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Chapter 2. Probability.

2.1 Probability measures.

Given an experiment and an event A we need to associate a probability, Pr(A), with

the event. The formal (axiomatic) definition of a probability measure below indicates the

restrictions we will impose on any such assignment of probabilities to events.

Definition. A probability measure Pr is a function which assigns probabilities to events

(subsets of Ω) and satisfies the following axioms.

Axiom 1: For every event A, Pr(A) ≥ 0.

Axiom 2: Pr(Ω) = 1.

Axiom 3: For every sequence {Ai} = {A1, A2, . . .} of disjoint events (AiAj = ∅ for all

i 6= j) Pr(
⋃∞
i=1

Ai) =
∑∞

i=1
Pr(Ai).

Axiom 1 states that the probability of an event cannot be negative. Axiom 2 states

that when the experiment is conducted something must happen. Axiom 3 states that if

an event can be decomposed (partitioned) into a sequence of disjoint subevents (the Ai),

then the probability of the event (the union) must be equal to the sum of the probabilities

of the disjoint subevents in the partition since there is no overlap among these subevents.

Aside: The event space. A rigorous definition of a probability measure requires the

specification of an event space A containing all of the events for which Pr is defined. If Ω

is finite or countably infinite, then A can be taken to be the collection of all subsets of Ω.

However, if Ω is uncountably infinite, then technicalities arise which require restrictions on

A. We will not dwell on the details but will mention these technicalities when they arise.

2.2. Properties of probability measures.

Theorem 2.1. Pr(∅) = 0.

Proof. For i = 1, 2, . . ., let Ai = ∅. Then the sequence {Ai} is a sequence of disjoint events

and by Axiom 3 Pr(∅) = Pr(
⋃∞
i=1
∅) =

∑∞
i=1

Pr(∅). The only value of Pr(∅) for which this

is possible is Pr(∅) = 0. ut

Theorem 2.2. For n ≥ 2, if A1, . . . , An are disjoint events, then

Pr

(

n
⋃

i=1

Ai

)

=

n
∑

i=1

Pr(Ai).

Proof. For i = n+1, n+2, . . ., let Ai = ∅. Then the sequence {Ai} is a sequence of disjoint

events and by Axiom 3 and Theorem 2.1 Pr(
⋃n

i=1
Ai) = Pr(

⋃∞
i=1

Ai) =
∑n

i=1
Pr(Ai). ut
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Theorem 2.3. If A and B are disjoint events, then

Pr(A ∪B) = Pr(A) + Pr(B).

Proof. Follows from Theorem 2.2 with n = 2, A1 = A, and A2 = B. ut

Theorem 2.4. For any event A,

Pr(Ac) = 1− Pr(A).

Proof. Follows from Theorem 2.3 and the fact that A ∪Ac = Ω. ut

Theorem 2.5. For any events A and B,

Pr(A) = Pr(AB) + Pr(ABc).

Proof. Follows from Theorem 2.3 and the fact that AB ∪ABc = A. ut

Theorem 2.6. If A ⊂ B, then

Pr(A) ≤ Pr(B).

Proof. Follows from Theorem 2.5 and the fact that A ⊂ B implies that BA = A. ut

Theorem 2.7. For any event A,

0 ≤ Pr(A) ≤ 1.

Proof. Follows from Theorem 2.6 and the fact that ∅ ⊂ A ⊂ Ω. ut

Theorem 2.8. For any events A and B,

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(AB).

Proof. Let A and B be given. The result follows from Theorem 2.2 and the representations

A = AB ∪ ABc, B = AB ∪ AcB, and A ∪ B = AB ∪ ABc ∪ AcB of A, B, and A ∪ B as

unions of disjoint events. ut

Theorem 2.9. For any events A,B,C,

Pr(A ∪B ∪ C) = Pr(A) + Pr(B) + Pr(C)− Pr(AB)− Pr(AC)− Pr(BC) + Pr(ABC).

Proof. Let A, B, and C be given. Noting that (A∪B)C = AC∪BC, application of Theorem

2.8 yields Pr(A∪B∪C) = Pr(A∪B)+Pr(C)−Pr(AC∪BC). By Theorem 2.8 we also have
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Pr(A∪B) = Pr(A)+Pr(B)−Pr(AB) and Pr(AC∪BC) = Pr(AC)+Pr(BC)−Pr(ABC).

Combining these three expressions yields the result. ut

Theorem 2.10. For any events A1, . . . , An,

Pr

(

n
⋃

i=1

Ai

)

=
∑

i

Pr(Ai)−
∑

i<j

Pr(AiAj) +
∑

i<j<k

Pr(AiAjAk)

+ · · ·+ (−1)n+1Pr(A1 · · ·An)

Proof. This can be proved using a straightforward but tedious inductive argument along

the lines of the proof of Theorem 2.9. ut

2.3. Discrete sample spaces

A sample space Ω is said to be discrete if it contains a finite or countably infinite

number of elementary outcomes. That is, either Ω = {ω1, . . . , ωN} for some positive

integer N or the elements of Ω can be arranged in a sequence Ω = {ω1, ω2, . . .}.

A probability distribution on a finite sample space Ω = {ω1, . . . , ωN} is an assignment

of probabilities to the elementary outcomes (elements) of Ω. More formally, given a finite

sample space Ω = {ω1, . . . , ωN}, a collection of probabilities p1, . . . , pN , with 0 ≤ pi ≤ 1

and p1 + · · · + pN = 1, determines a probability distribution on Ω with Pr(ωi) = pi

for i = 1, . . . , N . Note that in most situations we can remove any elements with zero

probability and there are at least two elements with positive probability, thus, we can

assume that 0 < pi < 1.

More generally, letting Ω = {ω1, ω2, . . .} denote a discrete sample space (finite or

countably infinite) a probability distribution on Ω is a sequence p1, p2, . . . of probabilities

(Pr(ωi) = pi) with 0 ≤ pi ≤ 1 for all i and
∑∞

i=1
pi = 1.

With a discrete sample space Ω = {ω1, ω2, . . .} we can define probabilities for every

subset of Ω. Given an event A, i.e., given A ⊂ Ω, the probability of the event A is the

sum of the probabilities of the elementary outcomes which belong to A, i.e.,

Pr(A) =
∑

ωi∈A

Pr(ωi) =
∑

{i:ωi∈A}

pi.

The simplest way to assign probabilities to the elements of a finite sample space

Ω = {ω1, . . . , ωN} is to assume that the N elementary outcomes are equally probable

so that Pr(ωi) = 1

N
for i = 1, . . . , N . When the N elementary outcomes are assumed

equally probable, the probability of an event A is Pr(A) = NA

N
, where NA is the number of

elementary outcomes which belong to A. In other words, with equally probable outcomes,

the probability of event A is the ratio of the number of outcomes “favorable” for A to
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the number of “possible” outcomes. This simple situation is convenient for demonstrating

concepts; but, the usefulness of the assumption of a finite sample space with equally

probable outcomes as a model for an idealized version of reality is restricted to games of

chance and combinatorial problems.

For completeness we will now describe a simple example involving an uncountably

infinite sample space and an analog of equally probable outcomes for such a sample space.

Consider a spinner atop a disk and an experiment consisting of spinning the spinner and

noting the location of its pointer on the circumference of the disk. If the circumference

is divided into N arcs, then we can represent an elementary outcome by the appropriate

integer in the finite sample space Ω = {1, . . . , N}. On the other hand, if we think of

the circumference as a continuum, then, assuming that the disk has radius one, we can

represent an elementary outcome as a real number in the uncountably infinite sample

space Ω = [0, 2π). With Ω = {1, . . . , N} we can assign positive probabilities to each of

the elementary outcomes and use these to find probabilities of events. However, with Ω =

[0, 2π) it is clear that we cannot assign positive probabilities to the elementary outcomes.

In this case if we assume that all of the events of interest can be represented as unions of

arcs, then we can define probabilities for all possible arcs and use these to find probabilities

of events. Now suppose that we have an fair spinner with the property the likelihood of

stopping at any particular point on the circumference of the disk is the same for each point.

In the finite case, if each arc is of the same length, then, for this fair spinner, we can assume

that each of the N elementary outcomes has probability 1

N
. In the case Ω = [0, 2π), with

this fair spinner we can assume that for any specified arc of length α the probability of

the event that the pointer lands in the arc is equal to α
2π
. With this uniform distribution

on the circumference of the disk the probability that the pointer lands at a specified point

is zero but the probability that it lands in a specified arc, of length α, which contains the

point is α
2π

> 0. Note that if the arc containing the point is made shorter and shorter,

then the arc degenerates to the point and the probability α
2π

approaches zero; thus, the

notion of a point having probability zero is consistent with this assignment of probability

to an arc.


