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Chapter 3. Combinatorics and examples.

3.1 Fundamental rule of counting.

Theorem (Fundamental rule of counting). Given m objects a1, . . . , am and n objects

b1, . . . , bn, there are mn ordered pairs of the form (ai, bj). Alternate statement: If an

experiment consists of two tasks the first of which can be performed in m ways and,

regardless of the particular outcome of the first task, a second task which can be performed

in n ways, then the experiment itself can be performed in mn ways.

Proof. Let a1, . . . , am and b1, . . . , bn be given. Clearly there are n ordered pairs of the

form (a1, bj). Thus, by letting the first element vary through its m possible values there

are mn ordered pairs of the form (ai, bj). ut

Corollary. There are n1n2 · · ·nk ways in which an ordered k–tuple can be formed when

there are n1 choices for the first element, n2 choices for the second element, . . ., and nk

choices for the kth element.

Example. Tossing a pair of dice. Suppose that a pair of fair dice is tossed and, for

x = 2, 3, . . . , 12, let px denote the probability that the sum of the numbers on the upturned

faces is x. The elementary outcomes for this experiment can be represented by the 36

ordered pairs of the form (a, b) where a, b ∈ {1, 2, 3, 4, 5, 6}. Since the dice are assumed to

be fair we will assume that these 36 elementary outcomes are equally probable. The sums

corresponding to these elementary outcomes are indicated in the following table.

Sums.

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Hence, p2 = p12 = 1/36, p3 = p11 = 2/36, p4 = p10 = 3/36, p5 = p9 = 4/36, p6 = p11 =

5/36, and p7 = 6/36.

3.2. Ordered samples.

Consider a population {a1, . . . , aN} containing N distinct objects. An ordered sample

of size n is an ordered collection of n objects selected from the N objects in the population.

It is helpful to envision selecting the n objects which comprise the sample one at a time.
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There are two ways that such a sample can be selected. The elements of the sample can

be selected with replacement, so that at each step the element is selected from the entire

population, or the elements of the sample can be selected without replacement, so that

at each step an object is removed from the population and there is one less object in the

population for the next selection. When sampling with replacement a particular object

can appear more than once in the sample and there is no restriction on the size n of the

sample. When sampling without replacement no particular object can appear more than

once in the sample and the sample size n clearly cannot exceed the population size N .

Given a population of size N consider the selection of an ordered sample of size n

as a sequence of n steps where the ith element of the sample is selected at step i. When

sampling with replacement there are N choices at each of the n steps. Thus there are N n

possible ordered samples of size n when the sample is selected with replacement from a

population of size N . When sampling without replacement there are N choices at the first

step, N − 1 choices at the second step, and so on, with N − n+ 1 choices at the nth step

(assuming that n ≤ N). Thus, assuming that n ≤ N , there are N(N − 1) · · · (N − n+ 1)

possible ordered samples of size n when the sample is selected without replacement from a

population of size N . Note that each of these counts, Nn and N(N − 1) · · · (N −n+1), is

a product of n integers. For ease of reference these results are summarized in the following

theorem.

Theorem (ordered samples). Let a population of size N be given. There are Nn

possible ordered samples of size n when the sample is selected with replacement. For

n ≤ N , there are N(N − 1) · · · (N − n + 1) possible ordered samples of size n when the

sample is selected without replacement.

The process of selecting an ordered sample of size n with replacement from a popula-

tion of N distinct objects is equivalent to the process of placing n balls into N boxes when

placement of more than one ball into the same box is allowed. This equivalence is clear if

we identify each of the n steps involved in selecting the objects from the population with

the assignment of a box to a ball. Similarly, the process of selecting an ordered sample

of size n without replacement from a population of N distinct objects is equivalent to the

process of placing n balls into N boxes when placement of more than one ball into the

same box is not allowed.

Note that if the sample is selected without replacement and n = N , then the ordered

sample is a permutation (ordered arrangement) of the objects {a1, . . . , aN} which comprise

the population. There are N ! = N(N − 1) · · · 1 (read this as N factorial) permutations

of N objects. By convention 0! = 1. With this convention, for 1 ≤ n ≤ N , the number

of ordered samples of size n selected without replacement from a population of N objects

(the number of permutations of N objects taken n at a time) is N !
(N−n)! .
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3.3. Subpopulations and partitions.

As above a population of size N is an unordered collection (set) {a1, . . . , aN} of N

distinct objects. Two populations are said to be different when one contains an object

which does not belong to the other. Given a population {a1, . . . , aN}, a subpopulation

of size n is an unordered collection of n distinct ai values, i.e., a subset of size n. We

will now determine, for fixed n < N , the number of subpopulations of size n that can

be formed from the objects in a population of size N . We already know that there are

N(N − 1) · · · (N − n + 1) ordered samples of size n selected without replacement from a

population of size N . Since each of these ordered samples of size n can be ordered in n!

ways, i.e., there are n! permutations of a particular set of n distinct objects, it follows that

the number of subpopulations of size n (selected from a population of size N) is given by

the binomial coefficient

(

N

n

)

=
N(N − 1) · · · (N − n+ 1)

n(n− 1) · · · 1
=

N !

n!(N − n)!
.

Note that in the ratio of products expression for
(

N
n

)

the numerator and denominator

products are both products of n integers. For ease of reference this result is summarized

in the following theorem.

Theorem (subpopulations). Let a population of size N be given. For n ≤ N , the

number of subpopulations of size n is given by the binomial coefficient

(

N

n

)

=
N(N − 1) · · · (N − n+ 1)

n(n− 1) · · · 1
=

N !

n!(N − n)!
.

A subpopulation of size n selected from a population of size N is also said to be

a combination of N objects taken n at a time. Thus the binomial coefficient
(

N
n

)

is

the number of combinations of N objects taken n at a time. Note also that selecting a

subpopulation of size n from a population of size N is equivalent to selecting a collection of

N − n objects which are excluded from the subpopulation. Thus, recalling the convention

0! = 1, which leads to the convention
(

N
0

)

=
(

N
N

)

= 1, for 0 ≤ n ≤ N , we have

(

N

n

)

=

(

N

N − n

)

.

As noted above the selection of a subpopulation of size n from a population of size N

is equivalent to partitioning (dividing) the population into two subpopulations, one of size

n and one of size N −n. For m ≥ 2 and n1, . . . , nm such that n1+ · · ·+nm = N , we might

ask: In how many ways can a population of size N be partitioned into m subpopulations

of respective sizes n1, . . . , nm? To answer this question consider the formation of such a
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partition via a sequence of m steps. At the first step there are N objects to choose from

and
(

N
n1

)

ways to select the first subpopulation. At the second step there are N−n1 objects

to choose from and
(

N−n1

n2

)

ways to select the second subpopulation. Continuing with this

argument when we reach the last (mth) step we find that there areN−n1−· · ·−nm−1 = nm

objects to choose from and
(

nm

nm

)

= 1 way to select the final subpopulation. The final answer

to our question is given in the following theorem.

Theorem (partitions). Let a population of size N be given. For m ≥ 2 and n1, . . . , nm

such that each ni ≥ 1 and n1 + · · ·+ nm = N , the number of partitions of the population

into m subpopulations of respective sizes n1, . . . , nm is given by the multinomial coefficient

(

N

n1

)(

N − n1

n2

)(

N − n1 − n2

n3

)

· · ·

(

nm

nm

)

=
N !

n1!n2! · · ·nm!
.

Note that if we allow ni = 0 in this theorem, then the expression is still valid but

the number of nontrivial subpopulations in the partition is reduced by the number of i for

which ni = 0.

Example. Binomial distribution. Suppose that n balls are placed at random and indepen-

dently into N boxes. Here the word independently indicates that more than one ball may

be placed into the same box and the word random indicates that we are going to assume

that the Nn elementary outcomes, represented as n–tuples with elements taking values in

{1, . . . , N}, are equally likely. For an integer x, with 0 ≤ x ≤ n, we will find the probability

px that exactly x balls are placed in box 1. First note that an outcome is favorable for this

event when it contains exactly x ones and exactly n−x values not equal to one, since these

are the elementary outcomes with x balls in box 1 and n−x balls in other boxes. We know

that there are
(

n
x

)

partitions of a population of n objects (the balls) into 2 subpopulations

of respective sizes x and n− x. For a specific partition of this form the n–tuple must have

ones in the specified x positions and values not equal to one in the other positions. Since

there is only one way to choose a one and there are N − 1 ways to choose an value other

than one, there are 1x(N − 1)n−x = (N − 1)n−x elementary outcomes with ones in the x

positions for the specific partition and values other than one in the others. Hence, there

are
(

n
x

)

(N − 1)n−x elementary outcomes that are favorable for the event “exactly x balls

are placed in box 1” and, for x = 0, 1, . . . , n, the probability that exactly x balls of the n

balls are placed in box 1 is

px =

(

n

x

)

(N − 1)n−x

Nn
=

(

n

x

)(

1

N

)x(
N − 1

N

)n−x

.

Note that, if we consider the random placement of a single ball into one of N boxes, then
1
N
is the probability that the ball is placed in box 1 and N−1

N
is the probability that it is

placed in a box other than box 1.
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We can modify this example to get a more general expression for px that involves

probabilities of the form N1

N
and N−N1

N
. To do this simply assume that boxes 1 through

N1 are one color (say red) and boxes N1 + 1 through N are another color (say green);

redefine the event as “exactly x balls are placed in a red box”; and, modify the argument

to count the number of ways x balls can be placed in a red box and the others in a

green box, yielding Nx
1 (N −N1)

n−x instead of 1x(N − 1)n−x. With this modification, for

x = 0, 1, . . . , n, the probability that exactly x balls of the n balls are placed in a red box is

px =

(

n

x

)

Nx
1 (N −N1)

n−x

Nn
=

(

n

x

)(

N1

N

)x(
N −N1

N

)n−x

.

In this case, if we consider the random placement of a single ball into one of N boxes, then
N1

N
is the probability that the ball is placed in a red box and N−N1

N
is the probability that

it is placed in a green box.

As noted above, the process of placing n balls into N boxes, when placement of more

than one ball into the same box is allowed, is equivalent to the process of selecting an

ordered sample of size n with replacement from a population of N distinct objects. Thus

this expression for px can also be viewed as the probability of obtaining a sample which

contains exactly x objects of one type (red) when a random sample of size n is selected

with replacement from a population of N objects of which N1 are of one type (red) and

N −N1 are of a second type (green). In this context the adjective random indicates that

each of the possible samples is equally probable.

Example. If a fair die is tossed 10 times, then the probability of observing exactly x

ones is px =
(

10
x

)

( 16 )
x( 56 )

10−x. For example, the probability of observing exactly 3 ones is
(

10
3

)

( 16 )
3( 56 )

7 = 120 · 57/610 ≈ .1550.

For completeness we should verify that the binomial probabilities p0, p1, . . . , pn sum

to one. This follows from the binomial theorem with a = p and b = 1− p, where p denotes

the probability of obtaining a “red” ball when a single ball is selected at random.

Binomial theorem. Given real numbers a and b and a positive integer n

(a+ b)n =
n
∑

x=0

(

n

x

)

axbn−x.

Proof. Let the real numbers a and b and the positive integer n be given. Multiplying the

n terms in the product (a+ b)n yields a sum of 2n products of the form axbn−x for values

of x between 0 and n. For each value of x, there are
(

n
x

)

ways in which the expression

axbn−x appears, since these expression correspond to the various combinations obtained
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by choosing x (a+ b) terms to contribute an a (and n− x (a+ b) terms to contribute a b).

Thus appropriate grouping of these products yields the result. ut

Example. Hypergeometric distribution. Suppose that a sample of n balls (objects) is

selected at random without replacement from a population of N balls of which N1 are

red (of one type) and N2 = N − N1 are green (of a second type). In this context the

word random indicates that we assume that the
(

N
n

)

samples of size n, represented as

(unordered) sets of size n, are equally probable. For an integer x, with 0 ≤ x ≤ n, we

will find the probability px that the sample contains exactly x red balls (and consequently

exactly n− x green balls). First note that, since the population contains N1 red balls and

N2 = N −N1 green balls and we are sampling without replacement, we must have px = 0

when x > N1 and when n − x > N −N1. For admissible values of x there are
(

N1

x

)

ways

to select x red balls for the sample and
(

N−N1

n−x

)

ways to select n − x green balls for the

sample. Thus there are
(

N1

x

)(

N−N1

n−x

)

outcomes favorable for the event “the sample contains

exactly x red balls” and, for admissible values of x, the probability of this event is

px =

(

N1

x

)(

N−N1

n−x

)

(

N
n

) .

In the context of placing of balls into boxes, this px is the probability that exactly x balls

are placed in a red box when n balls are placed at random into N boxes, of which N1 are

red and N − N1 are green, subject to the restriction that no more than one ball can be

placed in a box.

Example. If a poker hand is dealt randomly, then the probability that the hand contains

exactly x aces is px = [
(

4
x

)(

48
5−x

)

]/
(

52
5

)

. For example, the probability that the hand contains

exactly two aces is [
(

4
2

)(

48
3

)

]/
(

52
5

)

= 6 · 17296/2598960 ≈ .0399

For completeness we should should verify that the hypergeometric probabilities p0,

p1, . . . , pn sum to one. To simplify the argument we will adopt the convention that
(

a
b

)

= 0

whenever b > a. Consider the number of combinations of N balls taken n at a time,

when N1 are red and N −N1 are green. We know that there there are
(

N
n

)

combinations

altogether. For each value of w between 0 and n, there are
(

N1

w

)(

N−N1

n−w

)

combinations with

w red balls and n− w green balls (recall that for some values of w there may not be any

such combinations and this product is zero). Since one of the combinations of w red and

n − w green balls must occur we get
∑n

w=0

(

N1

w

)(

N−N1

n−w

)

=
(

N1

0

)(

N−N1

n

)

+
(

N1

1

)(

N−N1

n−1

)

+

· · ·+
(

N1

n

)(

N−N1

0

)

=
(

N
n

)

which shows that p0, p1, . . . , pn sum to one.

We will now extend these arguments to find similar probabilities corresponding to

random samples from a population comprised of object of three or more types.
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Example. Multinomial distribution. The binomial distribution is readily generalized to

allow for balls of three or more types. Suppose that a sample of n balls is selected at

random with replacement from a population of N = N1 + N2 + N3 balls of which N1

are of type one, N2 are of type two, and N3 are of type three. For n = n1 + n2 + n3,

we will find the probability pn1,n2,n3
that the sample contains n1 balls of type one, n2

balls of type two, and n3 balls of type three. The Nn elementary outcomes, represented

by n–tuples in which a value can occur more than once, are equally probable. There are
(

n
n1

)(

n−n1

n2

)(

n−n1−n2

n3

)

ways in which we can choose positions in an n–tuple for n1 balls of

type one, n2 balls of type two, and n3 balls of type three. For each particular choice of

positions there are N1N2N3 such elementary outcomes. Thus, for n = n1 + n2 + n3, the

probability of the event “the sample contains n1 balls of type one, n2 balls of type two,

and n3 balls of type three” when the random sample of n balls is selected with replacement

and N = N1 +N2 +N3 is

pn1,n2,n3
=

(

n

n1

)(

n− n1

n2

)(

N1

N

)n1
(

N2

N

)n2
(

N3

N

)n3

,

since
(

n−n1−n2

n3

)

=
(

n3

n3

)

= 1. The extension to balls of four of more types should be obvious.

Example. If a fair die is tossed 10 times, then the probability of observing exactly 3 ones

and exactly 4 twos is
(

10
3

)(

7
4

)(

3
3

)

( 16 )
3( 16 )

4( 46 )
4 = [120 · 35 · 1 · 44]/610 ≈ .0178.

Example. Multiple hypergeometric distribution. The hypergeometric distribution is also

readily generalized to allow for balls of three or more types. Suppose that a sample of n

balls is selected at random without replacement from a population of N = N1 +N2 +N3

balls of which N1 are of type one, N2 are of type two, and N3 are of type three. For

n = n1+n2+n3, we will find the probability pn1,n2,n3
that the sample contains n1 balls of

type one, n2 balls of type two, and n3 balls of type three. The
(

N
n

)

elementary outcomes,

represented by (unordered) sets of size n, are equally probable. In this case we must have

n1 ≤ N1, n2 ≤ N2, and n3 ≤ N3. Assuming that this is true there are
(

N1

n1

)(

N2

n2

)(

N3

n3

)

elementary outcomes that are favorable for the event of interest. Thus, for admissible

values of n1, n2, and n3, the probability of the event “the sample contains n1 balls of type

one, n2 balls of type two, and n3 balls of type three” when the random sample of n balls

is selected without replacement and N = N1 +N2 +N3 is

pn1,n2,n3
=

(

N1

n1

)(

N2

n2

)(

N3

n3

)

(

N
n

) .

Again the extension to balls of four of more types should be obvious.
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Example. If a poker hand is dealt randomly, then the probability that the hand contains

exactly 2 aces and exactly 2 kings is [
(

4
2

)(

4
2

)(

44
1

)

]/
(

52
5

)

≈ .0006.

Example. Geometric distribution. Suppose balls (objects) are selected at random with

replacement from a population of N balls, of which N1 are red (of one type) and N2 =

N − N1 are green (of a second type), sequentially until a red ball is selected and let n

denote the number of the selection on which the red ball occurs. In this context the

elementary outcomes can be represented by sequences of the form R, GR, GGR, . . ., with

R representing a red ball and G a green ball. In this example the sample space is countably

infinite. We will find the probability pn that the first red ball occurs on the nth selection.

For a fixed value of n the elementary outcomes which are favorable for the event “the first

red ball occurs on the nth selection” are of the form G . . . GR with n−1 G′s. Assume that

the N balls are distinguishable (if not they can always be suitably numbered), then there

are Nn−1
2 N1 elementary outcomes which are favorable for the event of interest and there

are Nn possible elementary outcomes. Thus, for n = 1, 2, . . .,

pn =
Nn−1

2 N1

N
=

(

N2

N

)n−1(
N1

N

)

= qn−1
1 p1,

where p1 =
N1

N
and q1 = 1− p1. To see that this is a valid assignment of probabilities we

need to verify that
∑∞

n=1 pn = 1. Note that
∑∞

n=1 pn = p1

∑∞

n=0 qn
1 = p1/(1 − q1) = 1,

since the geometric series
∑∞

n=0 qn
1 converges to 1/(1 − q1). These pi are often labeled

in terms of the number of green balls selected before the first red ball is selected, i.e., in

terms of n− 1 instead of n.

Example. If a fair die is tossed repeatedly until a one appears, then the probability of

observing this initial one on the fifth toss is ( 56 )
4( 16 ) ≈ .0804.

Example. Matching. Suppose that two decks of N distinguishable cards are placed in

random order and compared. If the two cards in a particular location are the same, then we

have a match. You can also think of placing N numbered balls into N numbered boxes and

looking for matches. We will find the probability P1 that there is at least one match. This

scenario can be rephrased in many amusing ways. For example: What is the probability

that at least one letter will be placed in the correct envelope if N letters are placed at

random into N envelopes? Letting Ai denote the event that there is a match at position

i (i = 1, . . . , N) note that P1 = Pr(A1 ∪ · · · ∪AN ). For counting purposes we can imagine

labeling the cards, as 1, . . . , N , in both decks to agree with the way that they are currently

ordered in the first deck and we can represent an elementary outcome as a permutation of

1, . . . , N indicating their ordering in the second deck. The assumption of random ordering

is assumed to mean that each of these permutations has probability 1
N ! . For a specified
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position i (i = 1, . . . , N) there are (N − 1)! permutations with a match at position i. Thus

Pr(Ai) =
(N−1)!

N ! . Similarly, for two distinct specified positions i and j, there are (N − 2)!

permutations with matches at positions i and j. Thus Pr(AiAj) =
(N−2)!

N ! . In general,

for k distinct specified positions, there are (N − k)! permutations with matches at these k

positions. Thus, letting i1, . . . , ik indicate the k positions, Pr(Ai1Ai2 · · ·Aik
) = (N−k)!

N ! . We

will now apply Theorem 2.10 to find P1. Letting S1 =
∑

i Pr(Ai), S2 =
∑

i<j Pr(AiAj),

and so on Theorem 2.10 indicates that P1 = S1−S2+S3−S4+ · · · ±SN . Since there are
(

N
k

)

ways to select k distinct positions we see that Sk =
(

N
k

) (N−k)!
N ! = 1

k! . Hence,

P1 = 1−
1

2!
+
1

3!
−
1

4!
+ · · · ±

1

N !
.

It is interesting to consider how this probability depends on the value of N . For

example, how does the probability of at least one match with a deck of 7 cards compare

to the probability for a deck of 7,000 cards? We shall see that it turns out that this

probability is nearly independent of the value of N and roughly equal to 2
3 . The values of

P1 for N = 3 through 7 are:

N = 3 4 5 6 7
P1 =

2
3 ≈ .66667 15

24 ≈ .62500 76
120 ≈ .63333 455

720 ≈ .63194 3186
5040 ≈ .63214

For larger values of N , note that −P1 corresponds to the first N terms of the expansion

e−1 = −1 +
1

2!
−
1

3!
+
1

4!
−
1

5!
+ · · ·

Hence for large N we have the approximation P1 ≈ 1 − e−1 ≈ .63212. Referring to the

table above we see that this approximation is quite accurate for relatively small N with

agrement to 4 decimal places when N = 7.


