Let H be a nontrivial proper closed subgroup of G. If H is open in G, then, as
sorta implicitly explained below, the fibrant model in my paper can be obtained
from Jardine’s Godement resolution approach.

But suppose that H is closed, and not open, in G. I’m not certain of the following
assertion, but I think that, in this case, Jardine’s Godement approach does not give
the fibrant model described in my paper. Let T_H be the category of discrete H-sets.
Again, I’m not certain of the following, but I think that the functor

$$\text{Map}_c(G, -): \text{Sets} \rightarrow T_H$$

would have to be a right adjoint for Jardine’s approach to yield the paper’s fibrant
model. But this functor is usually not going to be a right adjoint.

Suppose that $\text{Map}_c(G, -)$, as defined above, is a right adjoint. Then it commutes
with all limits. Since we will be working with limits, it is easier to work with the
functor $\text{Map}_c(G, -)$ by identifying it with the functor

$$\operatorname{colim}_N \prod_{G/N} (-): \text{Sets} \rightarrow T_H,$$

where the colimit is taken over all the open normal subgroups of G. Let’s use \lim for limits in Sets and \lim^H for limits in T_H. Then, given a diagram $\{X_i\}_i$ of sets, we require that

$$\operatorname{colim}_N \prod_{G/N} \lim_i X_i \cong \lim^H \operatorname{colim}_N \prod_{G/N} X_i.$$

Thus, we want to show that

$$\text{(1)} \quad \operatorname{colim}_N \prod_{G/N} \lim_i X_i \cong \operatorname{colim}(\operatorname{lim} \operatorname{colim}_N \prod_{G/N} X_i)^K,$$

where colim_K indicates that the colimit is taken over all open normal subgroups K of H.

But I don’t see how to verify (1) when H is closed and not open. It is possible to see why (1) fails to be true in this case, by going through the proof when H is open and noting the difference with the case when H is not open.

So now suppose that H is open and let’s verify (1), beginning with the right-hand side of (1):

$$\operatorname{colim}(\operatorname{lim} \operatorname{colim}_N \prod_{G/N} X_i)^K \cong \operatorname{colim} \operatorname{lim} \text{Map}_c(G, X_i)^K$$

$$\cong \operatorname{colim} \lim_{K} \prod_{G/K} X_i$$

$$\cong \operatorname{colim} \prod_{G/K} \lim_{i} X_i$$

$$\cong \operatorname{colim}_{U<H} \prod_{G/U} \lim_{i} X_i$$

$$\cong \operatorname{colim}_{V<G} \prod_{G/V} \lim_{i} X_i$$

$$\cong \operatorname{colim}_N \prod_{G/N} \lim_{i} X_i,$$
where the second isomorphism uses that \(G/K \) is a finite product (since \(K \) is open in \(G \), which won’t necessarily be true when \(H \) is closed and not open in \(G \)) and the last three isomorphisms are by cofinality - the fifth isomorphism (the second application of cofinality) will not be true when \(H \) is not open in \(G \).

So (1) need not hold when \(H \) is closed, so the requisite functor need not be a right adjoint.