THE LUBIN-TATE SPECTRUM AND ITS HOMOTOPY FIXED POINT SPECTRA

DANIEL DAVIS

Abstract. This note is a summary of the results of my Ph.D. thesis (plus slight modifications), completed May 9, 2003, under the supervision of Professor Paul Goerss at Northwestern University.

Let E_n be the Lubin-Tate spectrum with

$$E_n = W(\mathbb{F}_p^n)[[u_1, ..., u_{n-1}]]/[u_1],$$

where the degree of u is -2 and the complete power series ring over the Witt vectors is in degree zero. Let $G_n = S_n \rtimes \text{Gal}(\mathbb{F}_p^n/\mathbb{F}_p)$, where S_n is the nth Morava stabilizer group (the automorphism group of the Honda formal group law Γ_n of height n over \mathbb{F}_p^n), and let G be a closed subgroup of G_n. Note that S_n, G_n and G are all profinite groups.

Morava’s change of rings theorem yields a spectral sequence

$$(1) \quad H^s_c(G_n; \pi_t(E_n \wedge X)) = \Rightarrow \pi_t L_{K(n)}(X),$$

where the E_2-term is continuous cohomology and X is a finite spectrum (see [7], [1], [5]). Using the G_n-action on E_n by maps of commutative S-algebras (work of Goerss and Hopkins ([3], [4]), and Hopkins and Miller [8]), Devinatz and Hopkins [2] constructed spectra E_n^{hG} with strongly convergent spectral sequences

$$(2) \quad H^s_c(G; \pi_t(E_n \wedge X)) = \Rightarrow \pi_t(E_n^{hG} \wedge X).$$

Also, Devinatz and Hopkins showed that $E_n^{hG_n} \wedge X \simeq L_{K(n)}(X)$.

When K is a discrete group and Y is a K-spectrum, there is a homotopy fixed point spectrum $Y^{hK} = \text{Map}_K(\mathbb{K}, Y)$, where \mathbb{K} is a free contractible K-space. Also, there is a conditionally convergent spectral sequence

$$E_2^{s,t} = H^s(K; \pi_t(Y)) = \Rightarrow \pi_{t-s}(Y^{hK}),$$

where the E_2-term is group cohomology [6, §1.1]. Such a spectral sequence is called a descent spectral sequence.

This scenario also occurs in another context. Let K be a profinite group. We say that Y is a discrete K-spectrum, if Y is a K-spectrum of simplicial sets such that each simplicial set Y_k is a simplicial discrete K-set (that is, for each $l \geq 0$, the action map on the l-simplices of Y_k,
\[K \times (Y_k)_l \to (Y_k)_l \text{ is a continuous map, where } (Y_k)_l \text{ is given the discrete topology}. \] Using work of Jardine, there is a model category \(Sp_K \) of discrete \(K \)-spectra, and one defines \(Y^{hK} = (Y_f)^K \) to be the homotopy fixed point spectrum of \(Y \), where \(Y \to Y_f \) is a trivial cofibration and \(Y_f \) is fibrant, all in \(Sp_K \). Then, if the cohomological dimension of \(K \) satisfies an appropriate finiteness hypothesis, there is a conditionally convergent descent spectral sequence

\[H^s_c(K; \pi_t(Y)) \implies \pi_{t-s}(Y^{hK}). \]

Upon comparing (2) with the above descent spectral sequences, \(E_n \) appears to be a continuous \(G_n \)-spectrum with “descent” spectral sequences for “homotopy fixed point” spectra \(E_n^{hG} \wedge X \). Indeed, we explain how [2] implies that \(E_n \) is a continuous \(G_n \)-spectrum - \(E_n \) is an inverse limit of discrete \(G_n \)-spectra. Using this continuous action, we define homotopy fixed point spectra \((E_n \wedge X)^{hG} \) that are weakly equivalent to \(E_n^{hG} \wedge X \), and, for \((E_n \wedge X)^{hG} \), we construct a descent spectral sequence that is isomorphic to (2). We remark that this continuous action is not shown to be by \(A_\infty \)- or \(E_\infty \)-maps of ring spectra.

In more detail, the \(K(n)^* \)-local spectrum \(E_n \) has an action by \(G_n \) as a commutative \(S \)-algebra. The \(K(n)^* \)-local commutative \(S \)-algebra \(E_n^{hG} \) has an associated strongly convergent \(K(n)^* \)-local \(E_n \)-Adams spectral sequence

\[E_2^{s,t} \cong H_c^s(G; E_n^t(Z)) \implies (E_n^{hG})^s(Z), \]

where \(Z \) is any CW-spectrum. Also, [2] proves the remarkable formula

\[E_n \cong L_{K(n)}(\text{hocolim}_i E_n^{hU_i}), \]

where \(\{U_i\} \) is a cofinal descending chain of open normal subgroups of \(G_n \), and the homotopy colimit, as the notation indicates, is in the category of commutative \(S \)-algebras.

Devinatz and Hopkins prove that the homotopy fixed point spectra \(E_n^{hG} \) have the expected properties and, when one sets \(Z \) equal to the Spanier-Whitehead dual of any finite spectrum \(X \), one obtains a spectral sequence

\[E_2^{s,t} \cong H_c^s(G; \pi_t(E_n \wedge X)) \implies \pi_{s-t}(E_n^{hG} \wedge X) \]

that has the form of a descent spectral sequence. Thus, their constructions strongly suggest that \(G_n \) acts on \(E_n \) in a continuous sense. However, their highly structured action is not proven to be continuous and their homotopy fixed point spectra are not defined with respect to a continuous action.

Let \(F_n = \text{colim}_i E_n^{hU_i} \). Given \(I = (p^{i_0}, v^{i_1}_1, \ldots, v^{i_{n-1}}_1) \subset BP_\ast \), let \(M_I = M(p^{i_0}, v^{i_1}_1, \ldots, v^{i_{n-1}}_1) \) (when it exists) be the generalized Moore
spectrum with $BP_*(M_I) \cong BP_*/I$. We observe that $F_n \wedge M_I$ is a discrete G_n-spectrum, since it is the colimit of G_n/U_i-spectra. Then the key fact for getting our work started is

$$E_n \wedge M_I \simeq F_n \wedge M_I,$$

obtained by applying (3), since this implies that $E_n \wedge M_I$ has the stable homotopy type of a discrete G_n-spectrum.

Henceforth, X is a finite spectrum only if this is explicitly mentioned.

Theorem 1. There is a tower

$$\cdots \rightarrow (F_n \wedge M_I)_f \rightarrow \cdots \rightarrow (F_n \wedge M_I)_f \rightarrow (F_n \wedge M_I)_f$$

of fibrations of fibrant spectra in Sp_{G_n}, such that each $(F_n \wedge M_I)_f \simeq F_n \wedge M_I$, and

$$E_n \simeq \lim_j (F_n \wedge M_I)_f$$

is an inverse limit of discrete G_n-spectra. Thus, E_n is a continuous G_n-spectrum.

Theorem 2. Let G be a closed subgroup of G_n and let X have the property that the tower of abelian groups $\{\pi_t(E_n \wedge M_I \wedge X)\}_j$ is Mittag-Leffler for every integer t (e.g. X is finite or $X = E_n \wedge E_n \wedge \cdots \wedge E_n$). Then there is a conditionally convergent descent spectral sequence

$$H_*^{cts}(G; \pi_t(L_K(n)(E_n \wedge X))) \Rightarrow \pi_{-s}(L_K(n)(E_n \wedge X))_hG,$$

where the E_2-term is the cohomology of continuous cochains. In particular, if X is a finite spectrum, this descent spectral sequence has the form

$$H_*^c(G; \pi_t(E_n \wedge X)) \Rightarrow \pi_{-s}((E_n \wedge X)_hG),$$

where $H_*^c(G; \pi_t(E_n \wedge X)) \cong \lim_k H_*^c(G; \pi_t(E_n \wedge X)/I^n_k)$, where $I_n = (p, u_1, \ldots, u_{n-1}) \subset E_{ns}$.

We also show that the descent spectral sequence, when X is finite, is isomorphic to the spectral sequence of Devinatz and Hopkins.
Theorem 3. When X is a finite spectrum, descent spectral sequence (4) is isomorphic to the strongly convergent $K(n)_*$-local E_n-Adams spectral sequence with abutment $\pi_*(E_n^hG \wedge X)$. In particular, in the stable homotopy category, the morphism $E_n^hG \wedge X \to (E_n \wedge X)^hG$ is an isomorphism.

Finally, we prove that the $K(n)_*$-localization of any finite complex is a homotopy fixed point spectrum. In particular, $L_{K(n)}(S^0)$ is the G_n-homotopy fixed points of E_n, in a continuous sense.

Theorem 4. Let X be a finite complex. Then

$$L_{K(n)}(X) \cong (E_n \wedge X)^{hG_n},$$

in the stable homotopy category. In particular, if X is also of type n, then

$$L_nX \cong (F_n \wedge X)^{hG_n}.$$

Acknowledgements. This work is indebted to the beautiful work of Ethan Devinatz and Mike Hopkins [2], to [3] and [4] by Paul Goerss and Hopkins, and to the work of Hopkins and Haynes Miller [8].

Many thanks to my thesis advisor Paul Goerss for a plethora of helpful conversations and many suggestions that improved the organization and writing of my thesis. His fingerprints are present throughout. I am grateful to Mark Mahowald and Stewart Priddy for their careful examination of my thesis and their comments about various drafts of it.

I thank Ethan Devinatz for helpful conversations and e-mails that gave me a better understanding of his paper [2] with Hopkins. I thank Charles Rezk and Rick Jardine for answering various questions, and I had many useful conversations with Christian Haesemeyer during the course of my research. Also, I thank Halvard Fausk, Jeff Smith and Thomas Wenger for helpful discussions.

References

