

Pr(C|R) =
Pr(R|C)Pr(C)

Pr(R)
=

30

67
≈ .45

It is interesting to compare the unconditional probabilities of drawing from boxes A,B, and

C, Pr(A) = .2, Pr(B) = .3, and Pr(C) = .5, to the corresponding conditional probabilities

given that the ball drawn is known to be red, Pr(A|R) = 16
67
≈ .24, Pr(B|R) = 21

67
≈ .31, and

Pr(C|R) = 30
67
≈ .45. The initial probabilities (before we obtain the additional information

that the ball drawn was red) are known as prior probabilities and the updated probabilities

(conditional on the added information) are known as posterior probabilities.

Example. Suppose balls (objects) are selected at random with replacement from a popu-

lation of N balls, of which N1 are red (R), N2 are green (G), and N3 = N −N1 −N2 are

black (B), sequentially until either a red ball is selected or a green ball is selected. In this

context the elementary outcomes can be represented by finite sequences of the form R, G,

BR, BG, BBR, BBG, . . ., i.e. sequences of the form B . . . BR or B . . . BG. What is the

probability that a red ball will be selected before a green ball is selected? Reasoning as in

the geometric distribution example of Section 3.3, it is clear that

Pr(red before green) =
∞
∑

x=0

(

N3

N

)x(
N1

N

)

=
N1

N −N3

=
N1

N1 + N2

,

and analogously

Pr(green before red) =
N2

N1 + N2

.

There is an interesting connection between these probabilities and certain conditional

probabilities defined in terms of the selection of a single ball from this population. Note that

if one ball is selected at random, then Pr(R) = N1

N
, Pr(G) = N2

N
, and Pr(R or G) = N1+N2

N
.
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Thus, the conditional probability of selecting a red ball given that the ball selected is red

or green is Pr(R|R or G) = N1

N1+N2
. Similarly, the conditional probability of selecting a

green ball given that the ball selected is red or green is Pr(G|R or G) = N2

N1+N2
.

Example. Craps. Craps is a popular dice game. In this game a pair of fair dice is thrown

(tossed) and the sum of the numbers on the dice is computed; this action is repeated until

the player either wins or loses. The outcome of the game is determined on the first throw

when the player throws: seven or eleven “a natural” in which case the player wins or two,

three or twelve “craps” in which case the player loses (craps out). If any other sum is

thrown four, five, six, eight, nine, or ten, then the number thrown becomes the player’s

“point” and play continues until the player makes his point or throws a seven. If the player

makes his point he wins and if he throws a seven he loses (craps out).

The probabilities of the various sums on a single throw, which were computed in an

example in Section 3.1, are: Pr(2) = Pr(12) = 1
36
, Pr(3) = Pr(11) = 2

36
, Pr(4) = Pr(10) =

3
36
, Pr(5) = Pr(9) = 4

36
, Pr(6) = Pr(8) = 5

36
, and Pr(7) = 6

36
. The probability of winning

on the first throw is

p0 = Pr(7 or 11) = 8
36

.

The other ways to win correspond to throwing a 4, 5, 6, 8, 9, or 10 on the first throw and

then making this point in a sequence of throws. Consider first the case when the player

throws a 4 on the first throw. It is easy to see that the event that the player makes his

point by throwing a 4 before a 7 is independent of the outcome of the first toss so that the

probability of winning with a 4 is

p4 = Pr(4 on the first throw)Pr(making the point 4)

Appealing to the preceding example the probability of making the point 4 is equal to the

conditional probability of throwing a 4 on a single throw given that the single throw results

in a 4 or a 7. Hence p4 is given by the product

p4 = Pr(4)Pr(4|4 or 7) =
(

3
36

)

(

3
3+6

)

= 9
36·9

= 1
36

Applying this argument to the other possible point values gives:

p5 = Pr(5)Pr(5|5 or 7) =
(

4
36

)

(

4
4+6

)

= 16
36·10

= 2
45

p6 = Pr(6)Pr(6|6 or 7) =
(

5
36

)

(

5
5+6

)

= 25
36·11

= 25
396

p8 = Pr(8)Pr(8|8 or 7) =
(

5
36

)

(

5
5+6

)

= 25
36·11

= 25
396

p9 = Pr(9)Pr(9|9 or 7) =
(

4
36

)

(

4
4+6

)

= 16
36·10

= 2
45

p10 = Pr(10)Pr(10|10 or 7) =
(

3
36

)

(

3
3+6

)

= 9
36·9

= 1
36

Thus the probability of winning is p0 + p4 + p5 + p6 + p8 + p9 + p10 =
244
495

≈ .4930.


